1
|
Stocco E, Emmi A, Sfriso MM, Tushevski A, De Caro R, Macchi V, Porzionato A. Carotid body plastic behavior: evidence for D 2-H 3 receptor-receptor interactions. Front Physiol 2024; 15:1422270. [PMID: 39072219 PMCID: PMC11272601 DOI: 10.3389/fphys.2024.1422270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Dopamine and histamine receptors D2R and H3R are G protein-coupled receptors (GPCRs) which can establish physical receptor-receptor interactions (RRIs), leading to homo/hetero-complexes in a dynamic equilibrium. Although D2R and H3R expression has been detected within the carotid body (CB), their possible heterodimerization has never been demonstrated. The aim of this work was to verify D2R and H3R colocalization in the CB, thus suggesting a possible interplay that, in turn, may be responsible of specific D2R-H3R antagonistic functional implications. The CBs of both Sprague-Dawley rats (n = 5) and human donors (n = 5) were dissected, and immunolocalization of D2R and H3R was performed; thereafter, in situ proximity ligation assay (PLA) was developed. According to experimental evidence (immunohistochemistry and double immunofluorescence), all the samples displayed positive D2R/H3R elements; hence, PLA assay followed by confocal microscopy analysis was positive for D2R-H3R RRIs. Additionally, D2R-H3R heterodimers were mainly detected in type I cells (βIII-tubulin-positive cells), but type II cells' involvement cannot be excluded. RRIs may play a role in functional modulation of CB cells; investigating RRIs in the CB may guide toward the comprehension of its plastic changes and fine regulatory role while also unveiling their possible clinical implications.
Collapse
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Maria Martina Sfriso
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Aleksandar Tushevski
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Seckler JM, Getsy PM, May WJ, Gaston B, Baby SM, Lewis THJ, Bates JN, Lewis SJ. Hypoxia releases S-nitrosocysteine from carotid body glomus cells-relevance to expression of the hypoxic ventilatory response. Front Pharmacol 2023; 14:1250154. [PMID: 37886129 PMCID: PMC10598756 DOI: 10.3389/fphar.2023.1250154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
We have provided indirect pharmacological evidence that hypoxia may trigger release of the S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), from primary carotid body glomus cells (PGCs) of rats that then activates chemosensory afferents of the carotid sinus nerve to elicit the hypoxic ventilatory response (HVR). The objective of this study was to provide direct evidence, using our capacitive S-nitrosothiol sensor, that L-CSNO is stored and released from PGCs extracted from male Sprague Dawley rat carotid bodies, and thus further pharmacological evidence for the role of S-nitrosothiols in mediating the HVR. Key findings of this study were that 1) lysates of PGCs contained an S-nitrosothiol with physico-chemical properties similar to L-CSNO rather than S-nitroso-L-glutathione (L-GSNO), 2) exposure of PGCs to a hypoxic challenge caused a significant increase in S-nitrosothiol concentrations in the perfusate to levels approaching 100 fM via mechanisms that required extracellular Ca2+, 3) the dose-dependent increases in minute ventilation elicited by arterial injections of L-CSNO and L-GSNO were likely due to activation of small diameter unmyelinated C-fiber carotid body chemoafferents, 4) L-CSNO, but not L-GSNO, responses were markedly reduced in rats receiving continuous infusion (10 μmol/kg/min, IV) of both S-methyl-L-cysteine (L-SMC) and S-ethyl-L-cysteine (L-SEC), 5) ventilatory responses to hypoxic gas challenge (10% O2, 90% N2) were also due to the activation of small diameter unmyelinated C-fiber carotid body chemoafferents, and 6) the HVR was markedly diminished in rats receiving L-SMC plus L-SEC. This data provides evidence that rat PGCs synthesize an S-nitrosothiol with similar properties to L-CSNO that is released in an extracellular Ca2+-dependent manner by hypoxia.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Tristan H. J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Lazarov NE, Atanasova DY. Neurochemical Anatomy of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:63-103. [PMID: 37946078 DOI: 10.1007/978-3-031-44757-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
4
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
5
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Stocco E, Sfriso MM, Borile G, Contran M, Barbon S, Romanato F, Macchi V, Guidolin D, De Caro R, Porzionato A. Experimental Evidence of A 2A-D 2 Receptor-Receptor Interactions in the Rat and Human Carotid Body. Front Physiol 2021; 12:645723. [PMID: 33935801 PMCID: PMC8082109 DOI: 10.3389/fphys.2021.645723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor–receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR–D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR–D2R heterodimers in type I and II cells of the CB; the presence of A2AR–D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Maria Martina Sfriso
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Silvia Barbon
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| |
Collapse
|
7
|
Leonard EM, Nurse CA. Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells. Int J Mol Sci 2020; 21:ijms21155434. [PMID: 32751703 PMCID: PMC7432366 DOI: 10.3390/ijms21155434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.
