1
|
Sakamoto T, Odera K, Onozato M, Sugasawa H, Takahashi R, Fujimaki Y, Fukushima T. Direct Fluorescence Evaluation of d-Amino Acid Oxidase Activity Using a Synthetic d-Kynurenine Derivative. Anal Chem 2022; 94:14530-14536. [PMID: 36222234 DOI: 10.1021/acs.analchem.2c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Amino acid oxidase (DAO) has been suggested to be associated with the central nervous system diseases, such as schizophrenia. We newly synthesized a nonfluorescent 5-methylthio-d-kynurenine (MeS-d-KYN), which was converted to blue-fluorescent 6-MeS-kynurenic acid (MeS-KYNA, λex = 364 nm, λem = 450 nm) through a one-step reaction by incubation with DAO. It was revealed that fluorescence intensity increased accompanied by commercial porcine kidney DAO activity (unit) with a good correlation (R2 = 0.9972), suggesting that the fluorometric evaluation of DAO activity using MeS-d-KYN is feasible. MeS-d-KYN was applied to fluorescent DAO imaging in cultured LLC-PK1 cells, and the blue fluorescence of MeS-KYNA overlapped considerably with the location of peroxisomes, which was suggested to be the location of DAO in the cells. Because fluorescence was diminished in the presence of 6-chloro-1,2-benzisoxazol-3(2H)-one (CBIO), a DAO inhibitor, it was considered that DAO activity in cells could be directly evaluated using MeS-d-KYN as the substrate.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Keiko Odera
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Hiroshi Sugasawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Yasuto Fujimaki
- Tokyo Metropolitan Industrial Technology Research Institute, Jonan Branch, 1-20-20 minamikamata, Ota-ku, Tokyo144-0035, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| |
Collapse
|
2
|
Angermüller S, Islinger M, Völkl A. Peroxisomes and reactive oxygen species, a lasting challenge. Histochem Cell Biol 2009; 131:459-63. [PMID: 19224237 DOI: 10.1007/s00418-009-0563-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2009] [Indexed: 02/04/2023]
Abstract
Oxidases generating and enzymes scavenging H2O2 predestine peroxisomes (PO) to a pivotal organelle in oxygen metabolism. Catalase, the classical marker enzyme of PO, exhibits both catalytic and peroxidatic activity. The latter is responsible for the staining with 3,3'-diamino-benzidine, which greatly facilitated the visualization of the organelle and promoted further studies on PO. D-Amino acid oxidase catalyzes with strict stereospecificity the oxidative deamination of D-amino acids. The oxidase is significantly more active in the kidney than in liver and more in periportal than pericentral rat hepatocytes. Peroxisomes in these tissues differ in their enzyme activity and protein concentration not only in adjacent cells but even within the same one. Moreover, the enzyme appears preferentially concentrated in the central region of the peroxisomal matrix compartment. Urate oxidase, a cuproprotein catalyzing the oxidation of urate to allantoin, is confined to the peroxisomal core, yet is lacking in human PO. Recent experiments revealed that cores in rat hepatocytes appear in close association with the peroxisomal membrane releasing H2O2 generated by urate oxidase to the surrounding cytoplasma. Xanthine oxidase is exclusively located to cores, oxidizes xanthine thereby generating H2O2 and O2(-) radicals. The latter are converted to O2 and H2O2 by CuZn superoxide dismutase, which has been shown recently to be a bona fide peroxisomal protein.
