1
|
Du Y, Wang L, Meng D, Chen B, An C, Liu H, Liu W, Xu Y, Fan Y, Feng D, Wang X, Xu X. Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1185-1196. [PMID: 36446017 DOI: 10.1109/tmi.2022.3225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anomaly detection in fundus images remains challenging due to the fact that fundus images often contain diverse types of lesions with various properties in locations, sizes, shapes, and colors. Current methods achieve anomaly detection mainly through reconstructing or separating the fundus image background from a fundus image under the guidance of a set of normal fundus images. The reconstruction methods, however, ignore the constraint from lesions. The separation methods primarily model the diverse lesions with pixel-based independent and identical distributed (i.i.d.) properties, neglecting the individualized variations of different types of lesions and their structural properties. And hence, these methods may have difficulty to well distinguish lesions from fundus image backgrounds especially with the normal personalized variations (NPV). To address these challenges, we propose a patch-based non-i.i.d. mixture of Gaussian (MoG) to model diverse lesions for adapting to their statistical distribution variations in different fundus images and their patch-like structural properties. Further, we particularly introduce the weighted Schatten p-norm as the metric of low-rank decomposition for enhancing the accuracy of the learned fundus image backgrounds and reducing false-positives caused by NPV. With the individualized modeling of the diverse lesions and the background learning, fundus image backgrounds and NPV are finely learned and subsequently distinguished from diverse lesions, to ultimately improve the anomaly detection. The proposed method is evaluated on two real-world databases and one artificial database, outperforming the state-of-the-art methods.
Collapse
|
2
|
Sreejith S, Subramanian R, Karthik S. Using patching asymmetric regions to assess ischemic stroke lesion in neuro imaging. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ischemic stroke is a universal ailment that endangers the life of patients and makes them bedridden until death. Over a decade, doctors and radiologists have been dissecting patient status straightforwardly from the printouts of the slice images delivered by different diagnostic imaging modalities. Computed Tomography (CT) is a frequently used imaging strategy for therapeutic analysis and neuroanatomical investigations. The main objective of the paper is to develop a simple technique with less architectural complication and power consumption. The proposed work is to section the ischemic stroke lesion more efficiently from multi-succession CT images using patching the asymmetric region. The Hough transform segment and extracts the features from the asymmetric region of the CT image and finally, the random forest is implemented to classify the unusual tissues from the CT image dependent on their pathological properties. RF classifier has been trained for different parts of the cerebrum for fragmenting the stroke lesion. The acquired outcomes produce better segmentation accuracy when compared with different strategies. The overall efficiency of the proposed method determines the Ischemic stroke with an accuracy of 95% with an RF classifier. Hence this method can be used in the segmentation process of stroke lesions.
Collapse
Affiliation(s)
- S. Sreejith
- Department of Electronics & Communication Engineering, SNS College of Technology, Coimbatore, Tamilnadu, India
| | - R. Subramanian
- Department of Electrical & Electronics Engineering, SNS College of Technology, Coimbatore, Tamilnadu, India
| | - S. Karthik
- Department of Computer Science & Engineering, SNS College of Technology, Coimbatore, Tamilnadu, India
| |
Collapse
|
3
|
Arco JE, Ortiz A, Ramírez J, Zhang YD, Górriz JM. Tiled Sparse Coding in Eigenspaces for Image Classification. Int J Neural Syst 2021; 32:2250007. [PMID: 34967705 DOI: 10.1142/s0129065722500071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The automation in the diagnosis of medical images is currently a challenging task. The use of Computer Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has been recently revolutionized by deep learning approaches. blackThese alternatives usually obtain a large performance based on complex solutions, leading to a high computational cost and the need of having large databases. In this work, we propose a classification framework based on sparse coding. Images are blackfirst partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The original signals are then transformed as a linear combination of the elements of the dictionary. blackThen, they are reconstructed by iteratively deactivating the elements associated with each component. Classification is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated in a real context where distinguishing between four different pathologies: control versus bacterial pneumonia versus viral pneumonia versus COVID-19. blackOur system differentiates between pneumonia patients and controls with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians when their workload is high.
