1
|
Uemura KI, Togo A, Hiroshige T, Ohta K, Ueda K, Nishihara K, Nakiri M, Hirashima S, Igawa T, Nakamura KI. Three-dimensional ultrastructural and anatomical analysis of prostatic neuroendocrine cells in mice. Prostate 2024; 84:866-876. [PMID: 38590054 DOI: 10.1002/pros.24705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND A few studies have examined the ultrastructure of prostatic neuroendocrine cells (NECs), and no study has focused on their ultrastructure in three dimensions. In this study, three-dimensional ultrastructural analysis of mouse prostatic NECs was performed to clarify their anatomical characteristics. METHODS Three 13-week-old male C57BL/6 mice were deeply anesthetized, perfused with physiological saline and 2% paraformaldehyde, and then placed in 2.5% glutaraldehyde in 0.1 M cacodylate (pH 7.3) buffer for electron microscopy. After perfusion, the lower urinary tract, which included the bladder, prostate, coagulation gland, seminal vesicle, upper vas deferens, and urethra, was removed, and the specimen was cut into small cubes and subjected to postfixation and en bloc staining. Three-dimensional ultrastructural analysis was performed on NECs, the surrounding cells, tissues, and nerves using focused ion beam/scanning electron microscope tomography. RESULTS Twenty-seven serial sections were used in the present study, and 32 mouse prostatic NECs were analyzed. Morphologically, the NECs could be classified into three types: flask, flat, and closed. Closed-shaped NECs were always adjacent to flask-shaped cells. The flask-shaped and flat NECs were in direct contact with the ductal lumen and always had microvilli at their contact points. Many of the NECs had accompanying nerves, some of which terminated on the surface in contact with the NEC. CONCLUSIONS Three-dimensional ultrastructural analysis of mouse prostatic NECs was performed. These cells can be classified into three types based on shape. Novel findings include the presence of microvilli at their points of contact with the ductal lumen and the presence of accompanying nerves.
Collapse
Affiliation(s)
- Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Kiyoaki Nishihara
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Makoto Nakiri
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Shingo Hirashima
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
2
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
3
|
Xu F, Zhao L, Zhuang J, Gao X. Peripheral Neuroplasticity of Respiratory Chemoreflexes, Induced by Prenatal Nicotinic Exposure: Implication for SIDS. Respir Physiol Neurobiol 2023; 313:104053. [PMID: 37019251 DOI: 10.1016/j.resp.2023.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1β and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.
Collapse
|
4
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2023. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
6
|
Noguchi M, Furukawa KT, Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis Model Mech 2020; 13:13/12/dmm046920. [PMID: 33355253 PMCID: PMC7774893 DOI: 10.1242/dmm.046920] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian lungs have the ability to recognize external environments by sensing different compounds in inhaled air. Pulmonary neuroendocrine cells (PNECs) are rare, multi-functional epithelial cells currently garnering attention as intrapulmonary sensors; PNECs can detect hypoxic conditions through chemoreception. Because PNEC overactivation has been reported in patients suffering from respiratory diseases – such as asthma, chronic obstructive pulmonary disease, bronchopulmonary dysplasia and other congenital diseases – an improved understanding of the fundamental characteristics of PNECs is becoming crucial in pulmonary biology and pathology. During the past decade, murine genetics and disease models revealed the involvement of PNECs in lung ventilation dynamics, mechanosensing and the type 2 immune responses. Single-cell RNA sequencing further unveiled heterogeneous gene expression profiles in the PNEC population and revealed that a small number of PNECs undergo reprogramming during regeneration. Aberrant large clusters of PNECs have been observed in neuroendocrine tumors, including small-cell lung cancer (SCLC). Modern innovation of imaging analyses has enabled the discovery of dynamic migratory behaviors of PNECs during airway development, perhaps relating to SCLC malignancy. This Review summarizes the findings from research on PNECs, along with novel knowledge about their function. In addition, it thoroughly addresses the relevant questions concerning the molecular pathology of pulmonary diseases and related therapeutic approaches. Summary: This Review highlights the physiological relevance of pulmonary neuroendocrine cells, rare airway epithelial cells that form intrapulmonary sensory organs, abnormalities of which are associated with several pulmonary disorders, such as asthma and lung cancer.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Zhao L, Gao X, Zhuang J, Wallen M, Leng S, Xu F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT 3 receptors. FASEB J 2019; 33:10731-10741. [PMID: 31251077 PMCID: PMC6766661 DOI: 10.1096/fj.201900279rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 01/30/2023]
