1
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
2
|
Canto-Valdés MC, Bolio González ME, Acevedo Jiménez GE, Ramírez Álvarez H. What role do endogenous retroviruses play in domestic cats infected with feline leukaemia virus? N Z Vet J 2022; 71:1-7. [PMID: 36178295 DOI: 10.1080/00480169.2022.2131648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AbstractFeline leukaemia virus (FeLV) is a retrovirus that infects domestic and wild cats around the world. FeLV infection is associated with the development of neoplasms, bone marrow disorders and immunosuppression. Viral subgroups arise from mutations in the FeLV genome or from recombination of FeLV with ancestral endogenous retroviruses in the cat genome. The retroviral endogenisation process has allowed generation of a diversity of endogenous viruses, both functional and defective. These elements may be part of the normal functioning of the feline genome and may also interact with FeLV to form recombinant FeLV subgroups, enhance pathogenicity of viral subgroups, or inhibit and/or regulate other retroviral infections. Recombination of the env gene occurs most frequently and appears to be the most significant in terms of both the quantity and diversification of pathogenic effects in the viral population, as well as affecting cell tropism and types of disease that occur in infected cats. This review focuses on available information regarding genetic diversity, pathogenesis and diagnosis of FeLV as a result of the interaction between endogenous and exogenous viruses.
Collapse
Affiliation(s)
- M C Canto-Valdés
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Yucatán, Mexico
| | - M E Bolio González
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Yucatán, Mexico
| | - G E Acevedo Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, State of Mexico, Mexico
| | - H Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, State of Mexico, Mexico
| |
Collapse
|
3
|
Koala retrovirus genetic diversity and transmission dynamics within captive koala populations. Proc Natl Acad Sci U S A 2021; 118:2024021118. [PMID: 34493581 DOI: 10.1073/pnas.2024021118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.
Collapse
|
4
|
Prevalence and Genomic Diversity of Feline Leukemia Virus in Privately Owned and Shelter Cats in Aburrá Valley, Colombia. Viruses 2020; 12:v12040464. [PMID: 32325926 PMCID: PMC7232207 DOI: 10.3390/v12040464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
The feline leukemia virus (FeLV) belongs to the family Retroviridae; it is the first feline retrovirus discovered and one of the agents that has a great impact on cats' health and the ecology of the feline population worldwide. It is associated with the occurrence of several syndromes of fatal diseases, including the development of lymphomas. Studies on FeLV have been reported in Colombia, and most of them have been approached from a clinical point of view. However, only a few studies have focused on the prevalence of the infection, while none have clarified which variant or FeLV viral subgroup is presently circulating in our country. Therefore, the present study investigated the prevalence of the infection associated with the molecular characterization of FeLV present in cats in Aburrá Valley, Colombia. The sampling of privately owned and shelter cats was performed in female (n = 54) and male (n = 46) felines; most of them were seemingly healthy according to the owner's report, with nonspecific clinical history. Immunoassay confirmed that 59.44% (95% confidence interval (CI) = 49.81-69.06%) of felines were FeLV seropositive. The molecular testing of felines using reverse transcription-polymerase chain reaction and sequencing showed that 30% (30/100) of felines were positive, and the most prevalent subgroup in the Aburrá Valley was FeLV-A. In conclusion, the frequency of leukemia virus, as revealed by molecular and serological tests, is one of the highest reported frequencies to date, and a high molecular variation is shown in the Colombian population. More studies on the behaviour of the virus in feline populations in Columbia are warranted to determine its prevalence throughout the country.
Collapse
|
5
|
Szilasi A, Dénes L, Krikó E, Heenemann K, Ertl R, Mándoki M, Vahlenkamp TW, Balka G. Prevalence of feline immunodeficiency virus and feline leukaemia virus in domestic cats in Hungary. JFMS Open Rep 2019; 5:2055116919892094. [PMID: 31839979 PMCID: PMC6904780 DOI: 10.1177/2055116919892094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) are retroviruses affecting cats worldwide. The objectives of the study were to estimate the prevalence of these retroviruses in domestic cats in Hungary and to characterise the phylogenetic relationships of FIV strains. METHODS A total of 335 anticoagulated whole-blood samples obtained from both a healthy and ill cat population were examined for the presence of FIV and FeLV with two methods: ELISA and PCR. Statistical analysis was carried out to analyse the data obtained. Sequencing and phylogenetic analysis of partial polymerase (pol) gene sequences was performed to describe circulating FIV subtypes. RESULTS Statistical analysis showed 11.8% and 9.9% true prevalence of FeLV and FIV, respectively, with ELISA. The apparent prevalence calculated from the PCR results were 17.3% for FeLV and 13.1% for FIV. Phylogenetic analysis of partial pol gene sequences obtained from 22 FIV strains showed that all observed Hungarian strains belonged to FIV subtype B. The strains were grouped into several monophyletic subgroups reflecting the geographic locations of the origin of the samples. The overall mean genetic similarity between the analysed strains was 98.2%. CONCLUSIONS AND RELEVANCE We report the first thorough overview of the prevalence of FeLV and FIV in Hungary, which is relatively high, and give insight into the genetic diversity of Hungarian strains of FIV.
Collapse
Affiliation(s)
- Anna Szilasi
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Lilla Dénes
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Eszter Krikó
- Centre for Bioinformatics, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Kristin Heenemann
- Institute of Virology, Faculty of
Veterinary Medicine, Leipzig University, Leipzig, Sachsen, Germany
| | - Reinhard Ertl
- VetCore Facility for Research,
University of Veterinary Medicine, Vienna, Austria
| | - Míra Mándoki
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of
Veterinary Medicine, Leipzig University, Leipzig, Sachsen, Germany
| | - Gyula Balka
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| |
Collapse
|
6
|
Feline Leukemia Virus (FeLV) Disease Outcomes in a Domestic Cat Breeding Colony: Relationship to Endogenous FeLV and Other Chronic Viral Infections. J Virol 2018; 92:JVI.00649-18. [PMID: 29976676 DOI: 10.1128/jvi.00649-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replication-defective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats.IMPORTANCE Endogenous retroviruses are harbored by many animals, and their interactions with exogenous retroviral infections have not been widely studied. Feline leukemia virus (FeLV) is a relevant model system to examine this question, as endogenous and exogenous forms of the virus exist. In this analysis of a large domestic cat breeding colony naturally infected with FeLV, we documented that enFeLV copy number was higher in males and inversely related to FeLV viral load and associated with better FeLV disease outcomes. Females had lower enFeLV copy numbers and were more likely to have progressive FeLV disease and FeLV-B subtypes. FFV viral load was correlated with FeLV progression. FFV, FcaGHV-1, and FeLV displayed markedly different patterns of infection with respect to host demographics. This investigation revealed complex coinfection outcomes and viral ecology of chronic infections in a closed population.