Collapse
Affiliation(s)
- Juan E Arco
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Andrés Ortiz
- Department of Communications Engineering, University of Malaga 29010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| |
Collapse
|
4
|
Kaur A, Kaur L, Singh A. GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06134-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Koley S, Dutta PK, Aganj I. Radius-optimized efficient template matching for lesion detection from brain images. Sci Rep 2021; 11:11586. [PMID: 34078935 PMCID: PMC8172536 DOI: 10.1038/s41598-021-90147-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Computer-aided detection of brain lesions from volumetric magnetic resonance imaging (MRI) is in demand for fast and automatic diagnosis of neural diseases. The template-matching technique can provide satisfactory outcome for automatic localization of brain lesions; however, finding the optimal template size that maximizes similarity of the template and the lesion remains challenging. This increases the complexity of the algorithm and the requirement for computational resources, while processing large MRI volumes with three-dimensional (3D) templates. Hence, reducing the computational complexity of template matching is needed. In this paper, we first propose a mathematical framework for computing the normalized cross-correlation coefficient (NCCC) as the similarity measure between the MRI volume and approximated 3D Gaussian template with linear time complexity, [Formula: see text], as opposed to the conventional fast Fourier transform (FFT) based approach with the complexity [Formula: see text], where [Formula: see text] is the number of voxels in the image and [Formula: see text] is the number of tried template radii. We then propose a mathematical formulation to analytically estimate the optimal template radius for each voxel in the image and compute the NCCC with the location-dependent optimal radius, reducing the complexity to [Formula: see text]. We test our methods on one synthetic and two real multiple-sclerosis databases, and compare their performances in lesion detection with FFT and a state-of-the-art lesion prediction algorithm. We demonstrate through our experiments the efficiency of the proposed methods for brain lesion detection and their comparable performance with existing techniques.
Collapse
Affiliation(s)
- Subhranil Koley
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India.
| | - Pranab K Dutta
- Electrical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, 149 13th St., Suite 2301, Charlestown, MA, 02129, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
7
|
Essa E, Aldesouky D, Hussein SE, Rashad MZ. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput 2020; 58:2161-2175. [PMID: 32681214 DOI: 10.1007/s11517-020-02225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. Therefore, the need for effective automated segmentation techniques is critical. However, a large spatial variability between the structure of brain lesions makes it more challenging. Recently, convolutional neural network (CNN), in particular, the region-based CNN (R-CNN), have attained tremendous progress within the field of object recognition because of its ability to learn and represent features. CNN has proven a last-breaking performance in various fields, such as object recognition, and has also gained more attention in brain imaging, especially in tissue and brain segmentation. In this paper, an automated technique for MS lesion segmentation is proposed, which is built on a 3D patch-wise R-CNN. The proposed system includes two stages: first, segmenting MS lesions in T2-w and FLAIR sequences using R-CNN, then an adaptive neuro-fuzzy inference system (ANFIS) is applied to fuse the results of the two modalities. To evaluate the performance of the proposed method, the public MICCAI2008 MS challenge dataset is employed to segment MS lesions. The experimental results show competitive results of the proposed method compared with the state-of-the-art MS lesion segmentation methods with an average total score of 83.25 and an average sensitivity of 61.8% on the MICCAI2008 testing set. Graphical Abstract The proposed system overview. First, the input of two modalities FLAIR and T2 are pre-processed to remove the skull and correct the bias field. Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.
Collapse
Affiliation(s)
- Ehab Essa
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.
| | - Doaa Aldesouky
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - Sherif E Hussein
- Computer Engineering and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - M Z Rashad
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
8
|
Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I. Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci Rep 2020; 10:8242. [PMID: 32427874 PMCID: PMC7237671 DOI: 10.1038/s41598-020-64803-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained parsing of SDI results in situations where the number of objects is unknown. We explore these ideas with two case studies showing what can be learned from our two presented studies. Our first study explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on the insights into the algorithms provided by our analysis to generate a segmentation that exhibits improved performance. This work demonstrates the wealth of information that can be learned from refined analysis of medical image segmentations.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jacob C Reinhold
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525, HP, Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525, GA, Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - William R Gray Roncal
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
9
|
Wang R, Chen B, Meng D, Wang L. Weakly Supervised Lesion Detection From Fundus Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1501-1512. [PMID: 30530359 DOI: 10.1109/tmi.2018.2885376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Early diagnosis and continuous monitoring of patients suffering from eye diseases have been major concerns in the computer-aided detection techniques. Detecting one or several specific types of retinal lesions has made a significant breakthrough in computer-aided screen in the past few decades. However, due to the variety of retinal lesions and complex normal anatomical structures, automatic detection of lesions with unknown and diverse types from a retina remains a challenging task. In this paper, a weakly supervised method, requiring only a series of normal and abnormal retinal images without need to specifically annotate their locations and types, is proposed for this task. Specifically, a fundus image is understood as a superposition of background, blood vessels, and background noise (lesions included for abnormal images). Background is formulated as a low-rank structure after a series of simple preprocessing steps, including spatial alignment, color normalization, and blood vessels removal. Background noise is regarded as stochastic variable and modeled through Gaussian for normal images and mixture of Gaussian for abnormal images, respectively. The proposed method encodes both the background knowledge of fundus images and the background noise into one unique model, and corporately optimizes the model using normal and abnormal images, which fully depict the low-rank subspace of the background and distinguish the lesions from the background noise in abnormal fundus images. Experimental results demonstrate that the proposed method is of fine arts accuracy and outperforms the previous related methods.
