1
|
Brooks SG, King J, Smith JA, Yosipovitch G. Cough and itch: Common mechanisms of irritation in the throat and skin. J Allergy Clin Immunol 2025; 155:36-52. [PMID: 39321991 DOI: 10.1016/j.jaci.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Cough and itch are protective mechanisms in the body. Cough occurs as a reflex motor response to foreign body inhalation, while itch is a sensation that similarly evokes a scratch response to remove irritants from the skin. Both cough and itch can last for sustained periods, leading to debilitating chronic disorders that negatively impact quality of life. Understanding the parallels and differences between chronic cough and chronic itch may be paramount to developing novel therapeutic approaches. In this article, we identify connections in the mechanisms contributing to the complex cough and scratch reflexes and summarize potential shared therapeutic targets. An online search was performed using various search engines, including PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1983 to 2024. Articles were assessed for quality, and those relevant to the objective were analyzed and summarized. The literature demonstrated similarities in the triggers, peripheral and central nervous system processing, feedback mechanisms, immunologic mediators, and receptors involved in the cough and itch responses, with the neuronal sensitization processes exhibiting the greatest parallels between cough and itch. Given the substantial impact on quality of life, novel therapies targeting similar neuroimmune pathways may apply to both itch and cough and provide new avenues for enhancing their management.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla
| | - Jenny King
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jaclyn Ann Smith
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
2
|
Yassky D, Kim BS. Mouse Models of Itch. J Invest Dermatol 2024:S0022-202X(24)02087-6. [PMID: 39320301 DOI: 10.1016/j.jid.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Murine models are vital preclinical and biological tools for studying itch. In this paper, we explore how these models have enhanced our understanding of the mechanisms underlying itch through both acute and chronic itch models. We provide detailed protocols and recommend experimental setups for specific models to guide researchers in conducting itch research. We distinguish between what constitutes a bona fide pruritogen versus a stimulus that causes pruritogen release, an acute itch model versus a chronic itch model, and how murine models can capture aspects of pruritus in human disease. Finally, we highlight how mouse models of itch have transformed our understanding and development of therapeutics for chronic pruritus in patients.
Collapse
Affiliation(s)
- Daniel Yassky
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
3
|
Brooks SG, Mahmoud RH, Lin RR, Fluhr JW, Yosipovitch G. The Skin Acid Mantle: An Update on Skin pH. J Invest Dermatol 2024:S0022-202X(24)01971-7. [PMID: 39243251 DOI: 10.1016/j.jid.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 09/09/2024]
Abstract
The acid mantle concept refers to the buffer system located in the upper stratum corneum of the skin. By sustaining an acidic environment, the acid mantle contributes to the regulation of the microbiome, structural stability, and inflammation. Skin pH is pivotal in maintaining the integrity of the epidermal barrier. Shifts in pH can disrupt barrier properties, and recent studies have emphasized its impact on dermatologic disease processes. This review explores the complex relationship of mechanisms through which skin pH impacts dermatologic pathologies. Furthermore, we highlight the promising potential of pH-targeted therapies for advancing the management of skin conditions.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rachel R Lin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joachim W Fluhr
- Charité - Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany; Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Berlin, Germany
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Lin S, Liu X, Jiang J, Ge W, Zhang Y, Li F, Tao Q, Liu S, Li M, Chen H. The involvement of keratinocytes in pruritus of chronic inflammatory dermatosis. Exp Dermatol 2024; 33:e15142. [PMID: 39032085 DOI: 10.1111/exd.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Yu H, Ou G. Genetic analyses unravel the causal association of cytokine levels on lichen simplex chronicus risk: insights from a mendelian randomization study. Arch Dermatol Res 2024; 316:241. [PMID: 38795165 DOI: 10.1007/s00403-024-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Lichen simplex chronicus (LSC) presents a challenge in dermatology due to its elusive pathogenic mechanisms. While associations between circulating inflammatory cytokines and LSC were observed, the definitive causal dynamics remain to be elucidated. Our study used a two-sample Mendelian randomization (MR) approach to investigate causal relationships. We applied a suite of MR methodologies, including IVW, Weighted Median, MR-Egger, Weighted Mode, Simple Mode, MR-PRESSO, and the Steiger test, to ensure robust causal inference. Our analysis confirmed the causal impact of genetically determined cytokine levels on LSC risk, particularly MMP-10 (OR = 0.493, P = 0.004) and DNER (OR = 0.651, P = 0.043) in risk attenuation. We also found a positive causal correlation between GDNF levels (OR = 1.871, P = 0.007) and LSC prevalence. Notably, bidirectional causality was observed between DNER and LSC. Consistency across various MR analyses and sensitivity analyses confirmed the absence of horizontal pleiotropy, validating the causal estimates. This pioneering MR investigation unveils a novel genetically anchored causal relationship between the circulating levels of MMP-10, DNER, and GDNF and LSC risk. Although further validation is requisite, our findings augment the understanding of cytokine mediation in LSC and underscore prospective avenues for research.