Collapse
Affiliation(s)
- Sabine Angermüller
- Department of Anatomy and Cell Biology II, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
3
|
Findley AM, Weidner EH, Carman KR, Xu Z, Godbar JS. Role of the posterior vacuole in Spraguea lophii (Microsporidia) spore hatching. Folia Parasitol (Praha) 2005; 52:111-7. [PMID: 16004370 DOI: 10.14411/fp.2005.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microsporidia constitute a large group of obligate intracellular protozoan parasites that inject themselves into host cells via the extrusion apparatus of the infective spore stage. Although the injection process is poorly understood, its energy source is thought to reside in the posterior vacuole that swells significantly during spore firing. Here we report the presence and localisation of the key peroxisomal enzymes catalase and acyl-CoA oxidase (ACOX) within the posterior vacuole of Spraguea lophii (Doflein, 1898) spores. Western blot analyses show that these enzymes discharge out of the spore and end up in the medium external to the extruded sporoplasms. The presence of a catalase enzyme system in the Microsporidia was first made evident by the detection of significant levels of molecular oxygen in the medium containing discharging spores in the presence of hydrogen peroxide. Catalase was visualised in inactive, activated, and discharged spores using alkaline diaminobenzidine (DAB) on glutaraldehyde-fixed cells. The position of these enzymes within the extrusion apparatus before and during spore discharge support the Lom and Vávra model that postulates discharge occurs by an eversion process. In addition to these enzymes, spores of S. lophii contain another characteristic peroxisomal component, the very long chain fatty acid (VLCFA) nervonic acid. A sizeable decrease in nervonic acid levels occurs during and after spore discharge. These data indicate that nervonic acid is discharged from the spore into the external medium during firing along with the catalase and ACOX enzymes.
Collapse
Affiliation(s)
- Ann M Findley
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA.
| | | | | | | | | |
Collapse
|
4
|
Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 2004; 122:383-93. [PMID: 15241609 DOI: 10.1007/s00418-004-0673-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 12/22/2022]
Abstract
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor-alpha on peroxisome function and peroxisome proliferator activated receptor-alpha. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5-/- knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Strasse 6, 35037, Marburg, Germany
| | | |
Collapse
|
5
|
Baumgart E, Fahimi HD, Steininger H, Grabenbauer M. A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 2003; 61:121-38. [PMID: 12740819 DOI: 10.1002/jemt.10322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the era of application of molecular biological gene-targeting technology for the generation of knockout mouse models to study human genetic diseases, the availability of highly sensitive and reliable methods for the morphological characterization of the specific phenotypes of these mice is of great importance. In the first part of this report, the role of morphological techniques for studying the biology and pathology of peroxisomes is reviewed, and the techniques established in our laboratories for the localization of peroxisomal proteins and corresponding mRNAs in fetal and newborn mice are presented and discussed in the context of the international literature. In the second part, the literature on the ontogenetic development of the peroxisomal compartment in mice, with special emphasis on liver and intestine is reviewed and compared with our own data reported recently. In addition, some recent data on the pathological alterations in the liver of the PEX5(-/-) mouse with a peroxisomal biogenesis defect are briefly discussed. Finally, the methods developed during these studies for the localization of mitochondrial proteins (respiratory chain complexes and MnSOD) are presented and their advantages and pitfalls discussed. With the help of these techniques, it is now possible to identify and distinguish unequivocally peroxisomes from mitochondria, two classes of cell organelles giving by light microscopy a punctate staining pattern in microscopical immunohistochemical preparations of paraffin-embedded mouse tissues.
Collapse
Affiliation(s)
- Eveline Baumgart
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Giessen, Germany.
| | | | | | | |
Collapse
|
6
|
Yoshihara T, Hamamoto T, Munakata R, Tajiri R, Ohsumi M, Yokota S. Localization of cytosolic NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat liver cells: biochemical and immunocytochemical studies. J Histochem Cytochem 2001; 49:1123-31. [PMID: 11511681 DOI: 10.1177/002215540104900906] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)
Collapse
Affiliation(s)
- T Yoshihara