Collapse
|
10
|
Ghribi O, Maalej A, Sellami L, Ben Slima M, Maalej MA, Ben Mahfoudh K, Dammak M, Mhiri C, Ben Hamida A. Advanced methodology for multiple sclerosis lesion exploring: Towards a computer aided diagnosis system. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Guerrero R, Qin C, Oktay O, Bowles C, Chen L, Joules R, Wolz R, Valdés-Hernández MC, Dickie DA, Wardlaw J, Rueckert D. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NEUROIMAGE-CLINICAL 2017. [PMID: 29527496 PMCID: PMC5842732 DOI: 10.1016/j.nicl.2017.12.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
White matter hyperintensities (WMH) are a feature of sporadic small vessel disease also frequently observed in magnetic resonance images (MRI) of healthy elderly subjects. The accurate assessment of WMH burden is of crucial importance for epidemiological studies to determine association between WMHs, cognitive and clinical data; their causes, and the effects of new treatments in randomized trials. The manual delineation of WMHs is a very tedious, costly and time consuming process, that needs to be carried out by an expert annotator (e.g. a trained image analyst or radiologist). The problem of WMH delineation is further complicated by the fact that other pathological features (i.e. stroke lesions) often also appear as hyperintense regions. Recently, several automated methods aiming to tackle the challenges of WMH segmentation have been proposed. Most of these methods have been specifically developed to segment WMH in MRI but cannot differentiate between WMHs and strokes. Other methods, capable of distinguishing between different pathologies in brain MRI, are not designed with simultaneous WMH and stroke segmentation in mind. Therefore, a task specific, reliable, fully automated method that can segment and differentiate between these two pathological manifestations on MRI has not yet been fully identified. In this work we propose to use a convolutional neural network (CNN) that is able to segment hyperintensities and differentiate between WMHs and stroke lesions. Specifically, we aim to distinguish between WMH pathologies from those caused by stroke lesions due to either cortical, large or small subcortical infarcts. The proposed fully convolutional CNN architecture, called uResNet, that comprised an analysis path, that gradually learns low and high level features, followed by a synthesis path, that gradually combines and up-samples the low and high level features into a class likelihood semantic segmentation. Quantitatively, the proposed CNN architecture is shown to outperform other well established and state-of-the-art algorithms in terms of overlap with manual expert annotations. Clinically, the extracted WMH volumes were found to correlate better with the Fazekas visual rating score than competing methods or the expert-annotated volumes. Additionally, a comparison of the associations found between clinical risk-factors and the WMH volumes generated by the proposed method, was found to be in line with the associations found with the expert-annotated volumes. Robust, fully automatic white matter hyperintensity and stroke lesion segmentation and differentiation A novel patch sampling strategy used during CNN training that avoids the introduction of erroneous locality assumptions Improved segmentation accuracy in terms of Dice scores when compared to well established state-of-the-art methods
Collapse
Affiliation(s)
- R Guerrero
- Department of Computing, Imperial College London, UK.
