1
|
Inyang KE, Sim J, Clark KB, Geron M, Monahan K, Evans C, O'Connell P, Laumet S, Peng B, Ma J, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen YA, Folger JK, Bavencoffe A, Laumet G. Upregulation of delta opioid receptor by meningeal interleukin-10 prevents relapsing pain. Brain Behav Immun 2025; 123:399-410. [PMID: 39349285 PMCID: PMC11624093 DOI: 10.1016/j.bbi.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Chronic pain often includes periods of transient amelioration and even remission that alternate with severe relapsing pain. While most research on chronic pain has focused on pain development and maintenance, there is a critical unmet need to better understand the mechanisms that underlie pain remission and relapse. We found that interleukin (IL)-10, a pain resolving cytokine, is produced by resident macrophages in the spinal meninges during remission from pain and signaled to IL-10 receptor-expressing sensory neurons. Using unbiased RNA-sequencing, we identified that IL-10 upregulated expression and antinociceptive activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of either IL-10 signaling or δOR triggered relapsing pain. Overall, our findings, from electrophysiology, genetic manipulation, flow cytometry, pharmacology, and behavioral approaches, indicate that remission of pain is not simply a return to the naïve state. Instead, remission is an adapted homeostatic state associated with lasting pain vulnerability resulting from persisting neuroimmune interactions within the nociceptive system. Broadly, this sheds light on the elusive mechanisms underlying recurrence a common aspect across various chronic pain conditions.
Collapse
Affiliation(s)
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Kimberly B Clark
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Karli Monahan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Christine Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bo Peng
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiacheng Ma
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina, Chapel Hill, NC, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Bernard
- Flow Cytometry Core, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA; Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Bavencoffe A, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Domagala DM, Zhu MX, Dessauer CW, Walters ET. Widespread hyperexcitability of nociceptor somata outlasts enhanced avoidance behavior after incision injury. Pain 2024:00006396-990000000-00749. [PMID: 39432803 DOI: 10.1097/j.pain.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. The present study shows that long-lasting hyperexcitability that can generate OA during modest depolarization in probable nociceptors dissociated from DRGs of male and female rats is induced by plantar incision injury. OA occurred when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This hyperexcitability persisted for at least 3 weeks, whereas behavioral indicators of affective pain-hind paw guarding and increased avoidance of a noxious substrate in an operant conflict test-persisted for 1 week or less. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. An unexpected discovery after plantar incisions was hyperexcitability in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to contribute to hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Araldi D, Staurengo-Ferrari L, Bogen O, Bonet IJM, Green PG, Levine JD. Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2024; 44:e0243242024. [PMID: 39256047 PMCID: PMC11484550 DOI: 10.1523/jneurosci.0243-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.
Collapse
Affiliation(s)
- Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
- Department of Preventative and Restorative Dental Sciences, Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
- Department of Medicine, Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143
| |
Collapse
|
4
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
5
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
7
|
Fotio Y, Mabou Tagne A, Squire E, Lee HL, Phillips CM, Chang K, Ahmed F, Greenberg AS, Villalta SA, Scarfone VM, Spadoni G, Mor M, Piomelli D. NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice. Nat Commun 2024; 15:1705. [PMID: 38402219 PMCID: PMC10894261 DOI: 10.1038/s41467-024-46139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Connor M Phillips
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Kayla Chang
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | | | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo,", Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Bavencoffe AG, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Zhu MX, Dessauer CW, Walters ET. Widespread latent hyperactivity of nociceptors outlasts enhanced avoidance behavior following incision injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578108. [PMID: 38352319 PMCID: PMC10862851 DOI: 10.1101/2024.01.30.578108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
9
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572242. [PMID: 38260446 PMCID: PMC10802253 DOI: 10.1101/2023.12.18.572242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: a) less PKCε in dorsal root ganglia (DRG), b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
|
10
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. Mol Pain 2024; 20:17448069241230419. [PMID: 38246917 PMCID: PMC10851726 DOI: 10.1177/17448069241230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
Affiliation(s)
- Oliver Bogen
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Anatol Sucher
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kord Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Peter T Ohara
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
12
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Nagaraja S, Tewari SG, Reifman J. Predictive analytics identifies key factors driving hyperalgesic priming of muscle sensory neurons. Front Neurosci 2023; 17:1254154. [PMID: 37942142 PMCID: PMC10629345 DOI: 10.3389/fnins.2023.1254154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Hyperalgesic priming, a form of neuroplasticity induced by inflammatory mediators, in peripheral nociceptors enhances the magnitude and duration of action potential (AP) firing to future inflammatory events and can potentially lead to pain chronification. The mechanisms underlying the development of hyperalgesic priming are not well understood, limiting the identification of novel therapeutic strategies to combat chronic pain. In this study, we used a computational model to identify key proteins whose modifications caused priming of muscle nociceptors and made them hyperexcitable to a subsequent inflammatory event. First, we extended a previously validated model of mouse muscle nociceptor sensitization to incorporate Epac-mediated interaction between two G protein-coupled receptor signaling pathways commonly activated by inflammatory mediators. Next, we calibrated and validated the model simulations of the nociceptor's AP response to both innocuous and noxious levels of mechanical force after two subsequent inflammatory events using literature data. Then, by performing global sensitivity analyses that simulated thousands of nociceptor-priming scenarios, we identified five ion channels and two molecular processes (from the 18 modeled transmembrane proteins and 29 intracellular signaling components) as potential regulators of the increase in AP firing in response to mechanical forces. Finally, when we simulated specific neuroplastic modifications in Kv1.1 and Nav1.7 alone as well as with simultaneous modifications in Nav1.7, Nav1.8, TRPA1, and Kv7.2, we observed a considerable increase in the fold change in the number of triggered APs in primed nociceptors. These results suggest that altering the expression of Kv1.1 and Nav1.7 might regulate the neuronal hyperexcitability in primed mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
14
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
15
|
Kume M, Ahmad A, Shiers S, Burton MD, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. C781, a β-Arrestin Biased Antagonist at Protease-Activated Receptor-2 (PAR2), Displays in vivo Efficacy Against Protease-Induced Pain in Mice. THE JOURNAL OF PAIN 2023; 24:605-616. [PMID: 36417966 PMCID: PMC10079573 DOI: 10.1016/j.jpain.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Given the limited options and often harmful side effects of current analgesics and the suffering caused by the opioid crisis, new classes of pain therapeutics are needed. Protease-activated receptors (PARs), particularly PAR2, are implicated in a variety of pathologies, including pain. Since the discovery of the role of PAR2 in pain, development of potent and specific antagonists has been slow. In this study, we describe the in vivo characterization of a novel small molecule/peptidomimetic hybrid compound, C781, as a β-arrestin-biased PAR2 antagonist. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. Pharmacokinetic studies were done to assess pharmacokinetic/pharmacodynamic relationship in vivo. We used both prevention and reversal paradigms with protease treatment to determine whether C781 could attenuate protease-evoked pain. C781 effectively prevented and reversed mechanical and spontaneous nociceptive behaviors in response to small molecule PAR2 agonists, mast cell activators, and neutrophil elastase. The ED50 of C781 (intraperitoneal dosing) for inhibition of PAR2 agonist (20.9 ng 2-AT)-evoked nociception was 6.3 mg/kg. C781 was not efficacious in the carrageenan inflammation model. Pharmacokinetic studies indicated limited long-term systemic bioavailability for C781 suggesting that optimizing pharmacokinetic properties could improve in vivo efficacy. Our work demonstrates in vivo efficacy of a biased PAR2 antagonist that selectively inhibits β-arrestin/MAPK signaling downstream of PAR2. Given the importance of this signaling pathway in PAR2-evoked nociception, C781 exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development. PERSPECTIVE: Our work provides evidence that PAR2 antagonists that only block certain aspects of signaling by the receptor can be effective for blocking protease-evoked pain in mice. This is important because it creates a rationale for developing safer PAR2-targeting approaches for pain treatment.
