1
|
Chanet B, Schnell NK, Guintard C, Chen WJ. Anatomy of the endocrine pancreas in actinopterygian fishes and its phylogenetic implications. Sci Rep 2023; 13:22501. [PMID: 38110445 PMCID: PMC10728084 DOI: 10.1038/s41598-023-49404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
The anatomy and organisation of the endocrine pancreas in ray-finned fishes vary widely. The two main morphoanatomical character states are diffuse versus compact pancreatic tissue. The latter are called Brockmann Bodies (BBs), or principal islets. The present study is the first comprehensive survey on the anatomy of the endocrine pancreas (diffuse versus compact) across 322 actinopterygian species in 39 orders and 135 families based on literature, specimen dissections, and Magnetic Resonance Imaging (MRI). The data obtained show that large endocrine pancreatic islets (BB) have appeared several times in teleost evolution: in some ostariophysian clades and within the Salmoniformes and Neoteleostei. Acanthomorpha (spiny-rayed fishes) is the largest clade of the Neoteleostei. Within this clade, an absence of BBs is only observed in flying fishes (Exocoetidae), parrotfishes (Scarinae), and some of the scarine relatives, the Labridae. The presence of BBs in examined jellynose fish species from the Ateleopodiformes indicates support for its sister-group relationship to the Ctenosquamata (Myctophiformes + Acanthomorpha). More investigations are still needed to corroborate the presence or absence of BBs as a putative synapomorphy for a clade comprising Ateleopodiformes and Ctenosquamata.
Collapse
Affiliation(s)
- Bruno Chanet
- Département Origines Et Évolution, Institut de Systématique, Evolution, Biodiversité (ISYEB) (UMR 7205 MNHN-CNRS-Sorbonne Université-EPHE), Muséum National d'Histoire Naturelle, CP 30, 57 Rue Cuvier, 75005, Paris, France
| | - Nalani K Schnell
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Station Marine de Concarneau, Place de La Croix, 29900, Concarneau, France.
| | - Claude Guintard
- Laboratoire d'Anatomie Comparée, ONIRIS - Ecole Nationale Vétérinaire de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique, Route de Gachet, CS 40 706, 44307, Nantes Cedex 03, France
| | - Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, No.1 Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Hildebrand J, Chang WW, Hu MY, Stumpp M. Characterization of digestive proteases in the gut of a basal deuterostome. J Exp Biol 2023; 226:jeb245789. [PMID: 37470128 DOI: 10.1242/jeb.245789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Digestive systems are complex organs that allow organisms to absorb energy from their environment to fuel vital processes such as growth, development and the maintenance of homeostasis. A comprehensive understanding of digestive physiology is therefore essential to fully understand the energetics of an organism. The digestion of proteins is of particular importance because most heterotrophic organisms are not able to synthesize all essential amino acids. While Echinoderms are basal deuterostomes that share a large genetic similarity with vertebrates, their digestion physiology remains largely unexplored. Using a genetic approach, this work demonstrated that several protease genes including an enteropeptidase, aminopeptidase, carboxypeptidase and trypsin involved in mammalian digestive networks are also found in sea urchin larvae. Through characterization including perturbation experiments with different food treatments and pharmacological inhibition of proteases using specific inhibitors, as well as transcriptomic analysis, we conclude that the trypsin-2 gene codes for a crucial enzyme for protein digestion in Strongylocentrotus purpuratus. Measurements of in vivo digestion rates in the transparent sea urchin larva were not altered by pharmacological inhibition of trypsin (using soybean trypsin inhibitor) or serine proteases (aprotinin), suggesting that proteases are not critically involved in the initial step of microalgal breakdown. This work provides new insights into the digestive physiology of a basal deuterostome and allows comparisons from the molecular to the functional level in the digestive systems of vertebrates and mammals. This knowledge will contribute to a better understanding for conserved digestive mechanisms that evolved in close interaction with their biotic and abiotic environment.