| | - C Qin
- Department of Computing, Imperial College London, UK
| | - O Oktay
- Department of Computing, Imperial College London, UK
| | - C Bowles
- Department of Computing, Imperial College London, UK
| | - L Chen
- Department of Computing, Imperial College London, UK
| | | | - R Wolz
- IXICO plc., UK; Department of Computing, Imperial College London, UK
| | - M C Valdés-Hernández
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D A Dickie
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J Wardlaw
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D Rueckert
- Department of Computing, Imperial College London, UK
| |
Collapse
|
12
|
Ghribi O, Sellami L, Ben Slima M, Ben Hamida A, Mhiri C, Mahfoudh KB. An Advanced MRI Multi-Modalities Segmentation Methodology Dedicated to Multiple Sclerosis Lesions Exploration and Differentiation. IEEE Trans Nanobioscience 2017; 16:656-665. [PMID: 29035222 DOI: 10.1109/tnb.2017.2763246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurological diseases in young people. This paper dealt with an automatic biomedical aided tool involving volumetric segmentation of multiple sclerosis lesions. To meet this challenge, our proposed methodology requires one preliminary cerebral zones segmentation performed using a new Gaussian mixture model based on various databases atlases. Afterward, lesion segmentation begins with the estimation of a lesion map, which is then subjected to threshold constraints and refined by a new lesion expansion algorithm. The evaluation was carried out on four clinical databases integrating various clinical cases which had different lesion loads and were presented by a set of MRI modalities at several noise levels. The results compared with those of the existing methods proved excellent cerebral segmentation with dice averages close to 0.8 and sensitivity and specificity averages greater than 0.9. In addition, depending on the used database, the lesion segmentation recorded mean values were close to or greater than 0.8 for the different metrics. The detection error and outline error averages were about 0.3. Besides the ability to identify the lesions affecting the different parts of the brain, even those spreading in the gray matter, the proposed methodology identified the lesions cores and their surrounding vasogenic edema. This has been thoroughly tested and validated by highly qualified radiologists and neurologists. The evaluation of the resulting discriminations recorded values close to or greater than 0.9 for dice, sensitivity, and specificity. As a valuable benefit, a computer aided diagnosis tool could be offered to clinicians. It would help efficiently during the MS diagnosis and avoid several confusions. Besides, it could be used for longitudinal survey and henceforth extends to other pathologies that could be explored by MRI modalities, such as glioblastoma or alzheimer's disease.
Collapse
|
13
|
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging 2017; 30:449-459. [PMID: 28577131 PMCID: PMC5537095 DOI: 10.1007/s10278-017-9983-4] [Citation(s) in RCA: 451] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.
Collapse
Affiliation(s)
- Zeynettin Akkus
- Radiology Informatics Lab, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfiia Galimzianova
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Assaf Hoogi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bradley J Erickson
- Radiology Informatics Lab, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Bazin PL, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 2017; 148:77-102. [PMID: 28087490 PMCID: PMC5344762 DOI: 10.1016/j.neuroimage.2016.12.064] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Amod Jog
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Magrath
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Button
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James Nguyen
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ferran Prados
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Carole H Sudre
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
| | - Manuel Jorge Cardoso
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Niamh Cawley
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Olga Ciccarelli
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | | | - Sébastien Ourselin
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Laurence Catanese
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | | | - Pierre Maurel
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Olivier Commowick
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Christian Barillot
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Suthirth Vaidya
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Abhijith Chunduru
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ramanathan Muthuganapathy
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ganapathy Krishnamurthi
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Leonardo O Iheme
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | - Devrim Unay
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | | | | | | | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
| | - Peter A Calabresi
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
| | - Daniel S Reich
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Strumia M, Schmidt FR, Anastasopoulos C, Granziera C, Krueger G, Brox T. White Matter MS-Lesion Segmentation Using a Geometric Brain Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1636-1646. [PMID: 26829786 DOI: 10.1109/tmi.2016.2522178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Brain magnetic resonance imaging (MRI) in patients with Multiple Sclerosis (MS) shows regions of signal abnormalities, named plaques or lesions. The spatial lesion distribution plays a major role for MS diagnosis. In this paper we present a 3D MS-lesion segmentation method based on an adaptive geometric brain model. We model the topological properties of the lesions and brain tissues in order to constrain the lesion segmentation to the white matter. As a result, the method is independent of an MRI atlas. We tested our method on the MICCAI MS grand challenge proposed in 2008 and achieved competitive results. In addition, we used an in-house dataset of 15 MS patients, for which we achieved best results in most distances in comparison to atlas based methods. Besides classical segmentation distances, we motivate and formulate a new distance to evaluate the quality of the lesion segmentation, while being robust with respect to minor inconsistencies at the boundary level of the ground truth annotation.
Collapse
|
16
|
Brosch T, Tang LYW, Li DKB, Traboulsee A, Tam R. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1229-1239. [PMID: 26886978 DOI: 10.1109/tmi.2016.2528821] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.