Collapse
|
7
|
Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, Tramontano E, Blomberg J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016; 13:7. [PMID: 26800882 PMCID: PMC4724089 DOI: 10.1186/s12977-015-0232-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) represent the inheritance of ancient germ-line cell infections by exogenous retroviruses and the subsequent transmission of the integrated proviruses to the descendants. ERVs have the same internal structure as exogenous retroviruses. While no replication-competent HERVs have been recognized, some retain up to three of four intact ORFs. HERVs have been classified before, with varying scope and depth, notably in the RepBase/RepeatMasker system. However, existing classifications are bewildering. There is a need for a systematic, unifying and simple classification. We strived for a classification which is traceable to previous classifications and which encompasses HERV variation within a limited number of clades. Results The human genome assembly GRCh 37/hg19 was analyzed with RetroTector, which primarily detects relatively complete Class I and II proviruses. A total of 3173 HERV sequences were identified. The structure of and relations between these proviruses was resolved through a multi-step classification procedure that involved a novel type of similarity image analysis (“Simage”) which allowed discrimination of heterogeneous (noncanonical) from homogeneous (canonical) HERVs. Of the 3173 HERVs, 1214 were canonical and segregated into 39 canonical clades (groups), belonging to class I (Gamma- and Epsilon-like), II (Beta-like) and III (Spuma-like). The groups were chosen based on (1) sequence (nucleotide and Pol amino acid), similarity, (2) degree of fit to previously published clades, often from RepBase, and (3) taxonomic markers. The groups fell into 11 supergroups. The 1959 noncanonical HERVs contained 31 additional, less well-defined groups. Simage analysis revealed several types of mosaicism, notably recombination and secondary integration. By comparing flanking sequences, LTRs and completeness of gene structure, we deduced that some noncanonical HERVs proliferated after the recombination event. Groups were further divided into envelope subgroups (altogether 94) based on sequence similarity and characteristic “immunosuppressive domain” motifs. Intra and inter(super)group, as well as intraclass, recombination involving envelope genes (“env snatching”) was a common event. LTR divergence indicated that HERV-K(HML2) and HERVFC had the most recent integrations, HERVL and HUERSP3 the oldest. Conclusions A comprehensive HERV classification and characterization approach was undertaken. It should be applicable for classification of all ERVs. Recombination was common among HERV ancestors. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Vargiu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy. .,Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Patricia Rodriguez-Tomé
- Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Göran O Sperber
- Physiology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Vidar Blikstad
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| |
Collapse
|
8
|
Nesina S, Katrin Helfer-Hungerbuehler A, Riond B, Boretti FS, Willi B, Meli ML, Grest P, Hofmann-Lehmann R. Retroviral DNA--the silent winner: blood transfusion containing latent feline leukemia provirus causes infection and disease in naïve recipient cats. Retrovirology 2015; 12:105. [PMID: 26689419 PMCID: PMC4687292 DOI: 10.1186/s12977-015-0231-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background
The feline leukemia virus (FeLV) is a gamma-retrovirus of domestic cats that was discovered half a century ago. Cats that are infected with FeLV may develop a progressive infection resulting in persistent viremia, immunodeficiency, tumors, anemia and death. A significant number of cats mount a protective immune response that suppresses viremia; these cats develop a regressive infection characterized by the absence of viral replication and the presence of low levels of proviral DNA. The biological importance of these latter provirus carriers is largely unknown. Results Here, we demonstrate that ten cats that received a transfusion of blood from aviremic provirus carriers developed active FeLV infections, some with a progressive outcome and the development of fatal FeLV-associated disease. The infection outcome, disease spectrum and evolution into FeLV-C in one cat mirrored those of natural infection. Two cats developed persistent antigenemia; six cats were transiently antigenemic. Reactivation of infection occurred in some cats. One recipient developed non-regenerative anemia associated with FeLV-C, and four others developed a T-cell lymphoma, one with secondary lymphoblastic leukemia. Five of the ten recipient cats received provirus-positive aviremic blood, whereas the other five received provirus- and viral RNA-positive but aviremic blood. Notably, the cats that received blood containing only proviral DNA exhibited a later onset but graver outcome of FeLV infection than the cats that were transfused with blood containing proviral DNA and viral RNA. Leukocyte counts and cytokine analyses indicated that the immune system of the latter cats reacted quicker and more efficiently. Conclusions Our results underline the biological and epidemiological relevance of FeLV provirus carriers and the risk of inadvertent FeLV transmission via blood transfusion and demonstrate the replication capacity of proviral DNA if uncontrolled by the immune system. Our results have implications not only for veterinary medicine, such as the requirement for testing blood donors and blood products for FeLV provirus by sensitive polymerase chain reaction, but are also of general interest by revealing the importance of latent retroviral DNA in infected hosts. When aiming to eliminate a retroviral infection from a population, provirus carriers must be considered. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie Nesina
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - A Katrin Helfer-Hungerbuehler
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Felicitas S Boretti
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Barbara Willi
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. .,Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Marina L Meli
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
The surface glycoprotein of feline leukemia virus isolate FeLV-945 is a determinant of altered pathogenesis in the presence or absence of the unique viral long terminal repeat. J Virol 2013; 87:10874-83. [PMID: 23903838 DOI: 10.1128/jvi.01130-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Feline leukemia virus (FeLV) is a naturally transmitted gammaretrovirus that infects domestic cats. FeLV-945, the predominant isolate associated with non-T-cell disease in a natural cohort, is a member of FeLV subgroup A but differs in sequence from the FeLV-A prototype, FeLV-A/61E, in the surface glycoprotein (SU) and long terminal repeat (LTR). Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in pathogenesis indistinguishable from that of FeLV-A/61E, namely, thymic lymphoma of T-cell origin. In contrast, substitution of both FeLV-945 LTR and SU into FeLV-A/61E resulted in multicentric lymphoma of non-T-cell origin. These results implicated the FeLV-945 SU as a determinant of pathogenic spectrum. The present study was undertaken to test the hypothesis that FeLV-945 SU can act in the absence of other unique sequence elements of FeLV-945 to determine the disease spectrum. Substitution of FeLV-A/61E SU with that of FeLV-945 altered the clinical presentation and resulted in tumors that demonstrated expression of CD45R in the presence or absence of CD3. Despite the evident expression of CD45R, a typical B-cell marker, T-cell receptor beta (TCRβ) gene rearrangement indicated a T-cell origin. Tumor cells were detectable in bone marrow and blood at earlier times during the disease process, and the predominant SU genes from proviruses integrated in tumor DNA carried markers of genetic recombination. The findings demonstrate that FeLV-945 SU alters pathogenesis, although incompletely, in the absence of FeLV-945 LTR. Evidence demonstrates that FeLV-945 SU and LTR are required together to fully recapitulate the distinctive non-T-cell disease outcome seen in the natural cohort.
Collapse
|
10
|
Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS One 2013; 8:e61009. [PMID: 23593376 PMCID: PMC3623909 DOI: 10.1371/journal.pone.0061009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/05/2013] [Indexed: 12/24/2022] Open
Abstract
Feline leukemia virus (FeLV) belongs to the genus Gammaretrovirus, and causes a variety of neoplastic and non-neoplastic diseases in cats. Alteration of viral env sequences is thought to be associated with disease specificity, but the way in which genetic diversity of FeLV contributes to the generation of such variants in nature is poorly understood. We isolated FeLV env genes from naturally infected cats in Japan and analyzed the evolutionary dynamics of these genes. Phylogenetic reconstructions separated our FeLV samples into three distinct genetic clusters, termed Genotypes I, II, and III. Genotype I is a major genetic cluster and can be further classified into Clades 1-7 in Japan. Genotypes were correlated with geographical distribution; Genotypes I and II were distributed within Japan, whilst FeLV samples from outside Japan belonged to Genotype III. These results may be due to geographical isolation of FeLVs in Japan. The observed structural diversity of the FeLV env gene appears to be caused primarily by mutation, deletion, insertion and recombination, and these variants may be generated de novo in individual cats. FeLV interference assay revealed that FeLV genotypes did not correlate with known FeLV receptor subgroups. We have identified the genotypes which we consider to be reliable for evaluating phylogenetic relationships of FeLV, which embrace the high structural diversity observed in our sample. Overall, these findings extend our understanding of Gammaretrovirus evolutionary patterns in the field, and may provide a useful basis for assessing the emergence of novel strains and understanding the molecular mechanisms of FeLV transmission in cats.
Collapse
Affiliation(s)
- Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Emerging viruses in the Felidae: shifting paradigms. Viruses 2012; 4:236-57. [PMID: 22470834 PMCID: PMC3315214 DOI: 10.3390/v4020236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.
Collapse
|
12
|
Bolin LL, Ahmad S, Levy LS. The surface glycoprotein of a natural feline leukemia virus subgroup A variant, FeLV-945, as a determinant of disease outcome. Vet Immunol Immunopathol 2011; 143:221-6. [PMID: 21764142 DOI: 10.1016/j.vetimm.2011.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feline leukemia virus (FeLV) is a natural retrovirus of domestic cats associated with degenerative, proliferative and malignant diseases. Studies of FeLV infection in a cohort of naturally infected cats were undertaken to examine FeLV variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. A unique variant, designated FeLV-945, was identified as the predominant isolate in the cohort and was associated with non-T-cell diseases including multicentric lymphoma. FeLV-945 was assigned to the FeLV-A subgroup based on sequence analysis and receptor utilization, but was shown to differ in sequence from a prototype member of FeLV-A, designated FeLV-A/61E, in the long terminal repeat (LTR) and the surface glycoprotein gene (SU). A unique sequence motif in the FeLV-945 LTR was shown to function as a transcriptional enhancer and to confer a replicative advantage. The FeLV-945 SU protein was observed to differ in sequence as compared to FeLV-A/61E within functional domains known to determine receptor selection and binding. Experimental infection of newborn cats was performed using wild type FeLV-A/61E or recombinant FeLV-A/61E in which the LTR (61E/945L) or LTR and SU (61E/945SL) were exchanged for that of FeLV-945. Infection with either FeLV-A/61E or 61E/945L resulted in T-cell lymphoma of the thymus, although 61E/945L caused disease significantly more rapidly. In contrast, infection with 61E/945SL resulted in the rapid induction of a multicentric lymphoma of B-cell origin, thus recapitulating the outcome of natural infection and implicating FeLV-945 SU as a determinant of disease outcome. Recombinant FeLV-B was detected infrequently and at low levels in multicentric lymphomas, and was thereby not implicated in disease induction. Preliminary studies of receptor interaction indicated that virus particles bearing FeLV-945 SU bind to the FeLV-A receptor more efficiently than do particles bearing FeLV-A/61E SU, and that soluble SU proteins expressed from the viruses demonstrate the same differential binding phenotype. Preliminary mutational analysis of FeLV-945 was performed by exchanging regions containing either the primary receptor binding determinant, VRA, the secondary determinant, VRB, or a proline-rich region, PRR, with that of FeLV-A/61E. Results implicated a region containing VRA as a minor contributor, while a region containing VRB largely conferred increased binding efficiency.