Collapse
Affiliation(s)
- Jasper Hildebrand
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - William W Chang
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Meike Stumpp
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
4
|
Singh SP, Chawla P, Hnatiuk A, Kamel M, Silva LD, Spanjaard B, Eski SE, Janjuha S, Olivares-Chauvet P, Kayisoglu O, Rost F, Bläsche J, Kränkel A, Petzold A, Kurth T, Reinhardt S, Junker JP, Ninov N. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 2022; 149:274140. [PMID: 35088828 DOI: 10.1242/dev.199853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo β-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both β- and δ1-cells. The transcriptomic analysis of β-cell regeneration reveals that β/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of β-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of β-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.
Collapse
Affiliation(s)
- Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Prateek Chawla
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alisa Hnatiuk
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luis Delgadillo Silva
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sharan Janjuha
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pedro Olivares-Chauvet
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Oezge Kayisoglu
- The Julius Maximilian University of Wurzburg, 97070 Wurzburg, Germany
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Bläsche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Annekathrin Kränkel
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- TUD, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM-Facility, Technische Universitaät Dresden, 01307 Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nikolay Ninov
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Lavergne A, Tarifeño-Saldivia E, Pirson J, Reuter AS, Flasse L, Manfroid I, Voz ML, Peers B. Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol 2020; 18:109. [PMID: 32867764 PMCID: PMC7457809 DOI: 10.1186/s12915-020-00840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
- Present Address: Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Justine Pirson
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Anne-Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
6
|
Kaptaner B. Immunohistochemical distribution of insulin-, glucagon- and somatostatin-containing cells in the pancreas of Lake Van fish (Alburnus tarichi Güldenstädt, 1814) (Cyprinidae). Eur J Histochem 2019; 63. [PMID: 30827082 PMCID: PMC6397945 DOI: 10.4081/ejh.2019.2999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
The Lake Van fish (Alburnus tarichi) is a species that is endemic to Turkey’s Lake Van basin. In this study, the regional distribution, volume density, and relative frequency of some pancreatic endocrine cells in Lake Van fish were investigated via immunohistochemistry using specific mammalian antibodies. The pancreatic tissue was observed to be surrounded by adipose tissue, which was adjacent to the gall bladder or extrahepatic bile duct, or dispersed in the adipose tissue ranked among coils of post-esophageal swelling and intestine. The pancreatic endocrine cells were examined, including the islets, exocrine pancreas, and pancreatic ducts. According to the modified aldehyde fuchsin staining and immunohistochemistry, insulin-secreting beta cells were observed to localize throughout the islets. Glucagon immune-reactive (IR) cells were observed to be situated moderately on the islet periphery, and were rarely determined in the islet central region. A small number of somatostatin- IR cells were observed in the islet centers and peripheries. Similar distributions of those three endocrine cells were also determined in the secondary islets. Additionally, the endocrine cell percentages did not differ between the primary and secondary islets; insulin-, glucagon- and somatostatin-IR cells comprised approximately 54%, 29%, and 11% of the endocrine cells in the principal islets, whereas they comprised 52%, 27%, and 14% in the secondary islets, respectively. Insulin-, glucagon- and somatostatin-IR cells were also determined among the epithelium and subepithelial connective tissue in the pancreatic ducts or exocrine areas of the pancreas. With this study, the existence, regional distribution, and relative frequency of the insulin-, glucagon- and somatostatin-IR cells were first investigated in the pancreatic tissue of Lake Van fish and the results were discussed.