Collapse
Affiliation(s)
- Erin M. Leonard
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23178); Fax: +1-905-522-6066
| | | |
Collapse
|
8
|
|
9
|
Leonard EM, Salman S, Nurse CA. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front Physiol 2018; 9:225. [PMID: 29615922 PMCID: PMC5864924 DOI: 10.3389/fphys.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Shaima Salman
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Nurse CA, Leonard EM, Salman S. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception. Physiol Genomics 2018. [PMID: 29521602 DOI: 10.1152/physiolgenomics.00142.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Erin M Leonard
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Shaima Salman
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
11
|
Zhang M, Vollmer C, Nurse CA. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current I h in chemosensory neurons of the rat carotid body in co-culture. J Physiol 2017; 596:3101-3117. [PMID: 28801916 DOI: 10.1113/jp274743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 μm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 μm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 μm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
12
|
Alcayaga J, Oyarce MP, Del Rio R. Chronic phenytoin treatment reduces rat carotid body chemosensory responses to acute hypoxia. Brain Res 2016; 1649:38-43. [DOI: 10.1016/j.brainres.2016.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
13
|
French IT, Muthusamy KA. A Review of Sleep and Its Disorders in Patients with Parkinson's Disease in Relation to Various Brain Structures. Front Aging Neurosci 2016; 8:114. [PMID: 27242523 PMCID: PMC4876118 DOI: 10.3389/fnagi.2016.00114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
Sleep is an indispensable normal physiology of the human body fundamental for healthy functioning. It has been observed that Parkinson's disease (PD) not only exhibits motor symptoms, but also non-motor symptoms such as metabolic irregularities, altered olfaction, cardiovascular dysfunction, gastrointestinal complications and especially sleep disorders which is the focus of this review. A good understanding and knowledge of the different brain structures involved and how they function in the development of sleep disorders should be well comprehended in order to treat and alleviate these symptoms and enhance quality of life for PD patients. Therefore it is vital that the normal functioning of the body in relation to sleep is well understood before proceeding on to the pathophysiology of PD correlating to its symptoms. Suitable treatment can then be administered toward enhancing the quality of life of these patients, perhaps even discovering the cause for this disease.
Collapse
Affiliation(s)
- Isobel T French
- Department of Surgery, University Malaya Kuala Lumpur, Malaysia
| | | |
Collapse
|
14
|
Retamal MA, Reyes EP, Alcayaga J. Petrosal ganglion: a more complex role than originally imagined. Front Physiol 2014; 5:474. [PMID: 25538627 PMCID: PMC4255496 DOI: 10.3389/fphys.2014.00474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Temuco, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
15
|
Nunes AR, Holmes AP, Conde SV, Gauda EB, Monteiro EC. Revisiting cAMP signaling in the carotid body. Front Physiol 2014; 5:406. [PMID: 25389406 PMCID: PMC4211388 DOI: 10.3389/fphys.2014.00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.
Collapse
Affiliation(s)
- Ana R Nunes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Andrew P Holmes
- School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | - Sílvia V Conde
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Estelle B Gauda
- Neonatology Research Laboratories, Department of Pediatrics, Johns Hopkins Medical Institutions, Johns Hopkins University Baltimore, MD, USA
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
16
|
Gonzalez C, Conde SV, Gallego-Martín T, Olea E, Gonzalez-Obeso E, Ramirez M, Yubero S, Agapito MT, Gomez-Niñno A, Obeso A, Rigual R, Rocher A. Fernando de Castro and the discovery of the arterial chemoreceptors. Front Neuroanat 2014; 8:25. [PMID: 24860435 PMCID: PMC4026738 DOI: 10.3389/fnana.2014.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023] Open
Abstract
When de Castro entered the carotid body (CB) field, the organ was considered to be a small autonomic ganglion, a gland, a glomus or glomerulus, or a paraganglion. In his 1928 paper, de Castro concluded: “In sum, the Glomus caroticum is innervated by centripetal fibers, whose trophic centers are located in the sensory ganglia of the glossopharyngeal, and not by centrifugal [efferent] or secretomotor fibers as is the case for glands; these are precisely the facts which lead to suppose that the Glomus caroticum is a sensory organ.” A few pages down, de Castro wrote: “The Glomus represents an organ with multiple receptors furnished with specialized receptor cells like those of other sensory organs [taste buds?]…As a plausible hypothesis we propose that the Glomus caroticum represents a sensory organ, at present the only one in its kind, dedicated to capture certain qualitative variations in the composition of blood, a function that, possibly by a reflex mechanism would have an effect on the functional activity of other organs… Therefore, the sensory fiber would not be directly stimulated by blood, but via the intermediation of the epithelial cells of the organ, which, as their structure suggests, possess a secretory function which would participate in the stimulation of the centripetal fibers.” In our article we will recreate the experiments that allowed Fernando de Castro to reach this first conclusion. Also, we will scrutinize the natural endowments and the scientific knowledge that drove de Castro to make the triple hypotheses: the CB as chemoreceptor (variations in blood composition), as a secondary sensory receptor which functioning involves a chemical synapse, and as a center, origin of systemic reflexes. After a brief account of the systemic reflex effects resulting from the CB stimulation, we will complete our article with a general view of the cellular-molecular mechanisms currently thought to be involved in the functioning of this arterial chemoreceptor.