Collapse
Affiliation(s)
- Lisa L Bolin
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
13
|
Bolin LL, Chandhasin C, Lobelle-Rich PA, Albritton LM, Levy LS. Distinctive receptor binding properties of the surface glycoprotein of a natural feline leukemia virus isolate with unusual disease spectrum. Retrovirology 2011; 8:35. [PMID: 21569491 PMCID: PMC3113301 DOI: 10.1186/1742-4690-8-35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/13/2011] [Indexed: 12/16/2022] Open
Abstract
Background Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.
Collapse
Affiliation(s)
- Lisa L Bolin
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Mutations in FLVCR2, a cell surface protein related by homology and membrane topology to the heme exporter/retroviral receptor FLVCR1, have recently been associated with Fowler syndrome, a vascular disorder of the brain. We previously identified FLVCR2 to function as a receptor for FY981 feline leukemia virus (FeLV). However, the cellular function of FLVCR2 remains unresolved. Here, we report the cellular function of FLVCR2 as an importer of heme, based on the following observations. First, FLVCR2 binds to hemin-conjugated agarose, and binding is competed by free hemin. Second, mammalian cells and Xenopus laevis oocytes expressing FLVCR2 display enhanced heme uptake. Third, heme import is reduced after the expression of FLVCR2-specific small interfering RNA (siRNA) or after the binding of the FY981 FeLV envelope protein to the FLVCR2 receptor. Finally, cells overexpressing FLVCR2 are more sensitive to heme toxicity, a finding most likely attributable to enhanced heme uptake. Tissue expression analysis indicates that FLVCR2 is expressed in a broad range of human tissues, including liver, placenta, brain, and kidney. The identification of a cellular function for FLVCR2 will have important implications in elucidating the pathogenic mechanisms of Fowler syndrome and of phenotypically associated disorders.
Collapse
|
15
|
Ahmad S, Levy LS. The frequency of occurrence and nature of recombinant feline leukemia viruses in the induction of multicentric lymphoma by infection of the domestic cat with FeLV-945. Virology 2010; 403:103-10. [PMID: 20451235 DOI: 10.1016/j.virol.2010.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022]
Abstract
During feline leukemia virus (FeLV) infection in the domestic cat, viruses with a novel envelope gene arise by recombination between endogenous FeLV-related elements and the exogenous infecting species. These recombinant viruses (FeLV-B) are of uncertain disease association, but have been linked to the induction of thymic lymphoma. To assess the role of FeLV-B in the induction of multicentric lymphoma and other non-T-cell disease, the frequency of occurrence and nature of FeLV-B were examined in diseased tissues from a large collection of FeLV-infected animals. Diseased tissues were examined by Southern blot and PCR amplification to detect the presence of FeLV-B. Further analysis was performed to establish the recombination junctions and infectivity of FeLV-B in diseased tissues. The results confirmed the frequent association of FeLV-B with thymic lymphoma but showed infrequent generation, low levels and lack of infectivity of FeLV-B in non-T-cell diseases including multicentric lymphoma.
Collapse
Affiliation(s)
- Shamim Ahmad
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
16
|
Nakamura M, Sato E, Miura T, Baba K, Shimoda T, Miyazawa T. Differential diagnosis of feline leukemia virus subgroups using pseudotype viruses expressing green fluorescent protein. J Vet Med Sci 2010; 72:787-90. [PMID: 20124765 DOI: 10.1292/jvms.09-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.
Collapse
Affiliation(s)
- Megumi Nakamura
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
17
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
18
|
Identification of a feline leukemia virus variant that can use THTR1, FLVCR1, and FLVCR2 for infection. J Virol 2009; 83:6706-16. [PMID: 19369334 DOI: 10.1128/jvi.02317-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.
Collapse
|
19
|
Brown MA, Cunningham MW, Roca AL, Troyer JL, Johnson WE, O'Brien SJ. Genetic characterization of feline leukemia virus from Florida panthers. Emerg Infect Dis 2008; 14:252-9. [PMID: 18258118 PMCID: PMC2600209 DOI: 10.3201/eid1402.070981] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The emergent strain of FeLV, a novel subgroup A, was probably transmitted to panthers by a domestic cat. From 2002 through 2005, an outbreak of feline leukemia virus (FeLV) occurred in Florida panthers (Puma concolor coryi). Clinical signs included lymphadenopathy, anemia, septicemia, and weight loss; 5 panthers died. Not associated with FeLV outcome were the genetic heritage of the panthers (pure Florida vs. Texas/Florida crosses) and co-infection with feline immunodeficiency virus. Genetic analysis of panther FeLV, designated FeLV-Pco, determined that the outbreak likely came from 1 cross-species transmission from a domestic cat. The FeLV-Pco virus was closely related to the domestic cat exogenous FeLV-A subgroup in lacking recombinant segments derived from endogenous FeLV. FeLV-Pco sequences were most similar to the well-characterized FeLV-945 strain, which is highly virulent and strongly pathogenic in domestic cats because of unique long terminal repeat and envelope sequences. These unique features may also account for the severity of the outbreak after cross-species transmission to the panther.
Collapse
|
20
|
Abstract
Feline leukemia virus (FeLV) occurs in nature not as a single genomic species but as a family of closely related viruses. The disease outcome of natural FeLV infection is variable and likely reflects genetic variation both in the virus and the naturally outbreeding host population. A series of studies have been undertaken with the objectives of examining natural FeLV genetic variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. Genetic variation among FeLV isolates was examined in a cohort of naturally infected cats with thymic lymphoma of T-cell origin, non-T-cell multicentric lymphoma, myeloproliferative disorder or anemia. The predominant isolate in the cohort, designated FeLV-945, was identified exclusively in disorders of non-T-cell origin. The FeLV-945 LTR was shown to contain a unique 21-bp repeat element, triplicated in tandem downstream of enhancer. The 21-bp triplication was shown to act as a transcriptional enhancer and to confer a replicative advantage through the assembly of a distinctive transcription factor complex. Oncogene utilization during tumor induction by FeLV-945 was studied using a recombinant Moloney murine leukemia virus containing the FeLV-945 LTR. This approach identified novel loci of common proviral integration in tumors, including the regulatory subunit of PI-3Kgamma. Mutational changes identified in FeLV-945 SU were shown not to alter receptor usage as measured by host range and superinfection interference, but to significantly increase the efficiency of receptor binding. To determine whether the unique sequence elements of FeLV-945 influence the course of infection and disease in vivo, recombinant viruses were constructed in which the FeLV-945 LTR alone, or the FeLV-945 SU gene and LTR were substituted into the prototype isolate FeLV-A/61E. Longitudinal studies of infected animals showed that substitution of the FeLV-945 LTR into FeLV-A/61E resulted in a significantly more rapid disease onset, but did not alter the tumorigenic spectrum. In contrast, substitution of both the FeLV-945 LTR and SU gene changed the disease outcome entirely. Together, these observations indicate that the distinctive LTR and SU gene of FeLV-945 mediate a rapid pathogenesis with distinctive clinical features and oncogenic mechanisms.