Collapse
Affiliation(s)
- Burak Kaptaner
- University of Van Yuzuncu Yil, Faculty of Science, Department of Biology.
| |
Collapse
|
7
|
Abstract
In this chapter, we describe the methods used to culture mainly rat pancreatic beta cells. We consider necessary to use this approach to get more information about physiological, biophysical, and molecular biology characteristics of primary beta cells. Most of the literature published has been developed in murine and human beta-cell lines. However, there are many differences between tumoral cell lines and native cells because, in contrast to cell lines, primary cells do not divide. Moreover, cell lines can be in various stages of the cell cycle and thus have a different sensitivity to glucose, compared to primary cells. Finally, for these reasons, cell lines can be heterogeneous, as the primary cells are. The main problem in using primary beta cells is that despite that they are a majority within a culture they appear mixed with other kinds of pancreatic islet cells. If one needs to identify single cells or has an only beta-cell composition, it is necessary to process the sample further. For example, one may obtain an enriched population of beta cells using fluorescence-activated cell sorting or identify single cells with the reverse hemolytic plaque assay. The other problem is that cells change with time in culture, becoming old and losing some characteristics, and so must be used preferentially during the first week. The development of human beta-cell cultures is of importance in medicine because we hope one day to be able to transplant viable beta cells to patients with diabetes mellitus type 1.
Collapse
|
8
|
He C, Myers MA, Forbes BE, Grützner F. Immunohistochemical analysis of pancreatic islets of platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus ssp.). J Anat 2015; 226:373-80. [PMID: 25682842 DOI: 10.1111/joa.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution.
Collapse
Affiliation(s)
- Chuan He
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
9
|
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015; 7:e1024405. [PMID: 26030186 PMCID: PMC4589993 DOI: 10.1080/19382014.2015.1024405] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
| |
Collapse
|
10
|
Mulley JF, Hargreaves AD, Hegarty MJ, Heller RS, Swain MT. Transcriptomic analysis of the lesser spotted catshark (Scyliorhinus canicula) pancreas, liver and brain reveals molecular level conservation of vertebrate pancreas function. BMC Genomics 2014; 15:1074. [PMID: 25480530 PMCID: PMC4362833 DOI: 10.1186/1471-2164-15-1074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the evolution of the vertebrate pancreas is key to understanding its functions. The chondrichthyes (cartilaginous fish such as sharks and rays) have often been suggested to possess the most ancient example of a distinct pancreas with both hormonal (endocrine) and digestive (exocrine) roles. The lack of genetic, genomic and transcriptomic data for cartilaginous fish has hindered a more thorough understanding of the molecular-level functions of the chondrichthyan pancreas, particularly with respect to their “unusual” energy metabolism (where ketone bodies and amino acids are the main oxidative fuel source) and their paradoxical ability to both maintain stable blood glucose levels and tolerate extensive periods of hypoglycemia. In order to shed light on some of these processes, we carried out the first large-scale comparative transcriptomic survey of multiple cartilaginous fish tissues: the pancreas, brain and liver of the lesser spotted catshark, Scyliorhinus canicula. Results We generated a mutli-tissue assembly comprising 86,006 contigs, of which 44,794 were assigned to a particular tissue or combination of tissues based on mapping of sequencing reads. We have characterised transcripts encoding genes involved in insulin regulation, glucose sensing, transcriptional regulation, signaling and digestion, as well as many peptide hormone precursors and their receptors for the first time. Comparisons to mammalian pancreas transcriptomes reveals that mechanisms of glucose sensing and insulin regulation used to establish and maintain a stable internal environment are conserved across jawed vertebrates and likely pre-date the vertebrate radiation. Conservation of pancreatic hormones and genes encoding digestive proteins support the single, early evolution of a distinct pancreatic gland with endocrine and exocrine functions in jawed vertebrates. In addition, we demonstrate that chondrichthyes lack pancreatic polypeptide (PP) and that reports of PP in the literature are likely due cross-reaction with PYY and/or NPY in the pancreas. A three hormone islet organ is therefore the ancestral jawed vertebrate condition, later elaborated upon only in the tetrapod lineage. Conclusions The cartilaginous fish are a great untapped resource for the reconstruction of patterns and processes of vertebrate evolution and new approaches such as those described in this paper will greatly facilitate their incorporation into the rank of “model organism”. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1074) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
An immunohistochemical study of the endocrine pancreas in raptors. Res Vet Sci 2014; 97:587-91. [PMID: 25468799 DOI: 10.1016/j.rvsc.2014.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022]
Abstract
The cytoarchitecture of the endocrine pancreas of 10 raptors (golden eagles, peregrine falcons, Saker falcon, turkey vultures, red-tailed hawk and unspecified falcon) was examined by immunohistochemistry. Three islet types were identified: type A mixed islets composed mainly by glucagon (A)-secreting cells, type B mixed islets with predominantly insulin (B)-secreting cell component and type M mixed islets (type M) consisting of variable number of glucagon-, insulin- and somatostatin (D)-secreting cells. The latter were further characterized into Type I, II or III according to the cell distribution of the three cell types. A and D cells were also randomly scattered within the exocrine pancreas. The results of this study suggest that the classical concept in birds of a segregation of A and B cells in well-defined and distinct islets is not applicable in raptors, reflecting an evolutionary adaptation to different dietary habits and variation in developmental mechanisms.