Collapse
Affiliation(s)
- Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Ayesha Ahmad
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | | | - Josef Vagner
- University of Arizona Bio5 Institute, Tucson, Arizona
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Scott Boitano
- University of Arizona Bio5 Institute, Tucson, Arizona; Asthma and Airway Disease Research Center, University of Arizona Heath Sciences, Tucson, Arizona; Department of Physiology, University of Arizona Heath Sciences, Tucson, Arizona
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
16
|
Dugan MP, Ferguson LB, Hertz NT, Chalkley RJ, Burlingame AL, Shokat KM, Parker PJ, Messing RO. Chemical Genetic Identification of PKC Epsilon Substrates in Mouse Brain. Mol Cell Proteomics 2023; 22:100522. [PMID: 36863607 PMCID: PMC10105488 DOI: 10.1016/j.mcpro.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.
Collapse
Affiliation(s)
- Michael P Dugan
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Laura B Ferguson
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA
| | - Peter J Parker
- The Francis Crick Institute, London, United Kingdom; School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
17
|
Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M. Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NFκB and klotho protein expression. Chem Biol Interact 2023; 376:110446. [PMID: 36898573 DOI: 10.1016/j.cbi.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a common adverse effect associated with a number of chemotherapeutic agents including paclitaxel (PTX) which is commonly used in a wide range of solid tumors. Development of PTX-induced peripheral neuropathy (PIPN) during cancer treatment requires dose reduction which limits its clinical benefits. This study is conducted to investigate the role of toll like receptor-4 (TLR4) and p38 signaling and Klotho protein expression in PIPN and the role of Trimetazidine (TMZ) in this pathway. Sixty-four male Swiss albino mice were divided into 4 groups (n = 16); Group (1) injected intraperitoneally (IP) with ethanol/tween 80/saline for 8 successive days. Group (2) received TMZ (5 mg/kg, IP, day) for 8 successive days. Group (3) treated with 4 doses of PTX (4.5 mg/kg, IP) every other day over a period of 8 days. Group (4) received a combination of TMZ as group 2 and PTX as group 3. The Effect of TMZ on the antitumor activity of PTX was studied in another set of mice-bearing Solid Ehrlich Carcinoma (SEC) that was similarly divided as the above-mentioned set. TMZ mitigated tactile allodynia, thermal hypoalgesia, numbness and fine motor dyscoordination associated with PTX in Swiss mice. The results of the current study show that the neuroprotective effect of TMZ can be attributed to inhibition of TLR4/p38 signaling which also includes a reduction in matrix metalloproteinase-9 (MMP9) protein levels as well as the proinflammatory interleukin-1β (IL-1β) and preserving the levels of the anti-inflammatory IL-10. Moreover, the current study is the first to demonstrate that PTX reduces the neuronal levels of klotho protein and showed its modulation via cotreatment with TMZ. In addition, this study showed that TMZ neither alter the growth of SEC nor the antitumor activity of PTX. In conclusion, we suggest that (1) Inhibition of Klotho protein and upregulation of TLR4/p38 signals in nerve tissues may contribute to PIPN. (2) TMZ attenuates PIPN by modulating TLR4/p38 and Klotho protein expression in without interfering with its antitumor activity.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Sara M N Abdel Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| |
Collapse
|
18
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
19
|
Zhang Y, Jeske NA. A-kinase anchoring protein 79/150 coordinates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor sensitization in sensory neurons. Mol Pain 2023; 19:17448069231222406. [PMID: 38073552 PMCID: PMC10722943 DOI: 10.1177/17448069231222406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Changes in sensory afferent activity contribute to the transition from acute to chronic pain. However, it is unlikely that a single sensory receptor is entirely responsible for persistent pain. It is more probable that extended changes to multiple receptor proteins expressed by afferent neurons support persistent pain. A-Kinase Anchoring Protein 79/150 (AKAP) is an intracellular scaffolding protein expressed in sensory neurons that spatially and temporally coordinates signaling events. Since AKAP scaffolds biochemical modifications of multiple TRP receptors linked to pain phenotypes, we probed for other ionotropic receptors that may be mediated by AKAP and contribute to persistent pain. Here, we identify a role for AKAP modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA-R) functionality in sensory neurons. Pharmacological manipulation of distinct AMPA-R subunits significantly reduces persistent mechanical hypersensitivity observed during hyperalgesic priming. Stimulation of both protein kinases C and A (PKC, PKA, respectively) modulate AMPA-R subunit GluR1 and GluR2 phosphorylation and surface expression in an AKAP-dependent manner in primary cultures of DRG neurons. Furthermore, AKAP knock out reduces sensitized AMPA-R responsivity in DRG neurons. Collectively, these data indicate that AKAP scaffolds AMPA-R subunit organization in DRG neurons that may contribute to the transition from acute-to-chronic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
20
|
Overstreet DS, Strath LJ, Hasan FN, Sorge RE, Penn T, Rumble DD, Aroke EN, WIggins AM, Dembowski JG, Bajaj EK, Quinn TL, Long DL, Goodin BR. Racial Differences in 25-Hydroxy Vitamin D and Self-Reported Pain Severity in a Sample of Individuals Living with Non-Specific Chronic Low Back Pain. J Pain Res 2022; 15:3859-3867. [PMID: 36514480 PMCID: PMC9741831 DOI: 10.2147/jpr.s386565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Considerable evidence suggests that there are significant ethnic/racial differences in the experience of pain among individuals suffering from chronic musculoskeletal conditions. Additionally, low levels of vitamin D have been associated with pain severity. Further, vitamin D deficiency is more prevalent in Non-Hispanic Black (NHB) individuals compared to Non-Hispanic Whites (NHW). Objective The aim of this study was to investigate the associations among race, pain severity, and serum levels of vitamin D in a sample of patients with chronic low back pain (cLBP). Methods All study participants (n = 155) self-identified their race/ethnicity as either NHB or NHW. Blood samples were collected to assess circulating levels of serum 25- hydroxy vitamin D. Vitamin D levels were categorized as optimal (≥20 ng/mL), insufficient (12-19 ng/mL) or deficient (<12 ng/mL). Participants then self-reported their pain severity using the Brief Pain Inventory - Short Form. Results Results showed that a greater proportion of NHB versus NHW participants were categorized as Vitamin D deficient (χ 2 (2, N = 155) = 16.79, p < 0.001). An analysis of covariance (ANCOVA) revealed that NHBs reported significantly greater pain severity relative to NHWs (F(1150) = 6.45) p = 0.012. Further, self-reported pain severity significantly differed according to Vitamin D clinical categories (F(2150) = 4.19, p = 0.013). Participants with deficient vitamin D reported significantly greater pain severity in comparison to participants with optimal vitamin D (F(1101) = 7.28, p = 0.008). Conclusion The findings suggest that Vitamin D deficiency may be linked to greater pain severity in a sample of individuals with cLBP, especially for those who identify as NHB.