- Department of Bioscience, Faculty of Science and Engineering, Teikyo University of Science and Technology, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Ogiwara N, Usuda N, Yamada M, Johkura K, Kametani K, Nakazawa A. Quantification of protein A-gold staining for peroxisomal enzymes by confocal laser scanning microscopy. J Histochem Cytochem 1999; 47:1343-9. [PMID: 10490463 DOI: 10.1177/002215549904701014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The protein A-gold technique has been widely applied for visual localization and quantification of various antigens by electron microscopy. Observation of specimens stained by the protein A-gold technique with conventional light microscopy is difficult because of insufficient sensitivity of the staining. Light microscopic visualization and quantification of the reaction products were attempted employing a confocal laser scanning microscope (CLSM). Liver tissues of normal and peroxisome proliferator-treated rats were fixed and embedded in Lowicryl K4M resin. Ultrathin and thin sections were stained for catalase and a peroxisome-specific beta-oxidation enzyme by the protein A-gold technique. Ultrathin sections were observed by electron microscopy and the labeling density for each enzyme was analyzed with an image analyzer. Thin sections were observed with a CLSM in the reflection mode and the intensity of the light reflection was analyzed under the same conditions for all specimens. A comparison of these two observation procedures was also attempted using liver tissues stained with various concentrations of the antibody for catalase. The intensity of the reflection for each, as observed by CLSM, correlated well with the labeling density observed by electron microscopy. CLSM made it possible to quantify and to directly observe protein A-gold staining at the light microscopic level.(J Histochem Cytochem 47:1343-1349, 1999)
Collapse
Affiliation(s)
- N Ogiwara
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Johkura K, Usuda N, Liang Y, Nakazawa A. Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues. J Histochem Cytochem 1998; 46:1161-73. [PMID: 9742072 DOI: 10.1177/002215549804601008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the developmental changes in the localization of peroxisome-specific enzymes in rat kidney tissues from embryonic Day 16 to postnatal Week 10 by immunoblot analysis and immunohistochemistry, using antibodies for the peroxisomal enzymes catalase, d-amino acid oxidase, l-alpha-hydroxyacid oxidase (isozyme B), and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein. Peroxisomal enzymes were detected in the neonatal kidney by immunoblot analysis and their amount increased with kidney development. By light microscopic immunohistochemistry, they were first localized in a few proximal tubules in the juxtamedullary cortex of 18-day embryos. The distribution of proximal tubules positive for them expanded towards the superficial cortex with development. The full thickness of the cortex became positive for the staining by 14 days after birth. Peroxisomes could be detected by electron microscopy in structurally immature proximal tubules in 18-day embryos. Their size increased and the ultrastructure of subcompartments became clear with continuing development of proximal tubules. These results show that peroxisomal enzymes appear in the immature proximal tubules in the kidney of embryos and that the ultrastructure of the peroxisomes and localization of the peroxisomal enzymes develop along with the maturation of proximal tubules and kidney tissues.
Collapse
Affiliation(s)
- K Johkura
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
Peroxisomes are single membrane-limited cell organelles that are involved in numerous metabolic functions. Peroxisomes do not contain DNA; the matrix and membrane proteins are encoded by the nuclear genome. It is assumed that new peroxisomes are formed by division of existing organelles. The present article gives an overview of microscopic studies and recent unpublished results dealing with peroxisome biogenesis in mammalian fetal liver and presents data on peroxisomes in oocytes. Cytochemical (catalase and D-aminoacid oxidase activity) and immunocytochemical data in rat and human liver (antigens of catalase, the three peroxisomal beta-oxidation enzymes, alanine: glyoxylate aminotransferase, peroxisomal membrane proteins with molecular weights of 42 and 70 kDa) indicate that during embryonic and fetal development the peroxisomal population undergoes a differentiation with respect to the composition of the matrix and to the size and number of the organelles. In the youngest stages, rare and small peroxisomes are present, into which the matrix components are imported in a sequential way. The import seems asynchronous in peroxisomes of the same hepatocyte. The size and number of the peroxisomes increase during liver development. In rat and human liver, no morphological or immunocytochemical evidence for an elaborate network of interconnected peroxisomes ("reticulum") was found. Instead, peroxisomes presented as individual organelles, which occasionally show membrane extensions. The importance of the metabolic functions of peroxisomes in human liver is emphasized by the peroxisomal disorders. In the liver of affected fetuses, the microscopic features associated with the defect can already be recognized; i.e., either catalase containing peroxisomes are absent and catalase is localized in the cytoplasm (in fetuses affected with Zellweger syndrome or with infantile Refsum disease) or peroxisomes are present but they are abnormally enlarged (e.g., a fetus affected with acyl-CoA oxidase deficiency). In the quail ovary, numerous peroxisomes are observed in the oocyte and in the granulosa cells during follicle maturation, but not in the full-grown egg. Thus, the mechanism of peroxisome inheritance remains unresolved.