Collapse
Affiliation(s)
- Haoyang Yu
- Department of Dermatology, Taizhou First People's Hospital, Taizhou, Zhejiang, 318020, P. R. China.
| | - Guanyong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
6
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
7
|
Mahmoud RH, Brooks SG, Yosipovitch G. Current and emerging drugs for the treatment of pruritus: an update of the literature. Expert Opin Pharmacother 2024; 25:655-672. [PMID: 38682595 DOI: 10.1080/14656566.2024.2349193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pruritus, particularly in its chronic form, often imposes significant suffering and reductions in patients' quality of life. The pathophysiology of itch is varied depending on disease context, creating opportunities for unique drug development and multimodal therapy. AREAS COVERED The purpose of this article is to provide an update of the literature regarding current and emerging therapeutics in itch. We review the multitudes of drug targets available and corresponding drugs that have shown efficacy in clinical trials, with a particular emphasis on phase 2 and 3 trials and beyond. Broadly, these targets include therapies directed against type 2 inflammation (i.e. Th2 cytokines, JAK/STAT, lipid mediators, T-cell mediators, and other enzymes and receptors) and neural receptors and targets (i.e. PARs, TRP channels, opioid receptors, MRGPRs, GABA receptors, and cannabinoid receptors). EXPERT OPINION Therapeutics for itch are emerging at a remarkable pace, and we are entering an era with more and more specialized therapies. Increasingly, these treatments are able to relieve itch beyond their effect on inflammation by directly targeting the neurosensory system.
Collapse
Affiliation(s)
- Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
8
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
9
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
10
|
Ständer S, Luger T, Kim B, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Yosipovitch G. Cutaneous Components Leading to Pruritus, Pain, and Neurosensitivity in Atopic Dermatitis: A Narrative Review. Dermatol Ther (Heidelb) 2024; 14:45-57. [PMID: 38182845 PMCID: PMC10828226 DOI: 10.1007/s13555-023-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, relapsing immunoinflammatory skin condition characterized by sensations such as pruritis, pain, and neuronal hypersensitivity. The mechanisms underlying these sensations are multifactorial and involve complex crosstalk among several cutaneous components. This review explores the role these components play in the pathophysiology of atopic dermatitis. In the skin intercellular spaces, sensory nerves interact with keratinocytes and immune cells via myriad mediators and receptors. These interactions generate action potentials that transmit pruritis and pain signals from the peripheral nervous system to the brain. Keratinocytes, the most abundant cell type in the epidermis, are key effector cells, triggering crosstalk with immune cells and sensory neurons to elicit pruritis, pain, and inflammation. Filaggrin expression by keratinocytes is reduced in atopic dermatitis, causing a weakened skin barrier and elevated skin pH. Fibroblasts are the main cell type in the dermis and, in atopic dermatitis, appear to reduce keratinocyte differentiation, further weakening the skin barrier. Fibroblasts and mast cells promote inflammation while dermal dendritic cells appear to attenuate inflammation. Inflammatory cytokines and chemokines play a major role in AD pathogenesis. Type 2 immune responses typically generate pruritis, and the type 1 and type 3 responses generate pain. Type 2 responses and increased skin pH contribute to barrier dysfunction and promote dysbiosis of the skin microbiome, causing the proliferation of Staphyloccocus aureus. In conclusion, understanding the dynamic interactions between cutaneous components in AD could drive the development of therapies to improve the quality of life for patients with AD.
Collapse
Affiliation(s)
- Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany.
| | | | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | - Amy Cha
- Pfizer Inc, New York, NY, USA
| | - Gil Yosipovitch
- Pfizer Inc, New York, NY, USA
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals (Basel) 2023; 16:1707. [PMID: 38139833 PMCID: PMC10748146 DOI: 10.3390/ph16121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Itch (pruritus) is a sensation in the skin that provokes the desire to scratch. The sensation of itch is mediated through a subclass of primary afferent sensory neurons, termed pruriceptors, which express molecular receptors that are activated by itch-evoking ligands. Also expressed in pruriceptors are several types of Transient Receptor Potential (TRP) channels. TRP channels are a diverse class of cation channels that are responsive to various somatosensory stimuli like touch, pain, itch, and temperature. In pruriceptors, TRP channels can be activated through intracellular signaling cascades initiated by pruritogen receptors and underly neuronal activation. In this review, we discuss the role of TRP channels TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPC3/4 in acute and chronic pruritus. Since these channels often mediate itch in association with pruritogen receptors, we also discuss Mas-related G-protein-coupled receptors (Mrgprs) and protease-activated receptors (PARs). Additionally, we cover the exciting therapeutic targets amongst the TRP family, as well as Mrgprs and PARs for the treatment of pruritus.