Collapse
|
12
|
Shim JH, Kim J, Han J, An SY, Jang YJ, Son J, Woo DH, Kim SK, Kim JH. Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Cell Transplant 2014; 24:2155-68. [PMID: 25397866 DOI: 10.3727/096368914x685438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously reported the in vitro differentiation of human embryonic stem cells (hESCs) into pancreatic endoderm. Here we demonstrate that islet-like three-dimensional (3D) aggregates can be derived from the pancreatic endoderm by optimizing our previous protocol. Sequential treatment with Wnt3a, activin A, and noggin induced a transient upregulation of T and MixL1, followed by increased expression of endodermal genes, including FOXA2, SOX17, and CXCR4. Subsequent treatment with retinoic acid highly upregulated PDX1 expression. We also show that inhibition of sonic hedgehog signaling by bFGF/activin βB and cotreatment with VEGF and FGF7 produced many 3D cellular clusters that express both SOX17 and PDX1. We found for the first time that proteoglycans and vimentin(+) mesenchymal cells were mainly localized in hESC-derived PDX1(+) clusters. Importantly, treatment with chlorate, an inhibitor of proteoglycan sulfation, together with inhibition of Notch signaling significantly increased the expression of Neurog3 and NeuroD1, promoting a transition from PDX1(+) progenitor cells toward mature pancreatic endocrine cells. Purified dithizone(+) 3D aggregates generated by our refined protocol produced pancreatic hormones and released insulin in response to both glucose and pharmacological drugs in vitro. Furthermore, the islet-like 3D aggregates decreased blood glucose levels and continued to exhibit pancreatic features after transplantation into diabetic mice. Generation of islet-like 3D cell aggregates from human pluripotent stem cells may overcome the shortage of cadaveric donor islets for future cases of clinical islet transplantation.