Collapse
Affiliation(s)
- Laura S Levy
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA.
| |
Collapse
|
21
|
Tandon R, Cattori V, Willi B, Meli ML, Gomes-Keller MA, Lutz H, Hofmann-Lehmann R. Copy number polymorphism of endogenous feline leukemia virus-like sequences. Mol Cell Probes 2007; 21:257-66. [PMID: 17329079 DOI: 10.1016/j.mcp.2007.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
In the cat genome, endogenous feline leukemia virus (enFeLV) exists as multiple, nearly full-length proviral sequences. Even though no infectious virus is produced from enFeLV sequences, transcription and translation have been demonstrated in tissues of healthy cats and in feline cell lines. To test the hypothesis that the enFeLV loads play a role in exogenous FeLV-A infection and pathogenesis, we designed three real-time PCR assays to quantify U3 and env enFeLV loads (two within U3 amplifying different sequences; one within env). Applying these assays, we investigated the loads in blood samples derived from Swiss privately owned domestic cats, specific pathogen-free (SPF) cats and European wildcats (Felis silvestris silvestris). Significant differences in enFeLV loads were observed between privately owned cats and SPF cats as well as among SPF cats originating from different catteries and among domestic cats of different breeds. Within privately owned cats, FeLV-infected cats had higher loads than uninfected cats. In addition, higher enFeLV loads were found in wildcats compared to domestic cats. The assays described herein are important prerequisites to quantify enFeLV loads and thus to investigate the influence of enFeLV loads on the course of FeLV infection.
Collapse
Affiliation(s)
- Ravi Tandon
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Brown JK, Fung C, Tailor CS. Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1. J Virol 2006; 80:1742-51. [PMID: 16439531 PMCID: PMC1367145 DOI: 10.1128/jvi.80.4.1742-1751.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cells by the highly anemogenic feline leukemia virus subgroup C (FeLV-C) is mediated by the heme exporter FLVCR1, a cell surface protein containing 12 potential transmembrane segments with six presumptive extracellular loops (ECLs). To identify FLVCR1 residues critical for mediating FeLV-C infection, we first independently isolated a human cDNA encoding the FLVCR2 protein that shares 52% identity to human FLVCR1, and we show that FLVCR2 does not function as a receptor for FeLV-C. Then, by generating specific hybrids between FLVCR1 and FLVCR2 and testing susceptibility of mouse cells expressing these hybrids to beta-galactosidase encoding FeLV-C, we identify FLVCR1 ECLs 1 and 6 as critical for mediating FeLV-C infection. Mouse cells expressing a hybrid protein containing FLVCR2 backbone with the ECL6 sequence from FLVCR1 were highly susceptible to FeLV-C infection. Using site-directed mutagenesis, we show that a single mutation of Asn463 in FLVCR2 ECL6 to an acidic Asp residue (a residue present in the corresponding position 487 in FLVCR1 ECL6) is sufficient to render FLVCR2 functional as an FeLV-C receptor. However, an Asp487Asn mutation in FLVCR1 ECL6 or substitution of the entire FLVCR1 ECL6 sequence for FLVCR2 ECL6 sequence does not disrupt receptor function. Subsequent substitutions show that residues within FLVCR1 ECL1 also contribute to mediating FeLV-C infection. Furthermore, our results suggest that FLVCR1 regions that mediate FeLV-C surface unit binding are distinct from ECL1 and ECL6. Our results are consistent with previous conclusions that infection of cells by gammaretroviruses involves interaction of virus with multiple receptor regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Cell Line
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/isolation & purification
- Genes, Reporter
- Humans
- Leukemia Virus, Feline/physiology
- Membrane Transport Proteins/chemistry
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/physiology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Structure, Tertiary
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Jennifer K Brown
- The Hospital for Sick Children, Infection, Immunity, Injury Repair Program, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | |
Collapse
|
23
|
Chandhasin C, Coan PN, Pandrea I, Grant CK, Lobelle-Rich PA, Puetter A, Levy LS. Unique long terminal repeat and surface glycoprotein gene sequences of feline leukemia virus as determinants of disease outcome. J Virol 2005; 79:5278-87. [PMID: 15827142 PMCID: PMC1082761 DOI: 10.1128/jvi.79.9.5278-5287.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The outcome of feline leukemia virus (FeLV) infection in nature is variable, including malignant, proliferative, and degenerative disorders. The determinants of disease outcome are not well understood but are thought to include viral, host, and environmental factors. In particular, genetic variations in the FeLV long terminal repeat (LTR) and SU gene have been linked to disease outcome. FeLV-945 was previously identified as a natural isolate predominant in non-T-cell neoplastic and nonneoplastic diseases in a geographic cohort. The FeLV-945 LTR was shown to contain unique repeat elements, including a 21-bp triplication downstream of the enhancer. The FeLV-945 SU gene was shown to encode mutational changes in functional domains of the protein. The present study details the outcomes of infection with recombinant FeLVs in which the LTR and envelope (env) gene of FeLV-945, or the LTR only, was substituted for homologous sequences in a horizontally transmissible prototype isolate, FeLV-A/61E. The results showed that the FeLV-945 LTR determined the kinetics of disease. Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in a significantly more rapid disease onset but did not alter the tumorigenic spectrum. In contrast, substitution of both the FeLV-945 LTR and env gene changed the disease outcome entirely. Further, the impact of FeLV-945 env on the disease outcome was dependent on the route of inoculation. Since the TM genes of FeLV-945 and FeLV-A/61E are nearly identical but the SU genes differ significantly, FeLV-945 SU is implicated in the outcome. These findings identify the FeLV-945 LTR and SU gene as determinants of disease.
Collapse
Affiliation(s)
- Chandtip Chandhasin
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave. SL-38, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Chandhasin C, Coan PN, Levy LS. Subtle mutational changes in the SU protein of a natural feline leukemia virus subgroup A isolate alter disease spectrum. J Virol 2005; 79:1351-60. [PMID: 15650161 PMCID: PMC544135 DOI: 10.1128/jvi.79.3.1351-1360.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
FeLV-945 is a representative isolate of the natural feline leukemia virus (FeLV) variant predominant in non-T-cell malignant, proliferative, and degenerative diseases in a geographic cohort. The FeLV-945 surface glycoprotein (SU) is closely related to natural horizontally transmissible FeLV subgroup A (FeLV-A) but was found to differ from a prototype to a larger extent than the members of FeLV-A differ among themselves. The sequence differences included point mutations restricted largely to the functional domains of SU, i.e., VRA, VRB, and PRR. Despite the sequence differences in these critical domains, measurements of receptor utilization, including host range and superinfection interference, confirmed the assignment of FeLV-945 to subgroup A. Other proviruses isolated from the cohort contained similar sequence hallmarks and were assigned to FeLV subgroup A. A provirus from cat 1046 contained a histidine-to-proline change at SU residue 6 within an SPHQ motif that was previously identified as a critical mediator of fusion events during virus entry. The 1046 pseudotype virus entered cells only in the presence of the soluble cofactor FeLIX provided in trans, but it retained an ecotropic host range even in the presence of FeLIX. The mutational changes in FeLV-945 were shown to confer significant functional differences compared to prototype FeLV-A viruses. The substitution of FeLV-945 envelope gene sequences for FeLV-A/61E sequences conferred a small but statistically significant replicative advantage in some feline cells. Moreover, substitution of the unique FeLV-945 long terminal repeat and envelope gene for those of FeLV-A/61E altered the disease spectrum entirely, from a thymic lymphoma of a T-cell origin to an as yet uncharacterized multicentric lymphoma that did not contain T cells.
Collapse
Affiliation(s)
- Chandtip Chandhasin
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave. SL-38, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
25
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
26
|
DeMartini JC, Carlson JO, Leroux C, Spencer T, Palmarini M. Endogenous retroviruses related to jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 2003; 275:117-37. [PMID: 12596897 DOI: 10.1007/978-3-642-55638-8_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ovine betaretroviruses consist of exogenous viruses [jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus, (ENTV)] associated with neoplastic diseases of the respiratory tract and 15-20 endogenous viruses (enJSRV) stably integrated in the ovine and caprine genome. Phylogenetic analysis of this group of retroviruses suggests that the enJSRV can be considered as 'modern' endogenous retroviruses with active, exogenous counterparts. Sequence analysis of JSRV, ENTV and enJSRV suggests that enJSRV do not directly contribute to the pathogenesis of ovine pulmonary adenocarcinoma (OPA) or enzootic nasal tumor through large-scale recombination events, but small-scale recombination or complementation of gene function cannot be excluded; experiments involving enJSRV-free sheep, which have not been found, would be needed to investigate this possibility. Evidence of expression of enJSRV structural proteins in tissues of the reproductive tract and lung implies that they do not have a primary role in disease. However, experimental exploitation of exogenous/endogenous retrovirus sequence differences by producing chimeras has been useful in establishing the determinants of JSRV Env-induced transformation. Even if enJSRV do not have a direct role in OPA, their expression during ontogeny or in neonatal life may impact the likelihood of exogenous JSRV infection and disease outcome via the induction of immunological tolerance. Aside from any role in disease, enJSRV loci may serve as useful genetic markers in the sheep and their frequent expression in the reproductive tract of the ewe may portend an important physiologic role in sheep.