Collapse
Affiliation(s)
- Merab G. Tsagareli
- Laboratory of Pain and Analgesia, Ivane Beritashvili Center for Experimental Biomedicine, 0160 Tbilisi, Georgia;
| | - Taylor Follansbee
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| |
Collapse
|
12
|
Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, Shiers S, Dubreuil D, Vega-Mendoza D, Rolland C, Deraison C, Voisin T, Bagood MD, Wesemann L, Frey AM, Palumbo JS, Wainger BJ, Gallo RL, Leyva-Castillo JM, Vergnolle N, Price TJ, Ramachandran R, Horswill AR, Chiu IM. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023; 186:5375-5393.e25. [PMID: 37995657 PMCID: PMC10669764 DOI: 10.1016/j.cell.2023.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Flavia Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimbria J Blake
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Muhammad Saad Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel Dubreuil
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucia Wesemann
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Abigail M Frey
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Beck TC, Wilson EM, Wilkes E, Lee LW, Norris R, Valdebran M. Kappa opioid agonists in the treatment of itch: just scratching the surface? ITCH (PHILADELPHIA, PA.) 2023; 8:e0072. [PMID: 38099236 PMCID: PMC10720604 DOI: 10.1097/itx.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chronic pruritus is a debilitating condition affecting 23-44 million Americans. Recently, kappa opioid agonists (KOAs) have emerged as a novel class of potent antipruritic agents. In 2021, the Food and Drug Administration approved difelikefalin (Korsuva) for the treatment of moderate-to-severe pruritus associated with chronic kidney disease in adults undergoing hemodialysis. Difelikefalin is a potent, peripherally restricted KOA that is intravenously available. Although promising, difelikefalin is currently available as an intravenous composition only, limiting the scope of use. Oral formulations of difelikefalin did not meet the primary endpoint criteria in recent phase 2 clinical trials; however, additional clinical studies are ongoing. The future for KOAs in the treatment of pruritus is encouraging. Orally active pathway-biased KOAs, such as triazole 1.1, may serve as viable alternatives with broader applications. Extended-release compositions, such as the TP-2021 ProNeura subdermal implant, may circumvent the pharmacokinetic issues associated with peptide-based KOAs. Lastly, dual-acting kappa opioid receptor agonist/mu opioid receptor antagonists are orally bioavailable and may be useful in the treatment of various forms of chronic itch. In this review, we summarize the results of KOAs in clinical and preclinical trials and discuss future directions of drug development.
Collapse
Affiliation(s)
- Tyler C. Beck
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Elena M. Wilson
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
| | - Erik Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Lara Wine Lee
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Russell Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Manuel Valdebran
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
14
|
Liu Y, Cao C, Huang XP, Gumpper RH, Rachman MM, Shih SL, Krumm BE, Zhang S, Shoichet BK, Fay JF, Roth BL. Ligand recognition and allosteric modulation of the human MRGPRX1 receptor. Nat Chem Biol 2023; 19:416-422. [PMID: 36302898 DOI: 10.1038/s41589-022-01173-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
The human MAS-related G protein-coupled receptor X1 (MRGPRX1) is preferentially expressed in the small-diameter primary sensory neurons and involved in the mediation of nociception and pruritus. Central activation of MRGPRX1 by the endogenous opioid peptide fragment BAM8-22 and its positive allosteric modulator ML382 has been shown to effectively inhibit persistent pain, making MRGPRX1 a promising target for non-opioid pain treatment. However, the activation mechanism of MRGPRX1 is still largely unknown. Here we report three high-resolution cryogenic electron microscopy structures of MRGPRX1-Gαq in complex with BAM8-22 alone, with BAM8-22 and ML382 simultaneously as well as with a synthetic agonist compound-16. These structures reveal the agonist binding mode for MRGPRX1 and illuminate the structural requirements for positive allosteric modulation. Collectively, our findings provide a molecular understanding of the activation and allosteric modulation of the MRGPRX1 receptor, which could facilitate the structure-based design of non-opioid pain-relieving drugs.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Can Cao
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Moira M Rachman
- Department of Pharmaceutical Sciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Sheng-Luen Shih
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
16
|
Sensory neuron-expressed TRPC3 mediates acute and chronic itch. Pain 2023; 164:98-110. [PMID: 35507377 DOI: 10.1097/j.pain.0000000000002668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represents a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. Yet, the role of TRPC3 in acute and chronic itch is still not well defined. Here, we show that, among mouse trigeminal ganglion (TG) neurons, Trpc3 mRNA is predominantly expressed in nonpeptidergic small diameter TG neurons of mice. Moreover, Trpc3 mRNA signal was present in most presumptively itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch-like and pain-like behaviors in naive mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of contact hypersensitivity (CHS), the Trpc3 mRNA expression level and function were upregulated in the TG after CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch through a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.