Collapse
Affiliation(s)
- Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Silvia V Conde
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Teresa Gallego-Martín
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Elvira Gonzalez-Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Maria Ramirez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Sara Yubero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Maria T Agapito
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Angela Gomez-Niñno
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Ricardo Rigual
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| |
Collapse
|
17
|
Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
18
|
Conde SV, Ribeiro MJ, Obeso A, Rigual R, Monteiro EC, Gonzalez C. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output. Mol Pharmacol 2012; 82:1056-65. [PMID: 22930709 DOI: 10.1124/mol.112.081216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sustained hypoxia produces a carotid body (CB) sensitization, known as acclimatization, which leads to an increase in carotid sinus nerve (CSN) activity and ensuing hyperventilation greater than expected from the prevailing partial pressure of oxygen. Whether sustained hypoxia is physiological (high altitude) or pathological (lung disease), acclimatization has a homeostatic implication because it tends to minimize hypoxia. Caffeine, the most commonly ingested psychoactive drug and a nonselective adenosine receptor antagonist, alters CB function and ventilatory responses when administered acutely. Our aim was to investigate the effect of chronic caffeine intake on CB function and acclimatization using four groups of rats: normoxic, caffeine-treated normoxic, chronically hypoxic (12% O₂, 15 days), and caffeine-treated chronically hypoxic rats. Caffeine was administered in drinking water (1 mg/ml). Caffeine ameliorated ventilatory responses to acute hypoxia in normoxic animals without altering the output of the CB (CSN neural activity). Caffeine-treated chronically hypoxic rats exhibited a decrease in the CSN response to acute hypoxia tests but maintained ventilation compared with chronically hypoxic animals. The findings related to CSN neural activity combined with the ventilatory responses indicate that caffeine alters central integration of the CB input to increase the gain of the chemoreflex and that caffeine abolishes CB acclimatization. The putative mechanisms involved in sensitization and its loss were investigated: expression of adenosine receptors in CB (A(2B)) was down-regulated and that in petrosal ganglion (A(2A)) was up-regulated in caffeine-treated chronically hypoxic rats; both adenosine and dopamine release from CB chemoreceptor cells was increased in chronic hypoxia and in caffeine-treated chronic hypoxia groups.
Collapse
Affiliation(s)
- Silvia V Conde
- Department of Pharmacology, Faculty of Medical Sciences, New University of Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
19
|
Piskuric NA, Nurse CA. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 2012; 591:415-22. [PMID: 23165772 DOI: 10.1113/jphysiol.2012.234377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.
Collapse
Affiliation(s)
- Nikol A Piskuric
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
20
|
Conde SV, Monteiro EC, Rigual R, Obeso A, Gonzalez C. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J Appl Physiol (1985) 2012; 112:2002-10. [PMID: 22500005 DOI: 10.1152/japplphysiol.01617.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Excitatory effects of adenosine and ATP on carotid body (CB) chemoreception have been previously described. Our hypothesis is that both ATP and adenosine are the key neurotransmitters responsible for the hypoxic chemotransmission in the CB sensory synapse, their relative contribution depending on the intensity of hypoxic challenge. To test this hypothesis we measured carotid sinus nerve (CSN) activity in response to moderate and intense hypoxic stimuli (7 and 0% O(2)) in the absence and in the presence of adenosine and ATP receptor antagonists. Additionally, we quantified the release of adenosine and ATP in normoxia (21% O(2)) and in response to hypoxias of different intensities (10, 5, and 2% O(2)) to study the release pathways. We found that ZM241385, an A(2) antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 30.8 and 72.5%, respectively. Suramin, a P(2)X antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 64.3 and 17.1%, respectively. Simultaneous application of both antagonists strongly inhibited CSN discharges elicited by both hypoxic intensities. ATP release by CB increased in parallel to hypoxia intensity while adenosine release increased preferably in response to mild hypoxia. We have also found that the lower the O(2) levels are, the higher is the percentage of adenosine produced from extracellular catabolism of ATP. Our results demonstrate that ATP and adenosine are key neurotransmitters involved in hypoxic CB chemotransduction, with a more relevant contribution of adenosine during mild hypoxia, while vesicular ATP release constitutes the preferential origin of extracellular adenosine in high-intensity hypoxia.