Collapse
Affiliation(s)
- J C DeMartini
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | |
Collapse
|
27
|
Lauring AS, Anderson MM, Overbaugh J. Specificity in receptor usage by T-cell-tropic feline leukemia viruses: implications for the in vivo tropism of immunodeficiency-inducing variants. J Virol 2001; 75:8888-98. [PMID: 11533152 PMCID: PMC114457 DOI: 10.1128/jvi.75.19.8888-8898.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytopathic, T-cell-tropic feline leukemia viruses (FeLV-T) evolve from FeLV-A in infected animals and demonstrate host cell specificities that are distinct from those of their parent viruses. We recently identified two cellular proteins, FeLIX and Pit1, required for productive infection by these immunodeficiency-inducing FeLV-T variants (M. M. Anderson, A. S. Lauring, C. C. Burns, and J. Overbaugh, Science 287:1828-1830, 2000). FeLV-T is the first example of a naturally occurring type C retrovirus that requires two proteins to gain entry into target cells. FeLIX is an endogenous protein that is highly related to the N-terminal portion of the FeLV envelope protein, which includes the receptor-binding domain. Pit1 is a multiple-transmembrane phosphate transport protein that also functions as a receptor for FeLV-B. The FeLV-B envelope gene is derived by recombination with endogenous FeLV-like sequences, and its product can functionally substitute for FeLIX in facilitating entry through the Pit1 receptor. In the present study, we tested other retrovirus envelope surface units (SUs) with their cognate receptors to determine whether they also could mediate infection by FeLV-T. Cells were engineered to coexpress the transmembrane form of the envelope proteins and their cognate receptors, or SU protein was added as a soluble protein to cells expressing the receptor. Of the FeLV, murine leukemia virus, and gibbon ape leukemia virus envelopes tested, we found that only those with receptor-binding domains derived from endogenous FeLV could render cells permissive for FeLV-T. We also found that there is a strong preference for Pit1 as the transmembrane receptor. Specifically, FeLV-B SUs could efficiently mediate infection of cells expressing the Pit1 receptor but could only inefficiently mediate infection of cells expressing the Pit2 receptor, even though these SUs are able to bind to Pit2. Expression analysis of feline Pit1 and FeLIX suggests that FeLIX is likely the primary determinant of FeLV-T tropism. These results are discussed in terms of current models for retrovirus entry and the interrelationship among FeLV variants that evolve in vivo.
Collapse
Affiliation(s)
- A S Lauring
- Program in Molecular and Cellular Biology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
28
|
Hanlon L, Argyle D, Bain D, Nicolson L, Dunham S, Golder MC, McDonald M, McGillivray C, Jarrett O, Neil JC, Onions DE. Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors. J Virol 2001; 75:8424-33. [PMID: 11507187 PMCID: PMC115087 DOI: 10.1128/jvi.75.18.8424-8433.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 06/07/2001] [Indexed: 11/20/2022] Open
Abstract
The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-gamma). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-gamma, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection.
Collapse
Affiliation(s)
- L Hanlon
- Department of Veterinary Pathology, University of Glasgow, Bearsden, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hisasue M, Nishigaki K, Katae H, Yuri K, Mizuno T, Fujino Y, Setoguchi A, Hasegawa A, Watari T, Masuda K, Ohno K, Tsujimoto H. Clonality analysis of various hematopoietic disorders in cats naturally infected with feline leukemia virus. J Vet Med Sci 2000; 62:1059-65. [PMID: 11073076 DOI: 10.1292/jvms.62.1059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The clonality analysis of the bone marrow cells was carried out by detecting the integrated proviruses of feline leukemia virus (FeLV) to understand the pathogenesis of FeLV-associated hematopoietic disorders in cats. Bone marrow cells from 4 cases with acute myeloid leukemia (AML), 9 cases with myelodysplastic syndromes (MDS), 2 cases with pure red cell aplasia (PRCA) and 3 healthy carriers infected with FeLV were subjected to Southern blot analyses using an exogenous FeLV probe. Clonal hematopoiesis was found in all the cases with AML and in 6 of the 9 cases with MDS, but not in the cases with both PRCA and healthy carriers infected with FeLV. In the 2 cases with MDS, it was thought that the same clones of the hematopoietic cells might proliferate before and after the progression of the disease irrespective of the changes of the hematological diagnoses by cytological examination. This study indicates that MDS in cats is a disease manifestation as a result of clonal proliferation of hematopoietic cells and can be recognized as a pre-leukemic state of AML.
Collapse
Affiliation(s)
- M Hisasue
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Palmarini M, Hallwirth C, York D, Murgia C, de Oliveira T, Spencer T, Fan H. Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous jaagsiekte sheep retrovirus. J Virol 2000; 74:8065-76. [PMID: 10933716 PMCID: PMC112339 DOI: 10.1128/jvi.74.17.8065-8076.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrated into the sheep genome are 15 to 20 copies of type D endogenous loci that are highly related to two exogenous oncogenic viruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV). The exogenous viruses cause infectious neoplasms of the respiratory tract in small ruminants. In this study, we molecularly cloned three intact type D endogenous retroviruses of sheep (enJS56A1, enJS5F16, and enJS59A1; collectively called enJRSVs) and analyzed their genomic structures, their phylogenies with respect to their exogenous counterparts, their capacity to form viral particles, and the expression specificities of their long terminal repeats (LTRs). In addition, the pattern of expression of enJSRVs in vivo was studied by in situ hybridization. All of the three enJSRV proviruses had open reading frames for at least one of the structural genes. In particular, enJS56A1 had open reading frames for all structural genes, but it could not assemble viral particles when highly expressed in human 293T cells. We localized the defect for viral assembly in the first two-thirds of the gag gene by making a series of chimeras between enJS56A1 and the exogenous infectious molecular clone JSRV(21). Phylogenetic analysis distinguished five ovine type D retroviruses: enJSRV groups A and B, ENTV, and two exogenous JSRV groups (African versus United Kingdom/North America isolates). Transient transfection assays indicated that the LTRs of the three enJSRVs were not preferentially active in differentiated lung epithelial cells. This suggests that the pulmonary tropic JSRV developed from a type D retrovirus that did not have lung specificity. Consistent with this, in situ hybridization of a panel of normal ovine tissues revealed high expression of enJSRV mRNA in the luminal epithelium and glandular epithelium of the uterus; lower expression was localized in the lamina propria of the gut and in the bronchiolar epithelium of the lungs.