Collapse
|
17
|
Mechrez R, Goldberger J, Greenspan H. Patch-Based Segmentation with Spatial Consistency: Application to MS Lesions in Brain MRI. Int J Biomed Imaging 2016; 2016:7952541. [PMID: 26904103 PMCID: PMC4745344 DOI: 10.1155/2016/7952541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022] Open
Abstract
This paper presents an automatic lesion segmentation method based on similarities between multichannel patches. A patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally an iterative patch-based label refinement process based on the initial segmentation map is performed to ensure the spatial consistency of the detected lesions. The method was evaluated in experiments on multiple sclerosis (MS) lesion segmentation in magnetic resonance images (MRI) of the brain. An evaluation was done for each image in the MICCAI 2008 MS lesion segmentation challenge. Results are shown to compete with the state of the art in the challenge. We conclude that the proposed algorithm for segmentation of lesions provides a promising new approach for local segmentation and global detection in medical images.
Collapse
Affiliation(s)
- Roey Mechrez
- Biomedical Engineering Department, Tel-Aviv University, 69978 Tel Aviv, Israel
| | - Jacob Goldberger
- Engineering Faculty, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - Hayit Greenspan
- Biomedical Engineering Department, Tel-Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
18
|
Roy S, Carass A, Prince JL, Pham DL. Longitudinal Patch-Based Segmentation of Multiple Sclerosis White Matter Lesions. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2015; 9352:194-202. [PMID: 27570846 DOI: 10.1007/978-3-319-24888-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Segmenting T2-hyperintense white matter lesions from longitudinal MR images is essential in understanding progression of multiple sclerosis. Most lesion segmentation techniques find lesions independently at each time point, even though there are different noise and image contrast variations at each point in the time series. In this paper, we present a patch based 4D lesion segmentation method that takes advantage of the temporal component of longitudinal data. For each subject with multiple time-points, 4D patches are constructed from the T1-w and FLAIR scans of all time-points. For every 4D patch from a subject, a few relevant matching 4D patches are found from a reference, such that their convex combination reconstructs the subject's 4D patch. Then corresponding manual segmentation patches of the reference are combined in a similar manner to generate a 4D membership of lesions of the subject patch. We compare our 4D patch-based segmentation with independent 3D voxel-based and patch-based lesion segmentation algorithms. Based on ground truth segmentations from 30 data sets, we show that the mean Dice coefficients between manual and automated segmentations improve after using the 4D approach compared to two state-of-the-art 3D segmentation algorithms.
Collapse
Affiliation(s)
- Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| | - Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| |
Collapse
|
19
|
Roy S, He Q, Sweeney E, Carass A, Reich DS, Prince JL, Pham DL. Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation. IEEE J Biomed Health Inform 2015; 19:1598-609. [PMID: 26340685 PMCID: PMC4562064 DOI: 10.1109/jbhi.2015.2439242] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Collapse
|
20
|
Roura E, Oliver A, Cabezas M, Valverde S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Lladó X. A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 2015; 57:1031-43. [PMID: 26227167 DOI: 10.1007/s00234-015-1552-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. METHODS Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. RESULTS The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. CONCLUSION Our tool is implemented as a publicly available SPM8/12 extension that can be used by both the medical and research communities.
Collapse
Affiliation(s)
- Eloy Roura
- Computer Vision and Robotics Group, University of Girona, Campus Montilivi, Ed. P-IV, 17071, Girona, Spain.