Collapse
Affiliation(s)
- M Espeel
- Department of Anatomy, Embryology and Histology, University of Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Peroxisomes, cytoplasmic organelles limited by a single membrane and with a matrix of moderate electron density, are present in a great number of cells, namely in adrenal cortex and other steroid-secreting organs. Presently peroxisomes are considered to be involved in important metabolic processes. They intervene in: (1) the production and degradation of H2O2; (2) biosynthesis of ether-phospholipids, cholesterol, dolichol, and bile acids; (3) oxidation of very long chain fatty acids, purines, polyamines, and prostaglandins; (4) catabolism of pipecolic, phythanic and glyoxylic acids; and (5) gluconeogenesis. Recent studies demonstrated that the experimental alterations in the normal steroidogenesis, produce significant morphological and biochemical changes in peroxisomes. Besides this, the presence of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (the key enzyme in the de novo cholesterol synthesis from acetate) and of sterol carrier protein-2 (SCP2), which is involved in the cholesterol metabolism and steroid metabolic pathways, are located in peroxisomes of steroid-secreting cells. In addition, patients with peroxisome diseases present deficiency in steroidogenesis, as well as reduced levels of SCP2. These data pointed out the important role of peroxisomes in steroid biosynthesis.
Collapse
Affiliation(s)
- M M Magalhães
- Institute of Histology and Embryology, Faculty of Medicine of Oporto, University of Oporto, Portugal
| | | |
Collapse
|
11
|
Fahimi HD, Reich D, Völkl A, Baumgart E. Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol 1996; 106:105-14. [PMID: 8858370 DOI: 10.1007/bf02473205] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunogold labeling technique has been extremely useful in investigation of the structure and function of peroxisomes. In this report a few examples of the application of this technique with significant implications in the field are briefly reviewed. The problem of extra-peroxisomal catalase, the subject of long controversy between the biochemists and cytochemists, was settled with the immunogold technique, which unequivocally revealed the presence of that enzyme not only in the cytoplasm, but also in the euchromatin region of nucleus, in addition to peroxisomes. On the other hand, lactate dehydrogenase, a typical cytoplasmic protein, has also been shown recently to be present in peroxisomes and to be involved in the reoxidation of NADH produced by the peroxisomal beta-oxidation system. The immunogold technique has revealed several distinct compartments in the matrix of mammalian peroxisomes: urate oxidase in the crystalline cores, alpha-hydroxy acid oxidase B in the marginal plates and D-amino acid oxidase in a non-crystalline condensed region of matrix. The specific alterations of peroxisomal proteins are reflected in their immunolabeling density with gold particles. Quantitation of gold-label by automatic image analysis has revealed that the induction of lipid beta-oxidation enzyme proteins by diverse hypolipidemic drugs is initiated and more pronounced in the pericentral regions of the liver lobule. Finally, immunogold labeling with an antibody to 70 kDa peroxisomal membrane protein has identified a novel class of small peroxisomes that initially incorporate radioactive amino acids more efficiently than regular peroxisomes and thus may represent early stages in the biogenesis of peroxisomes.
Collapse
Affiliation(s)
- H D Fahimi
- Department of Anatomy and Cell Biology (II), University of Heidelberg, Germany
| | | | | | | |
Collapse
|
12
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
13
|
Yokota S, Hashimoto T. Immunocytochemical localization of L-alpha-hydroxyacid oxidase in dense bar of dumb-bell-shaped peroxisomes of monkey kidney. Histochem Cell Biol 1995; 104:55-61. [PMID: 7584560 DOI: 10.1007/bf01464786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Localization of the B of L-alpha hydroxyacid oxidase (HOX-B) in monkey kidney peroxisomes was investigated by immunoelectron microscopic techniques. Kidneys of Japanese monkeys, Macaca fuscata, were fixed with 4% paraformaldehyde + 0.25% glutaraldehyde and embedded in LR White resin. Thin sections were stained for HOX-B and catalase by the immunogold technique. HOX-B was localized in the marginal plates of normal peroxisomes and the dense bar of dumb-bell-shaped peroxisomes. Catalase was detected in the matrix of normal peroxisomes and in the terminal dilatations of dumb-bell-shaped peroxisomes. There were no gold particles indicating presence of catalase associated with the marginal plates or with the dense bars. Immunoblot analysis of monkey kidney homogenate showed that HOX-B has a molecular mass of 42 kDa that was slightly larger than that of rat kidney HOX-B (39 kDa). The results show that the dense bar of dumb-bell-shaped peroxisomes in monkey kidney is composed of at least HOX-B and is a variation of the marginal plates.