Collapse
Affiliation(s)
- Demario S Overstreet
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Larissa J Strath
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fariha N Hasan
- School of Public Health, Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert E Sorge
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Terence Penn
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deanna D Rumble
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin N Aroke
- School of Nursing, Nurse Anesthesia Program, Department of Acute, Chronic, & Continuing Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asia M WIggins
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonas G Dembowski
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eeshaan K Bajaj
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - D Leann Long
- School of Public Health, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Kunder N, de la Peña JB, Lou TF, Chase R, Suresh P, Lawson J, Shukla T, Black B, Campbell ZT. The RNA-Binding Protein HuR Is Integral to the Function of Nociceptors in Mice and Humans. J Neurosci 2022; 42:9129-9141. [PMID: 36270801 PMCID: PMC9761683 DOI: 10.1523/jneurosci.1630-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
HuR is an RNA-binding protein implicated in RNA processing, stability, and translation. Previously, we examined protein synthesis in dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We found that the HuR consensus binding element was enriched in transcripts with elevated translation. HuR is expressed in the soma of nociceptors and their axons. Pharmacologic inhibition of HuR with the small molecule CMLD-2 reduced the activity of mouse and human sensory neurons. Peripheral administration of CMLD-2 in the paw or genetic elimination of HuR from sensory neurons diminished behavioral responses associated with NGF- and IL-6-induced allodynia in male and female mice. Genetic disruption of HuR altered the proximity of mRNA decay factors near a key neurotrophic factor (TrkA). Collectively, the data suggest that HuR is required for local control of mRNA stability and reveals a new biological function for a broadly conserved post-transcriptional regulatory factor.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in excitability, which may contribute to chronic pain. Noxious cues that promote pain lead to rapid induction of protein synthesis. The underlying mechanisms that confer specificity to mRNA control in nociceptors are unclear. Here, we identify a conserved RNA-binding protein called HuR as a key regulatory factor in sensory neurons. Using a combination of genetics and pharmacology, we demonstrate that HuR is required for signaling in nociceptors. In doing so, we report an important mechanism of mRNA control in sensory neurons that ensures appropriate nociceptive responses to inflammatory mediators.
Collapse
Affiliation(s)
- Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - June Bryan de la Peña
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Tarjani Shukla
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Bryan Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Zachary T Campbell
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
22
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
23
|
Lim SY, Cengiz P. Opioid tolerance and opioid-induced hyperalgesia: Is TrkB modulation a potential pharmacological solution? Neuropharmacology 2022; 220:109260. [PMID: 36165856 DOI: 10.1016/j.neuropharm.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Opioids are widely prescribed for moderate to severe pain in patients with acute illness, cancer pain, and chronic noncancer pain. However, long-term opioid use can cause opioid tolerance and opioid-induced hyperalgesia (OIH), contributing to the opioid misuse and addiction crisis. Strategies to mitigate opioid tolerance and OIH are needed to reduce opioid use and its sequelae. Currently, there are few effective pharmacological strategies that reduce opioid tolerance and OIH. The intrinsic tyrosine kinase receptor B (TrkB) ligand, brain-derived neurotrophic factor (BDNF), has been shown to modulate pain. The BDNF-TrkB signaling plays a role in initiating and sustaining elevated pain sensitivity; however, increasing evidence has shown that BDNF and 7,8-dihydroxyflavone (7,8-DHF), a potent blood-brain barrier-permeable ligand to TrkB, exert neuroprotective, anti-inflammatory, and antioxidant effects that may protect against opioid tolerance and OIH. As such, TrkB signaling may be an important therapeutic avenue in opioid tolerance and OIH. Here, we review 1) the mechanisms of pain, opioid analgesia, opioid tolerance, and OIH; 2) the role of BDNF-TrkB in pain modulation; and 3) the neuroprotective effects of 7,8-DHF and their implications for opioid tolerance and OIH.
Collapse
Affiliation(s)
- Sin Yin Lim
- Pharmacy Practice and Translational Research Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI, United States.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States; Waisman Center, University of Wisconsin-Madison, United States.