Collapse
Affiliation(s)
- S V Conde
- CEDOC, Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
21
|
Respiratory problems in neurologic movement disorders. Parkinsonism Relat Disord 2010; 16:628-38. [DOI: 10.1016/j.parkreldis.2010.07.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 01/31/2023]
|
22
|
Gammella E, Cairo G, Tacchini L. Adenosine A(2)A receptor but not HIF-1 mediates Tyrosine hydroxylase induction in hypoxic PC12 cells. J Neurosci Res 2010; 88:2007-16. [PMID: 20143408 DOI: 10.1002/jnr.22366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of catecholamines released by oxygen-sensitive cells in response to hypoxic conditions. Adenosine is released in response to hypoxia in the central nervous system and CGS21680, an adenosine A(2)A receptor agonist, induces TH transcription. As we have previously demonstrated the A(2)A receptor-mediated induction of HIF-1 in macrophages and hepatocytes, we investigated the involvement of HIF-1 in the adenosine-mediated activation of TH expression. Exposure to adenosine or CGS21680 increased TH mRNA and protein levels in PC12 cells. Transcription of a reporter gene under the control of the wild type rat TH promoter was induced 3.5-fold in CGS21680-treated cells, but neither the mutation of the hypoxia responsive element in the TH promoter nor the co-transfection of a dominant negative of the HIF-1 beta subunit prevented the increase in transcription; furthermore, CGS21680 increased CREB binding activity but did not induce HIF-1 DNA binding activity or protein levels. To investigate whether HIF-1 was involved in the hypoxia-mediated induction of TH, PC12 cells were exposed to hypoxia in the presence of the A(2)A receptor antagonist ZM241385, which prevented hypoxia-dependent TH induction despite HIF-1 activation; in line with this finding, the inhibition of HIF-1 did not abolish TH induction in hypoxic PC12 cells. These results indicate that, under hypoxic conditions, TH (a key factor in systemic adaptation to reduced oxygen availability) is not regulated by HIF-1, the primary modulator of the response to hypoxia, but by the adenosine A(2)A receptor-mediated signalling pathway.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Human Morphology and Biomedical Sciences, Città Studi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
23
|
Gonzalez C, Agapito MT, Rocher A, Gomez-Niño A, Rigual R, Castañeda J, Conde SV, Obeso A. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respir Physiol Neurobiol 2010; 174:317-30. [PMID: 20833275 DOI: 10.1016/j.resp.2010.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
Oxygen-sensing and transduction in purposeful responses in cells and organisms is of great physiological and medical interest. All animals, including humans, encounter in their lifespan many situations in which oxygen availability might be insufficient, whether acutely or chronically, physiologically or pathologically. Therefore to trace at the molecular level the sequence of events or steps connecting the oxygen deficit with the cell responses is of interest in itself as an achievement of science. In addition, it is also of great medical interest as such knowledge might facilitate the therapeutical approach to patients and to design strategies to minimize hypoxic damage. In our article we define the concepts of sensors and transducers, the steps of the hypoxic transduction cascade in the carotid body chemoreceptor cells and also discuss current models of oxygen- sensing (bioenergetic, biosynthetic and conformational) with their supportive and unsupportive data from updated literature. We envision oxygen-sensing in carotid body chemoreceptor cells as a process initiated at the level of plasma membrane and performed by a hemoprotein, which might be NOX4 or a hemoprotein not yet chemically identified. Upon oxygen-desaturation, the sensor would experience conformational changes allosterically transmitted to oxygen regulated K+ channels, the initial effectors in the transduction cascade. A decrease in their opening probability would produce cell depolarization, activation of voltage dependent calcium channels and release of neurotransmitters. Neurotransmitters would activate the nerve endings of the carotid body sensory nerve to convey the information of the hypoxic situation to the central nervous system that would command ventilation to fight hypoxia.
Collapse
Affiliation(s)
- C Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular y CIBER de Enfermedades Respiratorias, Universidad de Valladolid, Consejo Superior de Investigaciones Científicas e Instituto Carlos III, Facultad de Medicina, 47005 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Oliva WM, Granjeiro ÉM, Bongamba LG, Mendes RA, Machado BH. Dopamine microinjected into brainstem of awake rats affects baseline arterial pressure but not chemoreflex responses. Auton Neurosci 2010; 155:73-81. [DOI: 10.1016/j.autneu.2010.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/28/2010] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|