Collapse
Affiliation(s)
- S Yokota
- Department of Anatomy, Yamanashi Medical School, Japan
| | | |
Collapse
|
14
|
Usuda N, Hanai T, Nagata T. Immunogold studies on peroxisomes: review of the localization of specific proteins in vertebrate peroxisomes. Microsc Res Tech 1995; 31:79-92. [PMID: 7626801 DOI: 10.1002/jemt.1070310107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peroxisomes, since their discovery as microbodies, have been studied mostly independently by electron microscopists and biochemists. The fine structure has been studied by electron microscopy, and the compositional enzymes and proteins by protein biochemistry. Electron microscopic histochemistry has been used to try to clarify the relationship between the fine structure and its constituents. The immunogold technique, a combination of electron microscopy and protein biochemistry, for the first time resolved this problem due to the high sensitivity and resolution power of the staining and the high reliability of the technique. The present paper reviews the way in which the immunogold techniques, especially the protein A-gold technique, revealed the localization of various enzymes or proteins in peroxisomes or peroxisomal subcompartments, and discusses why this technique should be employed in peroxisome research.
Collapse
Affiliation(s)
- N Usuda
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | |
Collapse
|
15
|
van Roermund CW, Brul S, Tager JM, Schutgens RB, Wanders RJ. Acyl-CoA oxidase, peroxisomal thiolase and dihydroxyacetone phosphate acyltransferase: aberrant subcellular localization in Zellweger syndrome. J Inherit Metab Dis 1991; 14:152-64. [PMID: 1679469 DOI: 10.1007/bf01800588] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the presence and subcellular localization of peroxisomal 3-oxoacylcoenzyme A thiolase, acylcoenzyme A oxidase and acyl-CoA: dihydroxyacetonephosphate acyltransferase (DHAPAT) in fibroblasts from control subjects and patients with an inherited deficiency of peroxisomes (Zellweger syndrome), using immunofluorescence spectroscopy and density gradient centrifugation techniques. The results show that Zellweger cells contain unprocessed thiolase and unprocessed acyl-CoA oxidase which are associated with structures containing a peroxisomal integral membrane protein of 69 kDa and having a density much lower than that of normal peroxisomes. The residual DHAPAT activity present in Zellweger cells is also contained in these structures. We conclude that these structures represent defectively assembled peroxisomes which may still be capable of importing some peroxisomal proteins.
Collapse
Affiliation(s)
- C W van Roermund
- Department of Paediatrics, University Hospital Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Angermüller S, Fahimi HD. Heterogenous staining ofd-amino acid oxidase in peroxisomes of rat liver and kidney. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00570285] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Litwin JA, Völkl A, Müller-Höcker J, Fahimi HD. Immunocytochemical demonstration of peroxisomal enzymes in human kidney biopsies. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1987; 54:207-13. [PMID: 2895531 DOI: 10.1007/bf02899213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peroxisomes are particularly abundant in the proximal tubules of the mammalian kidney. We describe the immunocytochemical localization of catalase and three peroxisomal lipid beta-oxidation enzymes: acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase, in human renal biopsies fixed with glutaraldehyde and embedded in Epon. For light microscopy of semithin sections, satisfactory immunostaining required removal of the resin and controlled proteolytic digestion followed by the indirect immunoperoxidase technique. Brief etching of ultrathin sections with alkoxide followed by the protein A-gold method were used for electron microscopic localization of the enzymes. The immunoreactive peroxisomes were distinctly visualized in proximal tubular epithelial cells with no staining of any other cell organelles. The results establish the presence of catalase and of peroxisomal lipid beta-oxidation system proteins in human kidney. The immunocytochemical procedure described herein provides a simple approach for the investigation of peroxisomal structure and function in human renal biopsies processed for ultrastructural studies.
Collapse
Affiliation(s)
- J A Litwin
- Institute of Anatomy, University of Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|