Collapse
Affiliation(s)
- Joong-Hyun Shim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Esguerra JLS, Eliasson L. Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 2014; 5:209. [PMID: 25071836 PMCID: PMC4083688 DOI: 10.3389/fgene.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Type-2 diabetes (T2D) is a complex disease characterized by insulin resistance in target tissues and impaired insulin release from pancreatic beta cells. As central tissue of glucose homeostasis, the pancreatic islet continues to be an important focus of research to understand the pathophysiology of the disease. The increased access to human pancreatic islets has resulted in improved knowledge of islet function, and together with advances in RNA sequencing and related technologies, revealed the transcriptional and epigenetic landscape of human islet cells. The discovery of thousands of long non-coding RNA (lncRNA) transcripts highly enriched in the pancreatic islet and/or specifically expressed in the beta-cells, points to yet another layer of gene regulation of many hitherto unknown mechanistic principles governing islet cell functions. Here we review fundamental islet physiology and propose functional implications of the lncRNAs in islet development and endocrine cell functions. We also take into account important differences between rodent and human islets in terms of morphology and function, and suggest how species-specific lncRNAs may partly influence gene regulation to define the unique phenotypic identity of an organism and the functions of its constituent cells. The implication of primate-specific lncRNAs will be far-reaching in all aspects of diabetes research, but most importantly in the identification and development of novel targets to improve pancreatic islet cell functions as a therapeutic approach to treat T2D.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University Malmö, Sweden
| |
Collapse
|
14
|
Gage BK, Webber TD, Kieffer TJ. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PLoS One 2013; 8:e82076. [PMID: 24324748 PMCID: PMC3852888 DOI: 10.1371/journal.pone.0082076] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
Collapse
Affiliation(s)
- Blair K. Gage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis D. Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Stanger BZ, Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology 2013; 144:1170-9. [PMID: 23622126 PMCID: PMC3639438 DOI: 10.1053/j.gastro.2013.01.074] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
The endocrine and exocrine cells in the adult pancreas are not static, but can change their differentiation state in response to injury or stress. This concept of cells in flux means that there may be ways to generate certain types of cells (such as insulin-producing β-cells) and prevent formation of others (such as transformed neoplastic cells). We review different aspects of cell identity in the pancreas, discussing how cells achieve their identity during embryonic development and maturation, and how this identity remains plastic, even in the adult pancreas.
Collapse
Affiliation(s)
- Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Farhat B, Almelkar A, Ramachandran K, Williams SJ, Huang HH, Zamierowksi D, Novikova L, Stehno-Bittel L. Small human islets comprised of more β-cells with higher insulin content than large islets. Islets 2013; 5:87-94. [PMID: 23648896 PMCID: PMC4204020 DOI: 10.4161/isl.24780] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
For the past 30 years, data have suggested that unique islet populations exist, based on morphology and glucose sensitivity. Yet little has been done to determine the mechanism of these functional differences. The purpose of this study was to determine whether human islets were comprised functionally unique populations, and to elucidate a possible mechanism. Islets or pancreatic sections from 29 human donors were analyzed. Islets were isolated and measured for insulin secretion, cell composition and organization, insulin and glucagon granule density and insulin content. Insulin secretion was significantly greater in small compared with large islets. In sectioned human pancreata, β-cells comprised a higher proportion of the total endocrine cells in small islets (63%) than large islets (39%). A higher percentage of β-cells in small islets contacted blood vessels (44%) compared with large islets (31%). Total insulin content of isolated human islets was significantly greater in the small (1323 ± 512 μIU/IE) compared with large islets (126 ± 48 μIU/IE). There was less immunostaining for insulin in the large islets from human pancreatic sections, especially in the core of the islet, compared with small islets. The results suggest that differences in insulin secretion between large and small islets may be due to a higher percentage of β-cells in small islets with more β-cells in contact with blood vessels and a higher concentration of insulin/β-cell in small islets.
Collapse
Affiliation(s)
- Bilal Farhat
- School of Medicine; University of Kansas Medicine Center; Kansas City, KS USA
| | - Akshay Almelkar
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
| | - Karthik Ramachandran
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
- Likarda, LLC; Kansas City, KS USA
| | - S. Janette Williams
- School of Medicine; University of Kansas Medicine Center; Kansas City, KS USA
| | - Han-Hung Huang
- Physical Therapy Program; Angelo State University; Texas Tech University System; San Angelo, TX USA
| | - David Zamierowksi
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
| | - Lesya Novikova
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
| | - Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
- Correspondence to: Lisa Stehno-Bittel,
| |
Collapse
|
17
|
Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices. PLoS One 2013; 8:e54638. [PMID: 23358454 PMCID: PMC3554663 DOI: 10.1371/journal.pone.0054638] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 01/17/2023] Open
Abstract
In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future.
Collapse
|