Abstract
Prenatal nicotinic exposure (PNE) reportedly sensitizes bronchopulmonary C-fibers (PCFs) and prolongs PCF-mediated apnea in rat pups, contributing to the pathogenesis of sudden infant death syndrome. Serotonin, or 5-hydroxytryptamine (5-HT), induces apnea via acting on 5-HT receptor 3 (5-HT3R) in PCFs, and among the 5-HT3R subunits, 5-HT3B is responsible for shortening the decay time of 5-HT3R-mediated currents. We examined whether PNE would promote pulmonary 5-HT secretion and prolong the apnea mediated by 5-HT3Rs in PCFs via affecting the 5-HT3B subunit. To this end, the following variables were compared between the control and PNE rat pups: 1) the 5-HT content in bronchoalveolar lavage fluid, 2) the apneic response to the right atrial bolus injection of phenylbiguanide (a 5-HT3R agonist) before and after PCF inactivation, 3) 5-HT3R currents and the stimulus threshold of the action currents of vagal pulmonary C-neurons, and 4) the immunoreactivity (IR) and mRNA expression of 5-HT3A and 5-HT3B in these neurons. Our results showed that PNE up-regulated the pulmonary 5-HT concentration and strengthened the PCF 5-HT3R-mediated apnea. PNE significantly facilitated neural excitability by shortening the decay time of 5-HT3R currents, lowering the stimulus threshold, and increasing 5-HT3B IR. In summary, PNE prolongs the apnea mediated by 5-HT3Rs in PCFs, likely by increasing 5-HT3B subunits to enhance the excitability of 5-HT3 channels.-Zhao, L., Gao, X., Zhuang, J., Wallen, M., Leng, S., Xu, F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT3 receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apnea/etiology
- Apnea/genetics
- Apnea/physiopathology
- Biguanides/administration & dosage
- Bronchoalveolar Lavage Fluid/chemistry
- Disease Models, Animal
- Female
- Humans
- Infant, Newborn
- Lung/drug effects
- Lung/innervation
- Lung/physiopathology
- Male
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Nicotine/administration & dosage
- Nicotine/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects/etiology
- Prenatal Exposure Delayed Effects/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/physiology
- Serotonin/metabolism
- Serotonin 5-HT3 Receptor Agonists/administration & dosage
- Sudden Infant Death/etiology
Collapse
Affiliation(s)
- Lei Zhao
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Xiuping Gao
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jianguo Zhuang
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Morgan Wallen
- Department of Arts and Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shuguang Leng
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Fadi Xu
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium. Int Immunopharmacol 2015; 29:93-8. [PMID: 26025503 DOI: 10.1016/j.intimp.2015.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
Abstract
The ly-6 proteins are a large family of proteins that resemble the snake three finger alpha toxins such as α-bungarotoxin and are defined by their multiple cysteine residues. Multiple members of the ly-6 protein family can modulate nicotinic signaling including lynx1, lynx2, slurp-1, slurp-2 and prostate stem cell antigen (PSCA). Consistent with the expression of multiple nicotinic receptors in bronchial epithelium, multiple members of the nicotinic-modulatory ly-6 proteins are expressed in lung including lynx1 and lynx2. We studied the role of lynx1 as an exemplar of the role of ly-6 proteins in lung. Our data demonstrates that lynx1 acts as a negative modulator of nicotinic signaling in normal and neoplastic lung. In normal lung lynx1 serves to limit the ability of chronic nicotine exposure to increase levels of nicotinic receptors and also serves to limit the ability of nicotine to upregulate levels of GABAA receptors in lung. In turn this allows lynx1 to limit the ability of nicotine to upregulate levels of mucin which is mediated by GABAergic signaling. This suggests that lynx1-mimetics may have potential for treatment of asthma and COPD. In that most lung cancer cells also express nicotinic receptor and lynx1 we examined the role of lynx-1 in lung cancer. Lynx1 levels are decreased in lung cancers compared to adjacent normal lung. Knockdown of lynx1 by siRNAs increased growth of lung cancer cells while expression of lynx1 in lung cancer cell decreased cell proliferation. This suggests that lynx1 is an endogenous regulator of lung cancer growth. Given that multiple small molecule negative and positive allosteric modulators of nicotinic receptors have already been developed, this suggests that lynx1 is a highly druggable target both for development of drugs that may limit lung cancer growth as well as for drugs that may be effective for asthma or COPD treatment.
Collapse
|
9
|
Schnorbusch K, Lembrechts R, Pintelon I, Timmermans JP, Brouns I, Adriaensen D. GABAergic signaling in the pulmonary neuroepithelial body microenvironment: functional imaging in GAD67-GFP mice. Histochem Cell Biol 2013; 140:549-66. [PMID: 23568330 DOI: 10.1007/s00418-013-1093-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.
Collapse
Affiliation(s)
- Kathy Schnorbusch
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|