Collapse
|
17
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
18
|
Guo Z, Tong C, Jacków J, Doucet YS, Abaci HE, Zeng W, Hansen C, Hayashi R, DeLorenzo D, Rami A, Pappalardo A, Lumpkin EA, Christiano AM. Engineering human skin model innervated with itch sensory neuron-like cells differentiated from induced pluripotent stem cells. Bioeng Transl Med 2022; 7:e10247. [PMID: 35111948 PMCID: PMC8780951 DOI: 10.1002/btm2.10247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD), driven by interleukins (IL-4/IL-13), is a chronic inflammatory skin disease characterized by intensive pruritus. However, it is unclear how immune signaling and sensory response pathways cross talk with each other. We differentiated itch sensory neuron-like cells (ISNLCs) from iPSC lines. These ISNLCs displayed neural markers and action potentials and responded specifically to itch-specific stimuli. These ISNLCs expressed receptors specific for IL-4/IL-13 and were activated directly by the two cytokines. We successfully innervated these ISNLCs into full thickness human skin constructs. These innervated skin grafts can be used in clinical applications such as wound healing. Moreover, the availability of such innervated skin models will be valuable to develop drugs to treat skin diseases such as AD.
Collapse
Affiliation(s)
- Zongyou Guo
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Chi‐Kun Tong
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Joanna Jacków
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Yanne S. Doucet
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Hasan E. Abaci
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Wangyong Zeng
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Corey Hansen
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Ryota Hayashi
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | - Avina Rami
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | | | | |
Collapse
|
19
|
Guo CJ, Grabinski NS, Liu Q. Peripheral Mechanisms of Itch. J Invest Dermatol 2021; 142:31-41. [PMID: 34838258 DOI: 10.1016/j.jid.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Itch is a universally experienced sensation, and chronic itch can be as diabolically debilitating as pain. Recent advances have not only identified the neuronal itch sensing circuitry, but also have uncovered the intricate interactions between skin and immune cells that work together with neurons to identify itch-inducing irritants. In this review, we will summarize the fundamental mechanisms of acute itch detection in the skin, as well as highlight the recent discoveries relating to this topic.
Collapse
Affiliation(s)
- Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel S Grabinski
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
20
|
Tseng PY, Hoon MA. Oncostatin M can sensitize sensory neurons in inflammatory pruritus. Sci Transl Med 2021; 13:eabe3037. [PMID: 34757808 DOI: 10.1126/scitranslmed.abe3037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Tseng PY, Hoon MA. Specific β-Defensins Stimulate Pruritus through Activation of Sensory Neurons. J Invest Dermatol 2021; 142:594-602. [PMID: 34480893 DOI: 10.1016/j.jid.2021.07.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Pruritus is a common symptom of dermatological disorders and has a major negative impact on QOL. Previously, it was suggested that human β-defensin peptides elicit itch through the activation of mast cells. In this study, we investigated in more detail the mechanisms by which β-defensins induce itch by defining the receptors activated by these peptides in humans and mice, by establishing their action in vivo, and by examining their expression in inflammatory dermal diseases. We found that elevated expression of DEFB103 is highly correlated with skin lesions in psoriasis and atopic dermatitis. We showed that the peptide encoded by this gene and related genes activate Mas-related G protein-coupled receptors with different potencies that are related to their charge density. Furthermore, we establish that although these peptides can activate mast cells, they also activate sensory neurons, with the former cells being dispensable for itch reactions in mice. Together, our studies highlight that specific β-defensins are likely endogenous pruritogens that can directly stimulate sensory neurons.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
22
|
Misery L, Brenaut E, Pierre O, Le Garrec R, Gouin O, Lebonvallet N, Abasq-Thomas C, Talagas M, Le Gall-Ianotto C, Besner-Morin C, Fluhr JW, Leven C. Chronic itch: emerging treatments following new research concepts. Br J Pharmacol 2021; 178:4775-4791. [PMID: 34463358 DOI: 10.1111/bph.15672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Until recently, itch pathophysiology was poorly understood and treatments were poorly effective in relieving itch. Current progress in our knowledge of the itch processing, the numerous mediators and receptors involved has led to a large variety of possible therapeutic pathways. Currently, inhibitors of IL-31, IL-4/13, NK1 receptors, opioids and cannabinoids, JAK, PDE4 or TRP are the main compounds involved in clinical trials. However, many new targets, such as Mas-related GPCRs and unexpected new pathways need to be also explored.