Collapse
Affiliation(s)
- M Palmarini
- Cancer Research Institute and Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Phipps AJ, Chen H, Hayes KA, Roy-Burman P, Mathes LE. Differential pathogenicity of two feline leukemia virus subgroup A molecular clones, pFRA and pF6A. J Virol 2000; 74:5796-801. [PMID: 10846058 PMCID: PMC112073 DOI: 10.1128/jvi.74.13.5796-5801.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/1999] [Accepted: 03/29/2000] [Indexed: 11/20/2022] Open
Abstract
F6A, a molecular clone of subgroup A feline leukemia virus (FeLV) is considered to be highly infectious but weakly pathogenic. In recent studies with a closely related subgroup A molecular clone, FRA, we demonstrated high pathogenicity and a strong propensity to undergo recombination with endogenous FeLV (enFeLV), leading to a high frequency of transition from subgroup A to A/B. The present study was undertaken to identify mechanisms of FeLV pathogenesis that might become evident by comparing the two closely related molecular clones. F6A was shown to have an infectivity similar to that of FRA when delivered as a provirus. Virus load and antibody responses were also similar, although F6A-infected cats consistently carried higher virus loads than FRA-infected cats. However, F6A-infected cats were slower to undergo de novo recombination with enFeLV and showed slower progression to disease than FRA-infected cats. Tumors collected from nine pF6A- or pFRA-inoculated cats expressed lymphocyte markers for T cells (seven tumors) and B cells (one tumor), and non-T/B cells (one tumor). One cat with an A-to-A/C conversion developed erythrocyte hypoplasia. Genomic mapping of recombinants from pF6A- and pFRA-inoculated cats revealed similar crossover sites, suggesting that the genomic makeup of the recombinants did not contribute to increased progression to neoplastic disease. From these studies, the mechanism most likely to account for the pathologic differences between F6A and FRA is the lower propensity for F6A to undergo de novo recombination with enFeLV in vivo. A lower recombination rate is predicted to slow the transition from subgroup A to A/B and slow the progression to disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Anemia, Aplastic/virology
- Animals
- Antibodies, Viral/immunology
- Cats
- Cloning, Molecular
- DNA, Viral/physiology
- Genes, env
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/immunology
- Leukemia Virus, Feline/isolation & purification
- Leukemia Virus, Feline/pathogenicity
- Molecular Sequence Data
- Phenotype
- Plasmids/physiology
- Recombination, Genetic
- Viremia
Collapse
Affiliation(s)
- A J Phipps
- Department of Veterinary Biosciences, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
32
|
Tailor CS, Willett BJ, Kabat D. A putative cell surface receptor for anemia-inducing feline leukemia virus subgroup C is a member of a transporter superfamily. J Virol 1999; 73:6500-5. [PMID: 10400745 PMCID: PMC112732 DOI: 10.1128/jvi.73.8.6500-6505.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Domestic cats infected with the horizontally transmitted feline leukemia virus subgroup A (FeLV-A) often produce mutants (termed FeLV-C) that bind to a distinct cell surface receptor and cause severe aplastic anemia in vivo and erythroblast destruction in bone marrow cultures. The major determinant for FeLV-C-induced anemia has been mapped to a small region of the surface envelope glycoprotein that is responsible for its receptor binding specificity. Thus, erythroblast destruction may directly or indirectly result from FeLV-C binding to its receptor. To address these issues, we functionally cloned a putative cell surface receptor for FeLV-C (FLVCR) by using a human T-lymphocyte cDNA library in a retroviral vector. Expression of the 2.0-kbp FLVCR cDNA in naturally resistant Swiss mouse fibroblasts and Chinese hamster ovary cells caused substantial susceptibility to FeLV-C but no change in susceptibilities to FeLV-B and other retroviruses. The predicted FLVCR protein contains 555 amino acids and 12 hydrophobic potential membrane-spanning sequences. Database searches indicated that FLVCR is a member of the major-facilitator superfamily of transporters and implied that it may transport an organic anion. RNA blot analyses showed that FLVCR mRNA is expressed in multiple hematopoietic lineages rather than specifically in erythroblasts. These results suggest that the targeted destruction of erythroblasts by FeLV-C may derive from their greater sensitivity to this virus rather than from a preferential susceptibility to infection.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | |
Collapse
|
33
|
Ghosh SK, Faller DV. Feline leukemia virus long terminal repeat activates collagenase IV gene expression through AP-1. J Virol 1999; 73:4931-40. [PMID: 10233955 PMCID: PMC112537 DOI: 10.1128/jvi.73.6.4931-4940.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 03/15/1999] [Indexed: 11/20/2022] Open
Abstract
Leukemia and lymphoma induced by feline leukemia viruses (FeLVs) are the commonest forms of illness in domestic cats. These viruses do not contain oncogenes, and the source of their pathogenic activity is not clearly understood. Mechanisms involving proto-oncogene activation subsequent to proviral integration and/or development of recombinant viruses with enhanced replication properties are thought to play an important role in their disease pathogenesis. In addition, the long terminal repeat (LTR) regions of these viruses have been shown to be important determinants for pathogenicity and tissue specificity, by virtue of their ability to interact with various transcription factors. Previously, we have shown that, in the case of Moloney murine leukemia virus, the U3 region of the LTR independently induces transcriptional activation of specific cellular genes through an LTR-generated RNA transcript (S. Y. Choi and D. V. Faller, J. Biol. Chem. 269:19691-19694, 1994; S.-Y. Choi and D. V. Faller, J. Virol. 69:7054-7060, 1995). In this report, we show that the U3 region of exogenous FeLV LTRs can induce transcription from collagenase IV (matrix metalloproteinase 9) and monocyte chemotactic protein 1 (MCP-1) promoters up to 12-fold. We also show that AP-1 DNA-binding activity and transcriptional activity are strongly induced in cells expressing FeLV LTRs and that LTR-specific RNA transcripts are generated in those cells. Activation of mitogen-activated protein kinase kinases 1 and 2 (MEK1 and -2) by the LTR is an intermediate step in the FeLV LTR-mediated induction of AP-1 activity. These findings thus suggest that the LTRs of FeLVs can independently activate transcription of specific cellular genes. This LTR-mediated cellular gene transactivation may play an important role in tumorigenesis or preleukemic states and may be a generalizable activity of leukemia-inducing retroviruses.
Collapse
Affiliation(s)
- S K Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Chen H, Bechtel MK, Shi Y, Phipps A, Mathes LE, Hayes KA, Roy-Burman P. Pathogenicity induced by feline leukemia virus, Rickard strain, subgroup A plasmid DNA (pFRA). J Virol 1998; 72:7048-56. [PMID: 9696797 PMCID: PMC109925 DOI: 10.1128/jvi.72.9.7048-7056.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 05/20/1998] [Indexed: 11/20/2022] Open
Abstract
A new provirus clone of feline leukemia virus (FeLV), which we named FeLV-A (Rickard) or FRA, was characterized with respect to viral interference group, host range, complete genome sequence, and in vivo pathogenicity in specific-pathogen-free newborn cats. The in vitro studies indicated the virus to be an ecotropic subgroup A FeLV with 98% nucleotide sequence homology to another FeLV-A clone (F6A/61E), which had also been fully sequenced previously. Since subgroup B polytropic FeLVs (FeLV-B) are known to arise via recombination between ecotropic FeLV-A and endogenous FeLV (enFeLV) env elements, the in vivo studies were conducted by direct intradermal inoculation of the FRA plasmid DNA so as to eliminate the possibility of coinoculation of any FeLV-B which may be present in the inoculum prepared by propagating FeLV-A in feline cell cultures. The following observations were made from the in vivo experiments: (i) subgroup conversion from FeLV-A to FeLV-A and FeLV-B, as determined by the interference assay, appeared to occur in plasma between 10 and 16 weeks postinoculation (p.i.); (ii) FeLV-B-like recombinants (rFeLVs), however, could be detected in DNA isolated from buffy coats and bone marrow by PCR as early as 1 to 2 weeks p.i.; (iii) while a mixture of rFeLV species containing various amounts of N-terminal substitution of the endogenous FeLV-derived env sequences were detected at 8 weeks p.i., rFeLV species harboring relatively greater amounts of such substitution appeared to predominate at later infection time points; (iv) the deduced amino acid sequence of rFeLV clones manifested striking similarity to natural FeLV-B isolates, within the mid-SU region of the env sequenced in this work; and (v) four of the five cats, which were kept for determination of tumor incidence, developed thymic lymphosarcomas within 28 to 55 weeks p.i., with all tumor DNAs harboring both FeLV-A and rFeLV proviruses. These results provide direct evidence for how FeLV-B species evolve in vivo from FeLV-A and present a new experimental approach for efficient induction of thymic tumors in cats, which should be useful for the study of retroviral lymphomagenesis in this outbred species.
Collapse
Affiliation(s)
- H Chen
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Nishigaki K, Okuda M, Endo Y, Watari T, Tsujimoto H, Hasegawa A. Structure and function of the long terminal repeats of feline leukemia viruses derived from naturally occurring acute myeloid leukemias in cats. J Virol 1997; 71:9823-7. [PMID: 9371654 PMCID: PMC230298 DOI: 10.1128/jvi.71.12.9823-9827.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long terminal repeats of feline leukemia viruses cloned from feline acute myeloid leukemias frequently contained direct repeats of 40 to 74 bp in the upstream region of the enhancer (URE). The repetitive URE conferred an enhancer function upon gene expression in myeloid cells, suggesting its association with tumorigenic potential in myeloid cells.