| |
Collapse
|
24
|
Lin YL, Yang ZS, Wong WY, Lin SC, Wang SJ, Chen SP, Cheng JK, Lu H, Lien CC. Cellular mechanisms underlying central sensitization in a mouse model of chronic muscle pain. eLife 2022; 11:78610. [PMID: 36377439 PMCID: PMC9665847 DOI: 10.7554/elife.78610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic pain disorders are often associated with negative emotions, including anxiety and depression. The central nucleus of the amygdala (CeA) has emerged as an integrative hub for nociceptive and affective components during central pain development. Prior adverse injuries are precipitating factors thought to transform nociceptors into a primed state for chronic pain. However, the cellular basis underlying the primed state and the subsequent development of chronic pain remains unknown. Here, we investigated the cellular and synaptic alterations of the CeA in a mouse model of chronic muscle pain. In these mice, local infusion of pregabalin, a clinically approved drug for fibromyalgia and other chronic pain disorders, into the CeA or chemogenetic inactivation of the somatostatin-expressing CeA (CeA-SST) neurons during the priming phase prevented the chronification of pain. Further, electrophysiological recording revealed that the CeA-SST neurons had increased excitatory synaptic drive and enhanced neuronal excitability in the chronic pain states. Finally, either chemogenetic inactivation of the CeA-SST neurons or pharmacological suppression of the nociceptive afferents from the brainstem to the CeA-SST neurons alleviated chronic pain and anxio-depressive symptoms. These data raise the possibility of targeting treatments to CeA-SST neurons to prevent central pain sensitization.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University
| | - Zhu-Sen Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University
| | - Wai-Yi Wong
- Institute of Neuroscience, National Yang Ming Chiao Tung University
| | - Shih-Che Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University
| | - Shuu-Jiun Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University
- Brain Research Center, National Yang Ming Chiao Tung University
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- Faculty of Medicine, National Yang Ming Chiao Tung University
| | - Shih-Pin Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University
- Brain Research Center, National Yang Ming Chiao Tung University
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- Faculty of Medicine, National Yang Ming Chiao Tung University
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
| | - Jen-Kun Cheng
- Department of Medicine, MacKay Medical College
- Department of Anesthesiology, MacKay Memorial Hospital
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University
- Brain Research Center, National Yang Ming Chiao Tung University
| |
Collapse
|
25
|
High-fat diet causes mechanical allodynia in the absence of injury or diabetic pathology. Sci Rep 2022; 12:14840. [PMID: 36050326 PMCID: PMC9437006 DOI: 10.1038/s41598-022-18281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between diet, obesity, and diabetes is important to tease out mechanisms in painful pathology. Western diet is rich in fats, producing high amounts of circulating bioactive metabolites. However, no research has assessed how a high-fat diet (HFD) alone may sensitize an individual to non-painful stimuli in the absence of obesity or diabetic pathology. To investigate this, we tested the ability of a HFD to stimulate diet-induced hyperalgesic priming, or diet sensitization in male and female mice. Our results revealed that 8 weeks of HFD did not alter baseline pain sensitivity, but both male and female HFD-fed animals exhibited robust mechanical allodynia when exposed to a subthreshold dose of intraplantar Prostaglandin E2 (PGE2) compared to mice on chow diet. Furthermore, calcium imaging in isolated primary sensory neurons of both sexes revealed HFD induced an increased percentage of capsaicin-responsive neurons compared to their chow counterparts. Immunohistochemistry (IHC) showed a HFD-induced upregulation of ATF3, a neuronal marker of injury, in lumbar dorsal root ganglia (DRG). This suggests that a HFD induces allodynia in the absence of a pre-existing condition or injury via dietary components. With this new understanding of how a HFD can contribute to the onset of pain, we can understand the dissociation behind the comorbidities associated with obesity and diabetes to develop pharmacological interventions to treat them more efficiently.
Collapse
|
26
|
Reed NR, Reed WR, Syrett M, Richey ML, Frolov A, Little JW. Somatosensory behavioral alterations in a NGF-induced persistent low back pain model. Behav Brain Res 2022; 418:113617. [PMID: 34606776 DOI: 10.1016/j.bbr.2021.113617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023]
Abstract
Low back pain (LBP) is a major global burden in part due to the underlying pathophysiological mechanisms being poorly understood. A LBP rat model involving two injections of nerve growth factor (NGF, an endogenous pain-related neurotrophin) into trunk musculature was recently developed. Additional behavioral work in this NGF-LBP rat model is required to better characterize local and remote somatosensory alterations related to NGF-induced peripheral and central sensitization. This work characterizes the time-dependent development of hypersensitivity to trunk and hindpaw cutaneous mechanical stimulation and deep muscle mechanical hyperalgesia in adult male Sprague-Dawley rats (n = 6/group). Behavioral assays were performed at baseline (Day 0, D0), D2, D5 (pre- and 4 h post-2nd NGF or control injection), D7, D10, and D14 in NGF and control groups. Trunk and hindpaw cutaneous mechanical hypersensitivity were tested using von Frey filaments. Deep trunk mechanical hyperalgesia was determined using a small animal algometer. NGF rats demonstrated increased cutaneous sensitivity to ipsilateral trunk mechanical stimuli at D7, D10, and D14. NGF rats also demonstrated ipsilateral deep mechanical hyperalgesia on D2, D5 + 4 h, D7, D10, and D14. Cutaneous hypersensitivity was delayed compared to deep hyperalgesia in NGF rats. No additional sensory changes were noted. Together, these results indicate that male mechanical somatosensory changes develop primarily locally in the ipsilateral trunk following unilateral NGF injections. These findings contrast with a previous report in female rats using this NGF-LBP model showing more widespread (bilateral) hyperalgesia and remote mechanical hypersensitivity. Future studies will examine potential sex-related pain behavioral differences in the NGF model.
Collapse
Affiliation(s)
- Nicholas R Reed
- Saint Louis University School of Medicine, 1402 South Grand Blvd. Saint Louis, MO, 63104, USA
| | - William R Reed
- University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA
| | - Michael Syrett
- Saint Louis University School of Medicine, 1402 South Grand Blvd. Saint Louis, MO, 63104, USA
| | - Madison L Richey
- Saint Louis University School of Medicine, 1402 South Grand Blvd. Saint Louis, MO, 63104, USA
| | - Andrey Frolov
- Saint Louis University School of Medicine, 1402 South Grand Blvd. Saint Louis, MO, 63104, USA
| | - Joshua W Little
- Saint Louis University School of Medicine, 1402 South Grand Blvd. Saint Louis, MO, 63104, USA.
| |
Collapse
|
27
|
Naz S, Mahmood T, Ahsan F, Rizvi AA, Shamim A. Repercussion of cAMP and EPAC in Memory and Signaling. Drug Res (Stuttg) 2022; 72:65-71. [PMID: 34979574 DOI: 10.1055/a-1657-2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well recognized that cyclic adenosine monophosphate (cAMP) signaling within neurons plays a key role in the foundation of long-term memories. Memory storage is the process that demands the movement of signals, neural plasticity, and the molecules which can transfer the signals from the sensory neuron to the dorsal root ganglion (DRG) neurons and later into the temporal region of the brain. The discovery of cAMP in 1958 as the second messenger also had a role in memory formation and other neural aspects. Further, in 1998 the scientists found that cAMP does not just activate protein kinase A (PKA) but also exchange protein directly activated by cAMP (Epac) which has an active role to play in hyperalgesia, memory, and signaling. The cAMP has three targets, hyperpolarization-activated cyclic nucleotide modulated (HCN) channels, protein kinase A (PKA), and exchange protein activated by cAMP (Epac). Different research has exposed that both PKA and HCN channels are significant for long-term memory creation. Epac is a cAMP-dependent guanine nucleotide exchange factor for the small G proteins including Rap1. However, slight information is there about the role of Epac in this process. The effects of cAMP are predominantly imparted by activating protein kinase A (PKA) and the more newly discovered exchange proteins are directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). This review provides an insight regarding the function and role of both of these secondary messengers in memory and nerve signaling.