Collapse
Affiliation(s)
- Laurent Misery
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Emilie Brenaut
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | | | - Olivier Gouin
- LIEN, Univ Brest, Brest, France.,INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France
| | | | - Claire Abasq-Thomas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Matthieu Talagas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | - Catherine Besner-Morin
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Joachim W Fluhr
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Department of Dermatology, Charité Universitätsmedizin, Berlin, Germany
| | - Cyril Leven
- LIEN, Univ Brest, Brest, France.,EA3878, FCRIN INNOVTE, groupe d'étude thrombose Bretagne Occidentale, Brest, France.,Department of Biochemistry and Pharmaco-Toxicology, University Hospital of Brest, Brest, France
| |
Collapse
|
23
|
IL-31 and IL-8 in Cutaneous T-Cell Lymphoma: Looking for Their Role in Itch. Adv Hematol 2021; 2021:5582581. [PMID: 34335777 PMCID: PMC8318769 DOI: 10.1155/2021/5582581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023] Open
Abstract
The itch associated with cutaneous T-cell lymphoma (CTCL), including Mycosis Fungoides (MF) and Sézary syndrome (SS), is often severe and poorly responsive to treatment with antihistamines. Recent studies have highlighted the possible role of interleukins in nonhistaminergic itch. We investigated the role of IL-31 and IL-8 in CTCL, concerning disease severity and associated itch. Serum samples of 27 patients with CTCL (17 MF and 10 SS) and 29 controls (blood donors) were analyzed for interleukin- (IL-) 31 and IL-8; correlations with disease and itch severity were evaluated. IL-31 serum levels were higher in CTCL patients than in controls and higher in SS than in MF. Also, serum IL-31 levels were higher in patients with advanced disease compared to those with early disease, and they correlated positively with lactate dehydrogenase and beta 2-microglobulin levels, as well as with the Sézary cell count. Itch affected 67% of CTCL patients (MF: 47%; SS: 100%). Serum IL-31 levels were higher in itching patients than in controls and in patients without itching. There was no association between serum IL-8 and disease severity, nor with itching. Serum IL-8 levels correlated positively with peripheral blood leukocyte and neutrophil counts in CTCL patients. Our study suggests a role for IL-31 in CTCL-associated itch, especially in advanced disease and SS, offering a rational target for new therapeutic approaches. Increased serum IL-8 observed in some patients may be related to concomitant infections, and its role in exacerbating itch by recruiting neutrophils and promoting the release of neutrophil proteases deserves further investigation.
Collapse
|
24
|
Pierre O, Fouchard M, Le Goux N, Buscaglia P, Leschiera R, Lewis RJ, Mignen O, Fluhr JW, Misery L, Le Garrec R. Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Mar Drugs 2021; 19:387. [PMID: 34356812 PMCID: PMC8306505 DOI: 10.3390/md19070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Collapse
Affiliation(s)
- Ophélie Pierre
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Nelig Le Goux
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Paul Buscaglia
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Raphaël Leschiera
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Olivier Mignen
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Joachim W. Fluhr
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charité Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
25
|
Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging. Redox Biol 2021; 44:102022. [PMID: 34082382 PMCID: PMC8182111 DOI: 10.1016/j.redox.2021.102022] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term exposure to ultraviolet irradiation to skin leads to deleterious intracellular effects, including reactive oxygen species (ROS) production and inflammatory responses, causing accelerated skin aging. Previous studies have demonstrated that increased expression and activation of protease-activated receptor 2 (PAR2) and Akt is observed in keratinocyte proliferation, suggesting their potential regulatory role in skin photoaging. However, the specific underlying molecular mechanism of PAR2 and the Akt/NF-κB/FoxO6-mediated signaling pathway is not clearly defined. In this study, we first used the UVB-irradiated photoaged skin of hairless mice and observed an increase in PAR2 and Gαq expression and PI3-kinase/Akt, NF-κB, and suppressed FoxO6. Consequently, increased levels of proinflammatory cytokines and decreased levels of antioxidant MnSOD was observed. Next, to investigate PAR2-specific roles in inflammation and oxidative stress, we used photoaged hairless mice topically applied with PAR2 antagonist GB83 and photoaged PAR2 knockout mice. PAR2 inhibition and deletion significantly suppressed inflammatory and oxidative stress levels, which were associated with decreased IL-6 and IL-1β levels and increased MnSOD levels, respectively. Furthermore, NF-κB phosphorylation and decreased FoxO6 was reduced by PAR2 inhibition and deletion in vivo. To confirm the in vivo results, we conducted PAR2 knockdown and overexpression in UVB-irradiated HaCaT cells. In PAR2 knockdown cells by si-PAR2 treatment, it suppressed Akt/NF-κB and increased FoxO6, whereas PAR2 overexpression reversed these effects and subsequently modulated proinflammatory target genes. Collectively, our data define that PAR2 induces oxidative stress and inflammation through Akt-mediated phosphorylation of NF-κB (Ser536) and FoxO6 (Ser184), which could be a critical upstream regulatory mechanism in ROS-mediated inflammatory response.
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 46241, South Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 46241, South Korea.
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 46241, South Korea.
| |
Collapse
|
26
|
Raef HS, Elmariah SB. Vulvar Pruritus: A Review of Clinical Associations, Pathophysiology and Therapeutic Management. Front Med (Lausanne) 2021; 8:649402. [PMID: 33898486 PMCID: PMC8058221 DOI: 10.3389/fmed.2021.649402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Vulvar pruritus is an unpleasant sensation and frequent symptom associated with many dermatologic conditions, including infectious, inflammatory and neoplastic dermatoses affecting the female genitalia. It can lead to serious impairment of quality of life, impacting sexual function, relationships, sleep and self-esteem. In this review, common conditions associated with vulvar itch are discussed including atopic and contact dermatitis, lichen sclerosus, psoriasis and infectious vulvovaginitis. We review the potential physiologic, environmental and infectious factors that contribute to the development of vulvar itch and emphasize the importance of addressing their complex interplay when managing this disruptive and challenging symptom.