Collapse
Affiliation(s)
- K Nishigaki
- Department of Veterinary Internal Medicine, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Darcel C. Lymphoid leukosis viruses, their recognition as 'persistent' viruses and comparisons with certain other retroviruses of veterinary importance. Vet Res Commun 1996; 20:83-108. [PMID: 8693704 DOI: 10.1007/bf00346580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diseases caused by lymphoid leukosis virus (LLV), a retrovirus, take a long time after infection to develop and have a wide variety of pathological manifestations. This long latent period is characteristic of 'persistent virus infections'. Disease produced by LLV infection and its underlying mechanisms is compared with 'persistent' infections caused by other retroviruses in birds and mammals of veterinary importance. The diseases considered for comparison are those caused by reticuloendotheliosis, feline leukaemia, bovine leukosis and equine infectious anaemia viruses. There are significant changes in the immunological status in all diseases caused by these viruses. LLV infections follow this trend with, in manifestations of neoplastic disease, a perturbation of the normal switch that occurs from IgM to IgG synthesis. There are also indications of other immunological disturbances. Factors other than immunological disturbances may contribute to the length of time after infection required for the many forms of LLV infection to appear. Such additional factors may include the operation of 'biological clocks', such as the arrival of sexual maturity, and also the very nature of retroviruses. These factors, like the immunological changes, play major roles in the maintenance and progression of persistent retrovirus infections.
Collapse
Affiliation(s)
- C Darcel
- Palliser Animal Health Laboratories Ltd, Lethbridge, Alberta, Canada
| |
Collapse
|
37
|
Roy-Burman P. Endogenous env elements: partners in generation of pathogenic feline leukemia viruses. Virus Genes 1995; 11:147-61. [PMID: 8828142 DOI: 10.1007/bf01728655] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Feline leukemia viruses (FeLVs), which are replication-competent oncoretroviruses of the domestic cat species, are contagiously transmitted in natural environments. They are capable of inducing either acute antiproliferative disease or, after prolonged latency, lymphoid malignancies in this animal population. Current knowledge of the recombinational events between infectious FeLV and noninfectious endogenously inherited FeLV-like elements is reviewed, and the potential role of the derived recombinant viruses in pathogenesis is discussed. Major observations made are as follows: (1) Up to three fourths of the exogenous FeLV envelope glycoprotein (SU), beginning from the N-terminal end, can be replaced by sequences from an endogenous FeLV to produce biologically active chimeric FeLVs. The in vitro replication efficiency or cell tropism of the recombinants appears to be influenced by the amount of SU sequences replaced by the endogenous partner, as well as by the locus of origin of the endogenous sequences. (2) Generation of FeLV recombinants in tissue culture cells corresponds closely to the findings from natural tumors. There is direct evidence, based on molecular genetic analysis, for the prevalence of recombinant proviruses in naturally arising FeLV-induced lymphomas. (3) Certain recombinants harboring an altered primary neutralizing epitope in the middle of SU corresponding to the endogenous FeLV sequence can evade immunity developed against common FeLV infection. In several other recombinants, the epitope sequence is found to be frequently mutated during the process of recombination. (4) FeLV variants with altered epitope, although they may not be efficient in replication in vivo, apparently are capable of causing focal infection in target organs. Evidence is also presented that when coinfected with an exogenous FeLV, the epitope sequence in the variants is reverted to the exogenous type, providing an explanation why this sequence is found to be conserved in all natural isolates of FeLV. (5) A prototype chimeric polyprotein containing most of the SU from the endogenous source is abnormally processed and becomes trapped in the endoplasmic reticulum. A functional consequence of such trapping is interference with specific FeLV infection. (6) Some recombinants, while only poorly replicating in the host, may have the ability to infect target erythroid progenitor cells for the induction of strong cytopathic effect. (7) Some other recombinants appear to potentiate lymphomagenesis by exogenous FeLV and others to acquire properties to infect CNS endothelial cells, an event that could potentially be related to FeLV-induced neuropathogenicity. (8) Of multiple recombinant viruses, a specific recombinant species was found to occur in each of the three cats examined in which lymphoma was experimentally induced, and it was exclusively seen in one of these cats. This recombinant FeLV may potentially be a candidate for strong leukemogenic function. In addition to commonly encountered virus envelope changes, another prominent viral factor involved in tumorigenesis is mutated FeLV transcription regulatory sequences, most frequently with enhancer duplication or triplication. Although only a limited amount of information is available in the area of insertional mutagenesis in FeLV neoplastic disease, activation of certain key nuclear transcription factor genes has been documented.
Collapse
Affiliation(s)
- P Roy-Burman
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033, USA
| |
Collapse
|
38
|
Athas GB, Lobelle-Rich P, Levy LS. Function of a unique sequence motif in the long terminal repeat of feline leukemia virus isolated from an unusual set of naturally occurring tumors. J Virol 1995; 69:3324-32. [PMID: 7745680 PMCID: PMC189044 DOI: 10.1128/jvi.69.6.3324-3332.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Feline leukemia virus (FeLV) proviruses have been characterized from naturally occurring non-B-cell, non-T-cell tumors occurring in the spleens of infected cats. These proviruses exhibit a unique sequence motif in the long terminal repeat (LTR), namely, a 21-bp tandem triplication beginning 25 bp downstream of the enhancer. The repeated finding of the triplication-containing LTR in non-B-cell, non-T-cell lymphomas of the spleen suggests that the unique LTR is an essential participant in the development of tumors of this particular phenotype. The nucleotide sequence of the triplication-containing LTR most closely resembles that of FeLV subgroup C. Studies performed to measure the ability of the triplication-containing LTR to modulate gene expression indicate that the 21-bp triplication provides transcriptional enhancer function to the LTR that contains it and that it substitutes at least in part for the duplication of the enhancer. The 21-bp triplication confers a bona fide enhancer function upon LTR-directed reporter gene expression; however, the possibility of a spacer function was not eliminated. The studies demonstrate further that the triplication-containing LTR acts preferentially in a cell-type-specific manner, i.e., it is 12-fold more active in K-562 cells than is an LTR lacking the triplication. A recombinant, infectious FeLV bearing the 21-bp triplication in U3 was constructed. Cells infected with the recombinant were shown to accumulate higher levels of viral RNA transcripts and virus particles in culture supernatants than did cells infected with the parental type. The triplication-containing LTR is implicated in the induction of tumors of a particular phenotype, perhaps through transcriptional regulation of the virus and/or adjacent cellular genes, in the appropriate target cell.
Collapse
Affiliation(s)
- G B Athas
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
39
|
Terry A, Callanan JJ, Fulton R, Jarrett O, Neil JC. Molecular analysis of tumours from feline immunodeficiency virus (FIV)-infected cats: an indirect role for FIV? Int J Cancer 1995; 61:227-32. [PMID: 7705953 DOI: 10.1002/ijc.2910610215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five tumours, which arose in cats naturally or experimentally infected with feline immunodeficiency virus (FIV), were examined with molecular probes to establish tumour cell lineage and to screen for integrated viral sequences. Three of the tumours were classed as B-cell lymphomas on the basis of morphology, immunocytochemistry, rearrangement of immunoglobulin heavy chain genes and lack of rearrangement of T-cell receptor (TCR) beta-chain genes. Two of these B-cell tumours arose in specific pathogen-free (SPF) cats experimentally infected with FIV. One case of multi-centric lymphosarcoma came from a cat naturally infected with both FIV and feline leukaemia virus (FeLV). This tumour contained integrated FeLV proviral sequences and was judged to be of T-cell origin on the basis of TCR gene rearrangement. The fifth case was a mast cell tumour. Rearrangement of the c-myc locus was not found in any of the FIV-associated tumours but was shown to be present in a rare immunoblastic B-cell lymphoma which arose in an uninfected SPF cat. None of the FIV-associated tumours showed evidence of integrated FIV sequences by Southern blot hybridisation, despite isolation of infectious virus from in vitro cultures of tumour cells in I case. These results confirm that FIV-associated tumours can occur in the absence of FeLV and suggest that the role of FIV in lymphomagenesis is generally indirect.