Collapse
Affiliation(s)
- Sabreena Naz
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Ali Abbas Rizvi
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Arshiya Shamim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| |
Collapse
|
28
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Laboureyras E, Boujema MB, Mauborgne A, Simmers J, Pohl M, Simonnet G. Fentanyl-induced hyperalgesia and analgesic tolerance in male rats: common underlying mechanisms and prevention by a polyamine deficient diet. Neuropsychopharmacology 2022; 47:599-608. [PMID: 34621016 PMCID: PMC8674360 DOI: 10.1038/s41386-021-01200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Opioids are a mainstay of pain management but can induce unwanted effects, including analgesic tolerance and paradoxical hyperalgesia, either of which leads to increased pain. Clinically, however, the relationship between these two phenomena remains elusive. By evaluating changes in mechanical nociceptive threshold in male rats, we found that in contrast to a purely analgesic control response to a single subcutaneous administration of fentanyl (25 μg/kg), in rats subjected to inflammatory pain 2 weeks previously (Day0), the same test dose (D13) induced a bi-phasic response: initial decreased analgesia (tolerance) followed by hyperalgesia lasting several hours. Both the tolerance and hyperalgesia were further enhanced in rats that had additionally received fentanyl on D0. The dose-response profiles (5 fg to 50 μg/kg) of pain- and opioid-experienced rats were very different from pain/drug-naive rats. At ultra-low fentanyl doses (<5 ng/kg and <500 ng/kg for naïve control and pain/drug-experienced rats, respectively), solely hyperalgesia was observed in all cases. At higher doses, which now produced analgesia alone in naive rats, reduced analgesia (tolerance) coupled with hyperalgesia occurred in pain/fentanyl-experienced rats, with both phases increasing with dose. Transcriptomic and pharmacological data revealed that an overactivation of the spinal N-methyl-D-aspartate receptor-inducible NO synthase cascade plays a critical role in both acute tolerance and hyperalgesia, and together with the finding that the magnitudes of analgesia and associated hyperalgesia are negatively correlated, is indicative of closely related phenomena. Finally, a polyamine deficient diet prevented inducible NO synthase transcript upregulation, restored fentanyl's analgesic efficacy and suppressed the emergence of hyperalgesia.
Collapse
Affiliation(s)
- Emilie Laboureyras
- grid.462004.40000 0004 0383 7404Univ. de Bordeaux, INCIA, 33076 Bordeaux, France ,grid.462004.40000 0004 0383 7404CNRS, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Meric Ben Boujema
- grid.462004.40000 0004 0383 7404Univ. de Bordeaux, INCIA, 33076 Bordeaux, France ,grid.462004.40000 0004 0383 7404CNRS, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Annie Mauborgne
- grid.462844.80000 0001 2308 1657Univ. Pierre et Marie Curie, INSERM UMRS 975, 75013 Paris, France
| | - John Simmers
- grid.462004.40000 0004 0383 7404Univ. de Bordeaux, INCIA, 33076 Bordeaux, France ,grid.462004.40000 0004 0383 7404CNRS, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Michel Pohl
- grid.508487.60000 0004 7885 7602Univ. Paris Descartes, INSERM UMR 894, 75014 Paris, France
| | - Guy Simonnet
- Univ. de Bordeaux, INCIA, 33076, Bordeaux, France. .,CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.
| |
Collapse
|
30
|
Mulpuri Y, Yamamoto T, Nishimura I, Spigelman I. Role of voltage-gated sodium channels in axonal signal propagation of trigeminal ganglion neurons after infraorbital nerve entrapment. NEUROBIOLOGY OF PAIN 2022; 11:100084. [PMID: 35128176 PMCID: PMC8803652 DOI: 10.1016/j.ynpai.2022.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Infraorbital nerve entrapment (IoNE) induces mechanical allodynia and enhances signal propagation in primary afferent A- and C-fibers. IoNE increases sensitivity of A- and C-fibers to conduction block by tetrodotoxin (TTX) and selective voltage-gated sodium channel 1.8 (NaV1.8) inhibitor, A-803467. IoNE increases signal propagation in vibrissal pad Ad -, but not Aβ-fibers, and their sensitivity to conduction block by the selective NaV1.8 inhibitor. IoNE increases membrane excitability of dissociated small and medium sized trigeminal neurons. IoNE increases nerve, but not ganglion, levels of NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein.
Chronic pain arising from peripheral nerve injuries represents a significant clinical challenge because even the most efficacious anticonvulsant drug treatments are limited by their side effects profile. We investigated pain behavior, changes in axonal signal conduction and excitability of trigeminal neurons, and expression of voltage-gated sodium channels (NaVs) in the infraorbital nerve and trigeminal ganglion (TG) after infraorbital nerve entrapment (IoNE). Compared to Sham, IoNE rats had increased A- and C-fiber compound action potentials (CAPs) and Aδ component of A-CAP area from fibers innervating the vibrissal pad. After IoNE, A- and C-fiber CAPs were more sensitive to blockade by tetrodotoxin (TTX), and those fibers that were TTX-resistant were more sensitive to blockade by the NaV1.8 selective blocker, A-803467. Although NaV1.7 blocker, ICA-121431 alone, did not affect Aδ-fiber signal propagation, cumulative application with A-803467 and 4,9-anhydro-TTX significantly reduced the Aδ-fiber CAP in IoNE rats. In patch clamp recordings from small- and medium-sized TG neurons, IoNE resulted in reduced action potential (AP) depolarizing current threshold, hyperpolarized AP voltage threshold, increased AP duration, and a more depolarized membrane potential. While the transcripts of most NaVs were reduced in the ipsilateral TG after IoNE, NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein, were significantly increased in the nerve. Altogether, our data suggest that axonal redistribution of NaV1.8, and to a lesser extent NaV1.3, and NaV1.7 contributes to enhanced nociceptive signal propagation in peripheral nerve after IoNE.
Collapse
|
31
|
Walker SM. Developmental Mechanisms of CPSP: Clinical Observations and Translational Laboratory Evaluations. Can J Pain 2021; 6:49-60. [PMID: 35910395 PMCID: PMC9331197 DOI: 10.1080/24740527.2021.1999796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Understanding mechanisms that underly the transition from acute to chronic pain and identifying potential targets for preventing or minimizing this progression have specific relevance for chronic postsurgical pain (CPSP). Though it is clear that multiple psychosocial, family, and environmental factors may influence CPSP, this review will focus on parallels between clinical observations and translational laboratory studies investigating the acute and long-term effects of surgical injury on nociceptive pathways. This includes data related to alterations in sensitivity at different points along nociceptive pathways from the periphery to the brain; age- and sex-dependent mechanisms underlying the transition from acute to persistent pain; potential targets for preventive interventions; and the impact of prior surgical injury. Ongoing preclinical studies evaluating age- and sex-dependent mechanisms will also inform comparative efficacy and preclinical safety assessments of potential preventive pharmacological interventions aimed at reducing the risk of CPSP. In future clinical studies, more detailed and longitudinal peri-operative phenotyping with patient- and parent-reported chronic pain core outcomes, alongside more specialized evaluations of somatosensory function, modulation, and circuitry, may enhance understanding of individual variability in postsurgical pain trajectories and improve recognition and management of CPSP.