| | - Arnau Oliver
- Computer Vision and Robotics Group, University of Girona, Campus Montilivi, Ed. P-IV, 17071, Girona, Spain
| | - Mariano Cabezas
- Magnetic Resonance Unit, Dept. of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sergi Valverde
- Computer Vision and Robotics Group, University of Girona, Campus Montilivi, Ed. P-IV, 17071, Girona, Spain
| | - Deborah Pareto
- Magnetic Resonance Unit, Dept. of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Lluís Ramió-Torrentà
- Multiple Sclerosis and Neuroimmunology Unit, Dr. Josep Trueta University Hospital, Institut d'Investigació Biomèdica de Girona, Girona, Spain
| | - Àlex Rovira
- Magnetic Resonance Unit, Dept. of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Xavier Lladó
- Computer Vision and Robotics Group, University of Girona, Campus Montilivi, Ed. P-IV, 17071, Girona, Spain
| |
Collapse
|
21
|
Guizard N, Coupé P, Fonov VS, Manjón JV, Arnold DL, Collins DL. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NEUROIMAGE-CLINICAL 2015; 8:376-89. [PMID: 26106563 PMCID: PMC4474283 DOI: 10.1016/j.nicl.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) lesion segmentation is crucial for evaluating disease burden, determining disease progression and measuring the impact of new clinical treatments. MS lesions can vary in size, location and intensity, making automatic segmentation challenging. In this paper, we propose a new supervised method to segment MS lesions from 3D magnetic resonance (MR) images using non-local means (NLM). The method uses a multi-channel and rotation-invariant distance measure to account for the diversity of MS lesions. The proposed segmentation method, rotation-invariant multi-contrast non-local means segmentation (RMNMS), captures the MS lesion spatial distribution and can accurately and robustly identify lesions regardless of their orientation, shape or size. An internal validation on a large clinical magnetic resonance imaging (MRI) dataset of MS patients demonstrated a good similarity measure result (Dice similarity = 60.1% and sensitivity = 75.4%), a strong correlation between expert and automatic lesion load volumes (R2 = 0.91), and a strong ability to detect lesions of different sizes and in varying spatial locations (lesion detection rate = 79.8%). On the independent MS Grand Challenge (MSGC) dataset validation, our method provided competitive results with state-of-the-art supervised and unsupervised methods. Qualitative visual and quantitative voxel- and lesion-wise evaluations demonstrated the accuracy of RMNMS method. We propose a new multi-channel MS lesion segmentation technique. We adapt for lesion segmentation the non-local means operator to account for multi-contrast and rotation-invariant distance. The proposed method presents highly competitive results compared to state-of-the-art methods. The proposed method provides segmentation quality near inter-rater variability for MS lesion segmentation. Our non-local approach is able to detect structures that vary in size, shape and location such as MS lesions.
Collapse
Affiliation(s)
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, 351, Talence, France
| | | | - Jose V Manjón
- IBIME Research Group, ITACA Institute, Universidad Politécnica de Valencia, Medical Imaging Area, Valencia, Spain
| | | | | |
Collapse
|
22
|
Song Y, Cai W, Huang H, Zhou Y, Wang Y, Feng DD. Locality-constrained Subcluster Representation Ensemble for lung image classification. Med Image Anal 2015; 22:102-13. [PMID: 25839422 DOI: 10.1016/j.media.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 11/30/2022]
Abstract
In this paper, we propose a new Locality-constrained Subcluster Representation Ensemble (LSRE) model, to classify high-resolution computed tomography (HRCT) images of interstitial lung diseases (ILDs). Medical images normally exhibit large intra-class variation and inter-class ambiguity in the feature space. Modelling of feature space separation between different classes is thus problematic and this affects the classification performance. Our LSRE model tackles this issue in an ensemble classification construct. The image set is first partitioned into subclusters based on spectral clustering with approximation-based affinity matrix. Basis representations of the test image are then generated with sparse approximation from the subclusters. These basis representations are finally fused with approximation- and distribution-based weights to classify the test image. Our experimental results on a large HRCT database show good performance improvement over existing popular classifiers.
Collapse
Affiliation(s)
- Yang Song
- Biomedical and Multimedia Information Technology (BMIT) Research Group, School of IT, University of Sydney, NSW 2006, Australia.
| | - Weidong Cai
- Biomedical and Multimedia Information Technology (BMIT) Research Group, School of IT, University of Sydney, NSW 2006, Australia
| | - Heng Huang
- Department of Computer Science and Engineering, University of Texas, Arlington, TX 76019, USA
| | - Yun Zhou
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - David Dagan Feng
- Biomedical and Multimedia Information Technology (BMIT) Research Group, School of IT, University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Subbanna N, Precup D, Arnold D, Arbel T. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI. LECTURE NOTES IN COMPUTER SCIENCE 2015. [DOI: 10.1007/978-3-319-19992-4_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation. LECTURE NOTES IN COMPUTER SCIENCE 2015. [DOI: 10.1007/978-3-319-24574-4_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation. MACHINE LEARNING IN MEDICAL IMAGING 2014. [DOI: 10.1007/978-3-319-10581-9_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Stacked Multiscale Feature Learning for Domain Independent Medical Image Segmentation. MACHINE LEARNING IN MEDICAL IMAGING 2014. [DOI: 10.1007/978-3-319-10581-9_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|