Collapse
Affiliation(s)
- Haya S Raef
- Tufts University School of Medicine, Boston, MA, United States.,Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
27
|
Langedijk JAGM, Beuers UH, Oude Elferink RPJ. Cholestasis-Associated Pruritus and Its Pruritogens. Front Med (Lausanne) 2021; 8:639674. [PMID: 33791327 PMCID: PMC8006388 DOI: 10.3389/fmed.2021.639674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.
Collapse
Affiliation(s)
| | | | - Ronald P. J. Oude Elferink
- Amsterdam University Medical Centers, Tytgat Institute for Liver and Intestinal Research, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
29
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
30
|
Tsagareli MG, Nozadze I, Tsiklauri N, Carstens MI, Gurtskaia G, Carstens E. Thermal Hyperalgesia and Mechanical Allodynia Elicited by Histamine and Non-histaminergic Itch Mediators: Respective Involvement of TRPV1 and TRPA1. Neuroscience 2020; 449:35-45. [PMID: 33010342 PMCID: PMC8219216 DOI: 10.1016/j.neuroscience.2020.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Acute itch is elicited by histamine, as well as non-histaminergic itch mediators including chloroquine, BAM8-22 and Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL). When injected intradermally, histamine binds to histamine H1 and H4 receptors that activate transient receptor potential vanilloid 1 (TRPV1) to depolarize pruriceptors. Chloroquine, BAM8-22, and SLIGRL, respectively, bind to Mas-related G-protein-coupled receptors MrgprA3, MrgprC11, and MrgprC11/PAR2 that in turn activate transient receptor potential ankyrin 1 (TRPA1). In this study we tested if histamine, chloroquine, BAM8-22 and SLIGRL elicit thermal hyperalgesia and mechanical allodynia in adult male mice. We measured the latency of hindpaw withdrawal from a noxious heat stimulus, and the threshold for hindpaw withdrawal from a von Frey mechanical stimulus. Intraplantar injection of histamine resulted in significant thermal hyperalgesia (p < 0.001) and mechanical allodynia (p < 0.001) ipsilaterally that persisted for 1 h. Pretreatment with the TRPV1 antagonist AMG-517 (10 or 20 μg), but not the TRPA1 antagonist HC-030031 (50 or 100 μg), significantly attenuated the magnitude and time course of thermal hyperalgesia and mechanical allodynia elicited by histamine (p < 0.001 for both), indicating that these effects are mediated by TRPV1. In contrast, pretreatment with the TRPA1 antagonist significantly reduced thermal hyperalgesia and mechanical allodynia elicited by chloroquine (p < 0.001 for both ), BAM-822 (p < 0.01, p < 0.001, respectively) and SLGRL (p < 0.05, p < 0.001, respectively), indicating that effects elicited by these non-histaminergic itch mediators require TRPA1. TRPV1 and TRPA1 channel inhibitors thus may have potential use in reducing hyperalgesia and allodynia associated with histaminergic and non-histaminergic itch, respectively.
Collapse
Affiliation(s)
| | - Ivliane Nozadze
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - Nana Tsiklauri
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | | | - Gulnaz Gurtskaia
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - E Carstens
- University of California, Davis, CA, USA.
| |
Collapse
|
31
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
32
|
Golpanian RS, Yosipovitch G. Current and emerging systemic treatments targeting the neural system for chronic pruritus. Expert Opin Pharmacother 2020; 21:1629-1636. [PMID: 32515664 DOI: 10.1080/14656566.2020.1775815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Pruritus is a debilitating symptom that significantly affects the quality of life of patients who suffer from it. Many current and emerging systemic treatments targeting the neural system have been successful in treating itch of various underlying etiologies. AREAS COVERED A complete search of the PUBMED and Google Scholar databases was completed and literature pertinent to current and emerging systemic anti-pruritic drugs which target the neural system was compiled. The purpose of this review is to give the reader with an overview of the current and emerging systemic therapeutic options which target the neural system for chronic pruritus. The authors then provide the reader with their expert perspectives on the future of these therapies. EXPERT OPINION Exciting new anti-pruritic therapies targeting the neural system which show promise include NK-1 inhibitors, opioid receptor modulators, and drugs targeting specific itch receptors such as Mrgpr, Nav1.7, and PAR2, as well as selective GABA modulators. Future studies should be conducted in order to fully understand these exciting therapeutic options.