Collapse
Affiliation(s)
- Suellen M. Walker
- Clinical Neurosciences (Pain Research), Developmental Neurosciences, UCL GOS Institute of Child Health, London, UK; Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Abstract
Injury-free pain conditions, defined as functional pain syndromes, are more prevalent and more disabling in women. Mechanisms of sexual dimorphism in functional pain are now emerging from preclinical studies, suggesting an opportunity to advance the development of sex-specific therapies that may improve treatment of pain in women.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
33
|
Gerum M, Simonin F. Behavioral characterization, potential clinical relevance and mechanisms of latent pain sensitization. Pharmacol Ther 2021; 233:108032. [PMID: 34763010 DOI: 10.1016/j.pharmthera.2021.108032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.
Collapse
Affiliation(s)
- Manon Gerum
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
34
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
35
|
Fang J, Wang S, Zhou J, Shao X, Sun H, Liang Y, He X, Jiang Y, Liu B, Jin X, Fang J, Du J. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front Neurosci 2021; 15:685715. [PMID: 34354561 PMCID: PMC8329384 DOI: 10.3389/fnins.2021.685715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Zhou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
36
|
Wang S, Du J, Xi D, Shao F, Qiu M, Shao X, Liang Y, Liu B, Jin X, Fang J, Fang J. Role of GABAAR in the Transition From Acute to Chronic Pain and the Analgesic Effect of Electroacupuncture on Hyperalgesic Priming Model Rats. Front Neurosci 2021; 15:691455. [PMID: 34220444 PMCID: PMC8248374 DOI: 10.3389/fnins.2021.691455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a costly health problem that impairs health-related quality of life when not effectively treated. Regulating the transition from acute to chronic pain is a new therapeutic strategy for chronic pain that presents a major clinical challenge. The underlying mechanisms of pain transition are not entirely understood, and strategies for preventing this transition are lacking. Here, a hyperalgesic priming model was used to study the potential mechanism by which γ-aminobutyric acid receptor type A (GABAAR) in the dorsal root ganglion (DRG) contributes to pain transition. Furthermore, electroacupuncture (EA), a modern method of acupuncture, was administered to regulate pain transition, and the mechanism underlying EA’s regulatory effect was investigated. Hyperalgesic priming was induced by intraplanar injection of carrageenan (Car)/prostaglandin E2 (PGE2). The decrease in mechanical withdrawal threshold (MWT) induced by PGE2 returned to baseline 4 h after injection in NS + PGE2 group, and still persisted 24 h after injection in Car + PGE2 group. Lower expression of GABAAR in the lumbar DRG was observed in the model rats. Furthermore, activating or blocking GABAAR could reversed the long-lasting hyperalgesia induced by Car/PGE2 injection or produced a persistent hyperalgesia. In addition, GABAAR may be involved in Protein Kinase C epsilon (PKCε) activation in the DRG, a mark molecular of pain transition. EA considerably increased the mechanical pain thresholds of hyperalgesic priming model mammals in both the acute and chronic phases. Furthermore, EA upregulated the expression of GABAAR and inhibited the activation of PKCε in the DRG. In addition, peripheral administration of picrotoxin blocked the analgesic effect of EA on the model rats and abolished the regulatory effect of EA on PKCε activation. These findings suggested that GABAAR plays a key role in both the transition from acute to chronic pain and the analgesic effect of EA on hyperalgesic priming.
Collapse
Affiliation(s)
- Sisi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danning Xi
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangbing Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Qiu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomin Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Abstract
After participating in this activity, learners should be better able to:• Identify the effects of dysregulated opioid signalling in depression• Evaluate the use of opioid compounds and ketamine in patients with depression ABSTRACT: Major depressive disorder (MDD) remains one of the leading causes of disability and functional impairment worldwide. Current antidepressant therapeutics require weeks to months of treatment prior to the onset of clinical efficacy on depressed mood but remain ineffective in treating suicidal ideation and cognitive impairment. Moreover, 30%-40% of individuals fail to respond to currently available antidepressant medications. MDD is a heterogeneous disorder with an unknown etiology; novel strategies must be developed to treat MDD more effectively. Emerging evidence suggests that targeting one or more of the four opioid receptors-mu (MOR), kappa (KOR), delta (DOR), and the nociceptin/orphanin FQ receptor (NOP)-may yield effective therapeutics for stress-related psychiatric disorders. Furthermore, the effects of the rapidly acting antidepressant ketamine may involve opioid receptors. This review highlights dysregulated opioid signaling in depression, evaluates clinical trials with opioid compounds, and considers the role of opioid mechanisms in rapidly acting antidepressants.
Collapse
|
38
|
Mwirigi J, Kume M, Hassler SN, Ahmad A, Ray PR, Jiang C, Chamessian A, Mseeh N, Ludwig BP, Rivera BD, Nieman MT, Van de Ven T, Ji RR, Dussor G, Boitano S, Vagner J, Price TJ. A Role for Protease Activated Receptor Type 3 (PAR3) in Nociception Demonstrated Through Development of a Novel Peptide Agonist. THE JOURNAL OF PAIN 2021; 22:692-706. [PMID: 33429107 PMCID: PMC8197731 DOI: 10.1016/j.jpain.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The protease activated receptor (PAR) family is a group of G-protein coupled receptors (GPCRs) activated by proteolytic cleavage of the extracellular domain. PARs are expressed in a variety of cell types with crucial roles in homeostasis, immune responses, inflammation, and pain. PAR3 is the least researched of the four PARs, with little known about its expression and function. We sought to better understand its potential function in the peripheral sensory nervous system. Mouse single-cell RNA sequencing data demonstrates that PAR3 is widely expressed in dorsal root ganglion (DRG) neurons. Co-expression of PAR3 mRNA with other PARs was identified in various DRG neuron subpopulations, consistent with its proposed role as a coreceptor of other PARs. We developed a lipid tethered PAR3 agonist, C660, that selectively activates PAR3 by eliciting a Ca2+ response in DRG and trigeminal neurons. In vivo, C660 induces mechanical hypersensitivity and facial grimacing in WT but not PAR3-/- mice. We characterized other nociceptive phenotypes in PAR3-/- mice and found a loss of hyperalgesic priming in response to IL-6, carrageenan, and a PAR2 agonist, suggesting that PAR3 contributes to long-lasting nociceptor plasticity in some contexts. To examine the potential role of PAR3 in regulating the activity of other PARs in sensory neurons, we administered PAR1, PAR2, and PAR4 agonists and assessed mechanical and affective pain behaviors in WT and PAR3-/- mice. We observed that the nociceptive effects of PAR1 agonists were potentiated in the absence of PAR3. Our findings suggest a complex role of PAR3 in the physiology and plasticity of nociceptors. PERSPECTIVE: We evaluated the role of PAR3, a G-protein coupled receptor, in nociception by developing a selective peptide agonist. Our findings suggest that PAR3 contributes to nociception in various contexts and plays a role in modulating the activity of other PARs.