Collapse
Affiliation(s)
- A Terry
- Department of Veterinary Pathology, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
40
|
Linenberger ML, Abkowitz JL. Haematological disorders associated with feline retrovirus infections. BAILLIERE'S CLINICAL HAEMATOLOGY 1995; 8:73-112. [PMID: 7663052 PMCID: PMC7135792 DOI: 10.1016/s0950-3536(05)80233-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Feline oncornavirus and lentivirus infections have provided useful models to characterize the virus and host cell factors involved in a variety of marrow suppressive disorders and haematological malignancies. Exciting recent progress has been made in the characterization of the viral genotypic features involved in FeLV-associated diseases. Molecular studies have clearly defined the causal role of variant FeLV env gene determinants in two disorders: the T-lymphocyte cytopathicity and the clinical acute immunosuppression induced by the FeLV-FAIDS variant and the pure red cell aplasia induced by FeLV-C/Sarma. Variant or enFeLV env sequences also appear to play a role in FeLV-associated lymphomas. Additional studies are required to determine the host cell processes that are perturbed by these variant env gene products. In the case of the FeLV-FAIDS variant, the aberrant env gene products appear to impair superinfection interference, resulting in accumulation of unintegrated viral DNA and cell death. In other cases it is likely that the viral env proteins interact with host products that are important in cell viability and/or proliferation. Understanding of these mechanisms will therefore provide insights to factors involved in normal lymphohaematopoiesis. Similarly, studies of FeLV-induced haematological neoplasms should reveal recombination or rearrangement events involving as yet unidentified host gene sequences that encode products involved in normal cell growth regulation. These sequences may include novel protoncogenes or sequences homologous to genes implicated in human haematological malignancies. The haematological consequences of FIV are quite similar to those associated with HIV. As with HIV, FIV does not appear to directly infect myeloid or erythroid precursors, and the mechanisms of marrow suppression likely involve virus, viral antigen, and/or infected accessory cells in the marrow microenvironment. Studies using in vitro experimental models are required to define the effects of each of these microenvironmental elements on haematopoietic progenitors. As little is known about the molecular mechanisms of FIV pathogenesis, additional studies of disease-inducing FIV strains are needed to identify the genotypic features that correlate with virulent phenotypic features. Finally, experimental FIV infection in cats provides the opportunity to correlate in vivo virological and haematological changes with in vitro observations in a large animal model that closely mimics HIV infection in man.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Bone Marrow/pathology
- Bone Marrow/virology
- Cats/virology
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/transmission
- Genes, Viral
- Immunity, Cellular
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/physiology
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/immunology
- Leukemia Virus, Feline/physiology
- Leukemia, Feline/immunology
- Leukemia, Feline/transmission
- Lymphoma/epidemiology
- Lymphoma/veterinary
- Lymphoma/virology
- Myelodysplastic Syndromes/veterinary
- Myelodysplastic Syndromes/virology
- Red-Cell Aplasia, Pure/veterinary
- Red-Cell Aplasia, Pure/virology
- Retroviridae/classification
- Retroviridae Proteins/genetics
- Retroviridae Proteins/physiology
- Spumavirus/pathogenicity
Collapse
Affiliation(s)
- M L Linenberger
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
41
|
Darcel C. Reflections on scrapie and related disorders, with consideration of the possibility of a viral aetiology. Vet Res Commun 1995; 19:231-52. [PMID: 7571397 PMCID: PMC7088560 DOI: 10.1007/bf01839302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/1995] [Indexed: 01/26/2023]
Abstract
The transmissible spongiform encephalopathies of domesticated animals, scrapie in sheep and bovine spongiform encephalopathy (BSE), and transmissible mink encephalopathy are more than a scientific curiosity; under certain circumstances their impact on commercial activities can be calamitous. Knowledge of their causation and pathogenesis is still rudimentary, but many consider than an unconventional agent, the prion (a brain protein, PrP), that is not associated with nucleic acid is involved in both. Others believe that conventional viruses, which replicate by virtue of their nucleic acid-defined genes, are involved in the causation and progression of the encephalopathies but that technical problems have prevented their identification. Others postulate even more exotic causative agents. While this paper will particularly address the possibility of a viral aetiology for these diseases, it is also emphasized that our knowledge of the state of the immune system in animals with encephalopathy needs broadening. There are remarkable gaps in our knowledge of the histopathology of these diseases, particularly the nature of the characteristic vacuoles. Much further work is needed on the biochemical changes in the brain and the serum, particularly of the latter as it could lead to an additional means of recognizing clinical cases without waiting for the animal to die with subsequent examination of the brain for characteristic lesions and the presence of protease-K-resistant PrP.
Collapse
Affiliation(s)
- C Darcel
- Palliser Animal Health Laboratories Ltd., Lethbridge, Alberta, Canada
| |
Collapse
|
42
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
43
|
McDougall AS, Terry A, Tzavaras T, Cheney C, Rojko J, Neil JC. Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia viruses. J Virol 1994; 68:2151-60. [PMID: 8138999 PMCID: PMC236690 DOI: 10.1128/jvi.68.4.2151-2160.1994] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endogenous feline leukemia virus (FeLV)-related sequences (enFeLV) are a family of proviral elements found in domestic cats and their close relatives. These elements can recombine with exogenous, infectious FeLVs of subgroup A (FeLV-A), giving rise to host range variants of FeLV-B. We found that a subset of defective enFeLV proviruses is highly expressed in lymphoma cell lines and in a variety of primary tissues, including lymphoid tissues from healthy specific-pathogen-free cats. At least two RNA species were detected, a 4.5-kb RNA containing gag, env, and long terminal repeat sequences and a 2-kb RNA containing env and long terminal repeat sequences. Cloning of enFeLV cDNA from two FeLV-free lymphoma cell lines (3201 and MCC) revealed a long open reading frame (ORF) encoding a truncated env gene product corresponding to the N-terminal portion of gp70env. Interestingly, all of three natural FeLV-B isolates include 3' env sequences which are missing from the highly transcribed subset and hence must be derived from other enFeLV elements. The enFeLV env ORF cDNA clones were closely similar to a previously characterized enFeLV provirus, CFE-16, but were polymorphic at a site corresponding to an exogenous FeLV neutralization epitope. Site-specific antiserum raised to a C-terminal 30-amino-acid peptide of the enFeLV env ORF detected an intracellular product of 35 kDa which was also shed from cells in stable form. Expression of the 35-kDa protein correlated with enFeLV RNA levels and was negatively correlated with susceptibility to infection with FeLV-B. Cell culture supernatant containing the 35-kDa protein specifically blocked infection of permissive fibroblast cells with FeLV-B isolates. We suggest that the truncated env protein mediates resistance by receptor blockade and that this form of enFeLV expression mediates the natural resistance of cats to infection with FeLV-B in the absence of FeLV-A.
Collapse
Affiliation(s)
- A S McDougall
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Bearsden, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Sheets RL, Pandey R, Jen WC, Roy-Burman P. Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas. J Virol 1993; 67:3118-25. [PMID: 8388492 PMCID: PMC237649 DOI: 10.1128/jvi.67.6.3118-3125.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using a polymerase chain reaction strategy aimed at detecting recombinant feline leukemia virus (FeLV) genomes with 5' env sequences originating from an endogenous source and 3' env sequences resulting from FeLV subgroup A (FeLV-A), we detected recombinant proviruses in approximately three-fourths of naturally occurring thymic and alimentary feline lymphosarcomas (LSAs) and one-third of the multicentric LSAs from cats determined to be FeLV capsid antigen positive by immunofluorescence assay. In contrast, only 1 of 22 naturally arising FeLV-negative feline LSAs contained recombinant proviruses, and no recombinant env gene was detected in seven samples from normal tissues or tissues from FeLV-positive animals that died from other diseases. Four preferred structural motifs were identified in the recombinants; one is FeLV-B like (recognizing that FeLV-B itself is a product of recombination between FeLV-A and endogenous env genes), and three contain variable amounts of endogenous-like env gene before crossing over to FeLV-A-related sequences: (i) a combination of full-length and deleted env genes with recombination at sites in the middle of the surface glycoprotein (SU), (ii) the entire SU encoded by endogenous-like sequences, and (iii) the entire SU and approximately half of the transmembrane protein encoded by endogenous-like sequences. Additionally, three of the thymic tumors contained recombinant proviruses with mutations in the vicinity of the major neutralizing determinant for the SU protein. These molecular genetic analyses of the LSA DNAs correspond to our previous results in vitro and support the occurrence and association of viral recombinants and mutants in vivo in FeLV-induced leukemogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cats
- Cloning, Molecular
- Genes, env
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/isolation & purification
- Leukemia, Experimental/genetics
- Lymphoma, Non-Hodgkin/etiology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/microbiology
- Molecular Sequence Data
- Polymerase Chain Reaction
- Proviruses/genetics
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- R L Sheets
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033-1054
| | | | | | | |
Collapse
|