Collapse
Affiliation(s)
- Rachel Shireen Golpanian
- Department of Dermatology and Cutaneous Surgery, and Itch Center, University of Miami Miller School of Medicine , Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, and Itch Center, University of Miami Miller School of Medicine , Miami, FL, USA
| |
Collapse
|
33
|
Hassler SN, Kume M, Mwirigi JM, Ahmad A, Shiers S, Wangzhou A, Ray PR, Belugin SN, Naik DK, Burton MD, Vagner J, Boitano S, Akopian AN, Dussor G, Price TJ. The cellular basis of protease-activated receptor 2-evoked mechanical and affective pain. JCI Insight 2020; 5:137393. [PMID: 32352932 PMCID: PMC7308051 DOI: 10.1172/jci.insight.137393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Protease-activated receptor 2 (PAR2) has long been implicated in inflammatory and visceral pain, but the cellular basis of PAR2-evoked pain has not been delineated. Although PAR2-evoked pain has been attributed to sensory neuron expression, RNA-sequencing experiments show ambiguous F2rl1 mRNA detection. Moreover, many pharmacological tools for PAR2 are nonspecific, acting also on the Mas-related GPCR family (Mrg) that are highly enriched in sensory neurons. We sought to clarify the cellular basis of PAR2-evoked pain. We developed a PAR2-conditional knockout mouse and specifically deleted PAR2 in all sensory neurons using the PirtCre mouse line. Our behavioral findings show that PAR2 agonist-evoked mechanical hyperalgesia and facial grimacing, but not thermal hyperalgesia, are dependent on PAR2 expression in sensory neurons that project to the hind paw in male and female mice. F2rl1 mRNA is expressed in a discrete population (~4%) of mostly small-diameter sensory neurons that coexpress the Nppb and IL31ra genes. This cell population has been implicated in itch, but our work shows that PAR2 activation in these cells causes clear pain-related behaviors from the skin. Our findings show that a discrete population of DRG sensory neurons mediate PAR2-evoked pain.
Collapse
Affiliation(s)
- Shayne N. Hassler
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Ayesha Ahmad
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Stephanie Shiers
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Serge N. Belugin
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dhananjay K. Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Michael D. Burton
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | | | - Scott Boitano
- BIO5 Research Institute and
- Department of Physiology, Asthma & Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Armen N. Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
34
|
Fourzali KM, Yosipovitch G. Management of Itch in the Elderly: A Review. Dermatol Ther (Heidelb) 2019; 9:639-653. [PMID: 31549284 PMCID: PMC6828892 DOI: 10.1007/s13555-019-00326-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic itch is common in the elderly patient and may be caused by a variety of known dermatologic and non-dermatologic conditions and can have a significant effect on quality of life. Age-related changes in barrier function, immunosenescence, and neuronal changes and neuropathies are common predisposing factors to chronic itch in this age group. Certain primary dermatologic conditions are more common in the elderly and can cause chronic itch. Also, co-morbid diseases particularly of the renal, hepatobiliary, or hematologic systems, psychologic conditions, or medications may contribute to chronic itch in this population. Thus, medical workup for an elderly patient with chronic itch requires special attention to the patient's medical history, current health status, and medications. Topical treatments and emollients may be recommended for elderly patients, with consideration of specific adverse effects and alternatives. Systemic medications pose a higher risk of adverse effects and many are contraindicated in the elderly for this reason. In addition, management in the elderly may be complicated by differential pharmacokinetics of medications, the presence of co-morbid health conditions, cognitive disorders, physical limitations, and polypharmacy. New and emerging treatment modalities hold promise for use in the elderly due to these special considerations.
Collapse
Affiliation(s)
- Kayla M Fourzali
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, 33136, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, 33136, USA.
| |
Collapse
|
35
|
Hussain AB, Samuel R, Hegade VS, Jones DE, Reynolds NJ. Pruritus secondary to primary biliary cholangitis: a review of the pathophysiology and management with phototherapy. Br J Dermatol 2019; 181:1138-1145. [PMID: 30920648 DOI: 10.1111/bjd.17933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune hepatobiliary disorder characterized by destruction of liver bile ducts leading to intrahepatic cholestasis. It causes intractable pruritus for which ultraviolet (UV)B phototherapy is an experimental treatment when alternative therapies fail. The pathophysiology of cholestatic itch and the mechanism of action of narrowband UVB in this condition remains poorly understood. OBJECTIVES To summarize the current literature and propose testable hypotheses for the mechanism of action of phototherapy in attenuating itch. METHODS A focused PubMed search for articles relating to the pathogenesis of itch in cholestatic disease was performed. A total of 3855 articles were screened and 50 were found suitable for literature review. Evidence from this literature review was combined with author expertise in the area. RESULTS Formulated hypotheses focus on the role of bile salts, autotaxin and specific receptors including G-protein-coupled bile acid receptor, Gpbar1 (also known as TGR5) and the nuclear transcription factor farnesoid X receptor. CONCLUSIONS Several testable mechanisms through which phototherapy may exert its effects are discussed in this review. The next steps are to carry out an objective assessment of the efficacy of phototherapy in cholestatic pruritus, gain further knowledge on the underlying pathways, and subsequently trial its use against current licensed therapies. Such studies could lead to increased mechanistic understanding, identification of novel therapeutic targets and the potential to refine phototherapy protocols, leading to improved control of itch and quality of life in patients with PBC. What's already known about this topic? Primary biliary cholangitis (PBC) is frequently associated with intractable pruritus for which current treatment options are often unsuccessful. Phototherapy is used as an experimental treatment for PBC-associated pruritus when alternative better-studied treatments fail. What does this study add? This study reviews the current literature on the pathophysiology and management of cholestatic pruritus, an area which remains poorly understood. We propose testable hypotheses of the mechanisms behind the attenuation of cholestatic pruritus with phototherapy.