Collapse
Affiliation(s)
- Juliet Mwirigi
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Moeno Kume
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Shayne N Hassler
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Ayesha Ahmad
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Changyu Jiang
- Duke University School of Medicine, Department of Anesthesiology, Pharmacology, and Cancer Biology, Durham, North Carolina
| | - Alexander Chamessian
- Duke University School of Medicine, Department of Anesthesiology, Pharmacology, and Cancer Biology, Durham, North Carolina
| | - Nakleh Mseeh
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Breya P Ludwig
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Benjamin D Rivera
- Department of Physiology, University of Arizona, Asthma and Airway Disease Research Center, Tucson, Arizona
| | - Marvin T Nieman
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio
| | - Thomas Van de Ven
- Duke University School of Medicine, Department of Anesthesiology, Pharmacology, and Cancer Biology, Durham, North Carolina
| | - Ru-Rong Ji
- Duke University School of Medicine, Department of Anesthesiology, Pharmacology, and Cancer Biology, Durham, North Carolina
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas
| | - Scott Boitano
- Department of Physiology, University of Arizona, Asthma and Airway Disease Research Center, Tucson, Arizona
| | - Josef Vagner
- University of Arizona, Bio5 Research Institute, Tucson, Arizona
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, Richardson, Texas.
| |
Collapse
|
39
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
40
|
Agalave NM, Mody PH, Szabo-Pardi TA, Jeong HS, Burton MD. Neuroimmune Consequences of eIF4E Phosphorylation on Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 12:642420. [PMID: 33912169 PMCID: PMC8071873 DOI: 10.3389/fimmu.2021.642420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect that occurs in up to 63% of patients and has no known effective treatment. A majority of studies do not effectively assess sex differences in the onset and persistence of CIPN. Here we investigated the onset of CIPN, a point of therapeutic intervention where we may limit, or even prevent the development of CIPN. We hypothesized that cap-dependent translation mechanisms are important in early CIPN development and the bi-directional crosstalk between immune cells and nociceptors plays a complementary role to CIPN establishment and sex differences observed. In this study, we used wild type and eIF4E-mutant mice of both sexes to investigate the role of cap-dependent translation and the contribution of immune cells and nociceptors in the periphery and glia in the spinal cord during paclitaxel-induced peripheral neuropathy. We found that systemically administered paclitaxel induces pain-like behaviors in both sexes, increases helper T-lymphocytes, downregulates cytotoxic T-lymphocytes, and increases mitochondrial dysfunction in dorsal root ganglia neurons; all of which is eIF4E-dependent in both sexes. We identified a robust paclitaxel-induced, eIF4E-dependent increase in spinal astrocyte immunoreactivity in males, but not females. Taken together, our data reveals that cap-dependent translation may be a key pathway that presents relevant therapeutic targets during the early phase of CIPN. By targeting the eIF4E complex, we may reduce or reverse the negative effects associated with chemotherapeutic treatments.
Collapse
Affiliation(s)
- Nilesh M Agalave
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Han S Jeong
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
41
|
Inyang KE, George SR, Laumet G. The µ-δ opioid heteromer masks latent pain sensitization in neuropathic and inflammatory pain in male and female mice. Brain Res 2021; 1756:147298. [PMID: 33516809 DOI: 10.1016/j.brainres.2021.147298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023]
Abstract
The episodic nature of chronic pain can be studied in the rodent model of latent pain sensitization. After remission, central sensitization is opposed by activation of opioid receptors. At the behavioral level, latent pain sensitization is unmasked when pain hypersensitivity is reinstated by opioid receptor (OR) antagonism. Previous studies have focused on inflammatory pain and male rodents. Whether latent pain sensitization occurs in models of chemotherapy-induced neuropathic pain in female and male mice is unknown. The first aim of this study was to investigate whether μ- and δ-OR suppress latent pain sensitization in our model of chemotherapy-induced neuropathic pain in both sexes. Mounting evidence suggests that μ-and δ-ORs form a heteromer and that the heteromer modulates pain sensitivity. Potential implications of the μ-δ OR heteromer in latent pain sensitization have not been fully explored due to a lack of tools to effectively modulate the heteromer. To specifically target the μ-δ OR heteromer, we used a specific interfering peptide blocking the heteromerization. The second aim of this study was to investigate whether disruption of the μ-δOR heteromer, after remission, reinstates pain hypersensitivity. After remission from cisplatin-induced neuropathic pain, antagonism of µ-OR and δOR reinstates pain hypersensitivity in both sexes. After remission from cisplatin-induced neuropathic pain and postoperative pain, disruption of the μ-δOR heteromer reinstates pain hypersensitivity in both sexes. Taken together our findings suggest that the μ-δOR heteromer plays a crucial role in remission in various pain models and may represent a novel therapeutic target to prevent the relapse to pain and the transition to chronic pain.
Collapse
Affiliation(s)
| | - Susan R George
- Department of Medicine and Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
42
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
43
|
Baptista-de-Souza D, Tavares-Ferreira D, Megat S, Sankaranarayanan I, Shiers S, Flores CM, Ghosh S, Luiz Nunes-de-Souza R, Canto-de-Souza A, Price TJ. Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100049. [PMID: 32548337 PMCID: PMC7284072 DOI: 10.1016/j.ynpai.2020.100049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 04/15/2023]
Abstract
Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Diana Tavares-Ferreira
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Ishwarya Sankaranarayanan
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Christopher M. Flores
- Janssen Research & Development, Neuroscience Therapeutic Area, San Diego, CA, United States
| | - Sourav Ghosh
- Yale University School of Medicine, Department of Neurology, United States
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista – UNESP, Araraquara, SP 14800-903, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Graduate Program in Psychology UFSCar, São Carlos, SP 13565-905, Brazil
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
- Corresponding author at: University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 W Campbell Rd., BSB 14.102, Richardson, TX 75080, United States.
| |
Collapse
|
44
|
Hassler SN, Kume M, Mwirigi JM, Ahmad A, Shiers S, Wangzhou A, Ray PR, Belugin SN, Naik DK, Burton MD, Vagner J, Boitano S, Akopian AN, Dussor G, Price TJ. The cellular basis of protease-activated receptor 2-evoked mechanical and affective pain. JCI Insight 2020; 5:137393. [PMID: 32352932 PMCID: PMC7308051 DOI: 10.1172/jci.insight.137393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Protease-activated receptor 2 (PAR2) has long been implicated in inflammatory and visceral pain, but the cellular basis of PAR2-evoked pain has not been delineated. Although PAR2-evoked pain has been attributed to sensory neuron expression, RNA-sequencing experiments show ambiguous F2rl1 mRNA detection. Moreover, many pharmacological tools for PAR2 are nonspecific, acting also on the Mas-related GPCR family (Mrg) that are highly enriched in sensory neurons. We sought to clarify the cellular basis of PAR2-evoked pain. We developed a PAR2-conditional knockout mouse and specifically deleted PAR2 in all sensory neurons using the PirtCre mouse line. Our behavioral findings show that PAR2 agonist-evoked mechanical hyperalgesia and facial grimacing, but not thermal hyperalgesia, are dependent on PAR2 expression in sensory neurons that project to the hind paw in male and female mice. F2rl1 mRNA is expressed in a discrete population (~4%) of mostly small-diameter sensory neurons that coexpress the Nppb and IL31ra genes. This cell population has been implicated in itch, but our work shows that PAR2 activation in these cells causes clear pain-related behaviors from the skin. Our findings show that a discrete population of DRG sensory neurons mediate PAR2-evoked pain.
Collapse
Affiliation(s)
- Shayne N. Hassler
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Ayesha Ahmad
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Stephanie Shiers
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Serge N. Belugin
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dhananjay K. Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Michael D. Burton
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | | | - Scott Boitano
- BIO5 Research Institute and
- Department of Physiology, Asthma & Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Armen N. Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
45
|
Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther 2020; 210:107519. [PMID: 32165137 DOI: 10.1016/j.pharmthera.2020.107519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are subject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the beginning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number of deaths by opioid overdose, is a tragic illustration of this. It is therefore legitimate to develop research into molecules likely to maintain or increase opioid efficacy while improving their tolerability. Several avenues are being explored including targeting of the mu opioid receptor (MOR) splice variants, developing biased agonists or targeting of other receptors such as heteromers with MOR. Ion channels acting as MOR effectors, are also targeted in order to offer compounds without MOR-dependent adverse effects. Another route is to develop opioid analgesics with peripheral action or limited central nervous system (CNS) access. Finally, endogenous opioids used as drugs or compounds that modify the metabolism of endogenous opioids (Dual ENKephalinase Inhibitors) are being developed. The aim of the present review is to present these various targets/strategies with reference to current indications for opioids, concerns about their widespread use, particularly in chronic non-cancer pains, and ways of limiting the risk of opioid abuse and misuse.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Nicolas Kerckhove
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Célian Bertin
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
46
|
Huang Z, Zhou X, Zhang J, Mai CL, Mai JZ, Liu C, Zhang H, Liu XG. Bulleyaconitine A Inhibits Itch and Itch Sensitization Induced by Histamine and Chloroquine. Neuroscience 2020; 429:68-77. [DOI: 10.1016/j.neuroscience.2019.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
|
47
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Does toe clipping for genotyping interfere with later-in-life nociception in mice? Pain Rep 2019; 4:e740. [PMID: 31583355 PMCID: PMC6749918 DOI: 10.1097/pr9.0000000000000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: Genetically modified mice are widely used in studies on human and animal physiology and pharmacology, including pain research. The experimental design usually includes comparisons of genetically modified mice with wild-type littermates, requiring biopsy material for genotyping and methods for unequivocal identification of individual mice. Ethical standards and, in some countries, legislation require that both needs are reached with a single procedure. Clipping of the most distal phalanx of up to two toes per paw (toe clipping) is the favored procedure in most research fields, but it may be problematic in sensory physiology and pain research. Objectives: To systematically investigate whether toe-clipping influences later-in-life nociceptive sensitivity or the susceptibility to neuropathic or inflammatory hyperalgesia. Methods: We tested in male mice whether the clipping of 2 toes of a hind paw influences nociceptive sensitivities to noxious heat or cold, or to mechanical stimulation under baseline conditions, after peripheral nerve injury (chronic constriction of the sciatic nerve) or during peripheral inflammation induced by subcutaneous zymosan A injection. We tested not only for the presence of significant differences but also specifically addressed bioequivalence using the 2 one-sided t test procedure. We chose a threshold of 25% variation of the control value for nonequivalence, which is usually taken as a threshold for biological relevance in pain tests. Results: Using this value, we found that for all conditions (non-neuropathic and non-inflamed, neuropathic and inflamed), nociceptive sensitivities significantly fell within the equivalence bounds of the non–toe-clipped control mice. Conclusions: These results suggest that toe clipping does not have long-term effects on nociceptive sensitivities and does not alter the susceptibility of male mice to neuropathic or inflammatory hyperalgesia.
Collapse
|
49
|
Navratilova E, Rau J, Oyarzo J, Tien J, Mackenzie K, Stratton J, Remeniuk B, Schwedt T, Anderson T, Dodick D, Porreca F. CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice. Cephalalgia 2019; 39:1762-1775. [DOI: 10.1177/0333102419877662] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. Methods Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. Results Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. Conclusions We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. Abbreviations CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Jill Rau
- Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | | - Bethany Remeniuk
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | - Trent Anderson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
- Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
50
|
Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the Disease of Pain. PAIN MEDICINE 2019; 19:1525-1549. [PMID: 29077871 DOI: 10.1093/pm/pnx108] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Persistent pain causes untold misery worldwide and is a leading cause of disability. Despite its astonishing prevalence, pain is undertreated, at least in part because existing therapeutics are ineffective or cause intolerable side effects. In this review, we cover new findings about the neurobiology of pain and argue that all but the most transient forms of pain needed to avoid tissue damage should be approached as a disease where a cure can be the goal of all treatment plans, even if attaining this goal is not yet always possible. Design We reviewed the literature to highlight recent advances in the area of the neurobiology of pain. Results We discuss barriers that are currently hindering the achievement of this goal, as well as the development of new therapeutic strategies. We also discuss innovations in the field that are creating new opportunities to treat and even reverse persistent pain, some of which are in late-phase clinical trials. Conclusion We conclude that the confluence of new basic science discoveries and development of new technologies are creating a path toward pain therapeutics that should offer significant hope of a cure for patients and practitioners alike. Classification of Evidence. Our review points to new areas of inquiry for the pain field to advance the goal of developing new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|