Collapse
Affiliation(s)
- A B Hussain
- Newcastle Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - R Samuel
- Newcastle Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NHS Foundation Trust, Newcastle upon Tyne, U.K
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - V S Hegade
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
- Liver Unit, Freeman Hospital, Newcastle upon Tyne, NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - D E Jones
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
- Liver Unit, Freeman Hospital, Newcastle upon Tyne, NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - N J Reynolds
- Newcastle Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NHS Foundation Trust, Newcastle upon Tyne, U.K
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
36
|
Yosipovitch G, Rosen JD, Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol 2019; 142:1375-1390. [PMID: 30409247 DOI: 10.1016/j.jaci.2018.09.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Itch is a common sensory experience that is prevalent in patients with inflammatory skin diseases, as well as in those with systemic and neuropathic conditions. In patients with these conditions, itch is often severe and significantly affects quality of life. Itch is encoded by 2 major neuronal pathways: histaminergic (in acute itch) and nonhistaminergic (in chronic itch). In the majority of cases, crosstalk existing between keratinocytes, the immune system, and nonhistaminergic sensory nerves is responsible for the pathophysiology of chronic itch. This review provides an overview of the current understanding of the molecular, neural, and immune mechanisms of itch: beginning in the skin, proceeding to the spinal cord, and eventually ascending to the brain, where itch is processed. A growing understanding of the mechanisms of chronic itch is expanding, as is our pipeline of more targeted topical and systemic therapies. Our therapeutic armamentarium for treating chronic itch has expanded in the last 5 years, with developments of topical and systemic treatments targeting the neural and immune systems.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla.
| | - Jordan Daniel Rosen
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| | - Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| |
Collapse
|
37
|
Pathophysiologic mechanisms of itch in bullous pemphigoid. J Am Acad Dermatol 2019; 83:53-62. [PMID: 31351883 DOI: 10.1016/j.jaad.2019.07.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/23/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND One of the hallmarks of bullous pemphigoid (BP) is moderate to severe chronic itch. Managing this is difficult because little is known about the mechanisms of itch in BP. OBJECTIVE We sought to elucidate the pathophysiologic mechanisms of itch in BP. METHODS The expression of itch mediators in lesions of 24 patients with BP and 6 healthy individuals were examined through immunofluorescence staining. Furthermore, the expression of itch mediators and itch severity was correlated. RESULTS Itch severity was correlated with eosinophils, substance P, neurokinin 1R, interleukin (IL) 31 receptor A, oncostatin M receptor-β, IL-13, periostin, and basophils. There was also a trend between itch severity and IL-31 expression. Most of the cells expressing IL-31 or neurokinin 1R were identified as eosinophils. Intraepidermal nerve fiber density was decreased. Other itch mediators, including mast cells, IL-4, thymic stromal lymphopoietin, transient receptor potential vanilloid 1 and ankyrin 1, and protease activated receptor 2 were not significantly correlated with itch severity. LIMITATIONS The relatively small sample size, the examination of protein expression exclusively through immunofluorescent analysis, and lack of functional assays in patients are the limitations. CONCLUSIONS Multiple factors are involved in BP-associated itch, including eosinophils, substance P, neurokinin 1R, IL-31, IL-31 receptor A, oncostatin M receptor-β, IL-13, periostin, and basophils. They could be useful therapeutic targets.
Collapse
|
38
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Mack MR, Kim BS. The Itch–Scratch Cycle: A Neuroimmune Perspective. Trends Immunol 2018; 39:980-991. [DOI: 10.1016/j.it.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
40
|
Hashimoto T, Rosen JD, Sanders KM, Yosipovitch G. Possible roles of basophils in chronic itch. Exp Dermatol 2018; 28:1373-1379. [PMID: 29894005 DOI: 10.1111/exd.13705] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Basophils are blood granulocytes and normally constitute <1% of blood peripheral leucocytes. Basophils share some morphological and functional similarities with mast cells, and basophils were once regarded as redundant and negligible circulating mast cells. However, recent studies reveal the indispensable roles of basophils in various diseases, including allergic and pruritic diseases. Basophils may be involved in itch through the mediation of a Th2 immune response, interaction with other cells in the skin and secretion of a wide variety of itch-related mediators, for example histamine, cytokines and chemokines (IL-4, IL-13, IL-31 and TSLP), proteases (cathepsin S), prostaglandins (PGE2 and PGD2), substance P and platelet-activating factor. Not only pruritic skin diseases (eg, atopic dermatitis, irritant contact dermatitis, chronic urticaria, prurigo, papulo-erythroderma of Ofuji, eosinophilic pustular folliculitis, scabies, tick bites and bullous pemphigoid) but also pruritic systemic diseases (eg, primary sclerosing cholangitis and polycythemia vera) may be affected by basophils.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jordan D Rosen
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristen M Sanders
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
|
42
|
Evaluation of the Itchy Patient. CURRENT DERMATOLOGY REPORTS 2018. [DOI: 10.1007/s13671-018-0208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|