1
|
Gao F, Du W, Guo C, Geng P, Liu W, Jin X. α7nACh receptor, a promising target to reduce BBB damage by regulating inflammation and autophagy after ischemic stroke. Biomed Pharmacother 2024; 179:117337. [PMID: 39191022 DOI: 10.1016/j.biopha.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Increased blood-brain barrier (BBB) permeability can lead to cerebral vasogenic edema and hemorrhagic transformation (HT) after reperfusion with tissue plasminogen activator (tPA), the only United States Food and Drug Administration (FDA)-approved treatment for acute ischemia stroke (AIS). The therapeutic benefits of tPA after AIS are partially outweighed by a more than a six-fold increase in the risk of symptomatic intracerebral hemorrhage. Therefore, strategies to protect the integrity of BBB are urgently needed to reduce HT and vasogenic edema after tPA thrombolysis or endovascular thrombectomy. Interestingly, an NIH study showed that smokers treated with tPA had a significantly lower prevalence of brain hemorrhage than nonsmokers, suggesting that cigarette smoking may protect patients treated with tPA from the side effects of cerebral hemorrhage. Importantly, we recently showed that treatment with nicotine reduces AIS-induced BBB damage and that modulating α7nAChR by modulation could reduce ischemia/reperfusion-induced BBB damage, suggesting that α7nAChR could be a potential target to reduce BBB after AIS. In this review, we first provide an overview of stroke and the impact of α7nAChR activation on BBB damage. Next, we discuss the features and mechanism of BBB destruction after AIS. We then discuss the effect of nicotine effect on BBB integrity as well as the mechanism underlying those effects. Finally, we discuss the side effects and potential strategies for modulating α7nAChR to reduce AIS-induced BBB damage.
Collapse
Affiliation(s)
- Fengying Gao
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wencao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
3
|
Giraldo-Berrio D, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD). Neurotox Res 2024; 42:28. [PMID: 38842585 PMCID: PMC11156752 DOI: 10.1007/s12640-024-00705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A β ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 μ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A β (iA β ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA β , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| |
Collapse
|
4
|
Guzman-Vallejos MS, Ramirez-Cando LJ, Aguayo L, Ballaz SJ. Molecular Docking Analysis at the Human α7-nAChR and Proliferative and Evoked-Calcium Changes in SH-SY5Y Cells by Imidacloprid and Acetamiprid Insecticides. Neurotox Res 2024; 42:16. [PMID: 38376791 DOI: 10.1007/s12640-024-00697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Acetamiprid (ACE) and Imidacloprid (IMI) are widely-used neonicotinoid insecticides (NNIs) with functional activity at human acetylcholine nicotinic receptors and, therefore, with putative toxic effects. The objective of this study was the evaluation of the interactions between NNIs and α7-nAChR, as this receptor keeps intracellular Ca2+ ([Ca2+]i) to an optimum for an adequate neuronal functioning. Possible interactions between NNIs and the cryo-EM structure of the human α-7 nAChR were identified by molecular docking. Additionally, NNI effects were analyzed in neuroblastoma SH-SY5Y cells, as they naturally express α-7 nAChRs. Functional studies included proliferative/cytotoxic effects (MTT test) in undifferentiated SH-SY-5Y cells and indirect measurements of [Ca2+]i transients in retinoic acid-differentiated SH-SY-5Y cells loaded with Fluo-4 AM. Docking analysis showed that the binding of IMI and ACE occurred at the same aromatic cage that the specific α-7 nAChR agonist EVP-6124. IMI showed a better docking strength than ACE. According to the MTT assays, low doses (10-50 µM) of IMI better than ACE stimulated neuroblastoma cell proliferation. At higher doses (250-500 µM), IMI also prevailed over ACE and dose-dependently triggered more abrupt fluorescence changes due to [Ca2+]i mobilization in differentiated SH-SY5Y neurons. Indeed, only IMI blunted nicotine-evoked intracellular fluorescence stimulation (i.e., nicotine cross-desensitization). Summarizing, IMI demonstrated a superior docking strength and more robust cellular responses compared to ACE, which were likely associated with a stronger activity at α-7nAChRs. Through the interaction with α-7nAChRs, IMI would demonstrate its high neurotoxic potential for humans. More research is needed for investigating the proliferative effects of IMI in neuroblastoma cells.
Collapse
Affiliation(s)
| | - Lenin J Ramirez-Cando
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Luis Aguayo
- School of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Santiago J Ballaz
- School of Medicine, Universidad Espíritu Santo, Ave. Samborondón 5, Samborondón, 0901952, Ecuador.
| |
Collapse
|
5
|
Singh S, Agrawal N, Goyal A. Role of Alpha-7-Nicotinic Acetylcholine Receptor in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:384-394. [PMID: 37366362 DOI: 10.2174/1871527322666230627123426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aβ) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.
Collapse
Affiliation(s)
- Sushma Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
- Pharmacy College, Azamgarh- 276128, UP, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| |
Collapse
|
6
|
Senevirathne A, Aganja RP, Hewawaduge C, Lee JH. Inflammation-Related Immune-Modulatory SLURP1 Prevents the Proliferation of Human Colon Cancer Cells, and Its Delivery by Salmonella Demonstrates Cross-Species Efficacy against Murine Colon Cancer. Pharmaceutics 2023; 15:2462. [PMID: 37896222 PMCID: PMC10609686 DOI: 10.3390/pharmaceutics15102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates the anticancer properties of the α7-nAChR antagonist SLURP1 with a specific focus on its effect as an inflammation modulator on human colorectal cancer cell lines Caco2, Colo320DM, and H508 cells. The investigation includes the evaluation of cell cycle arrest, cell migration arrest, endogenous expression of SLURP1 and related proteins, calcium influx, and inflammatory responses. The results demonstrate that SLURP1 not only inhibits cell proliferation but also has the potential to arrest the cell cycle at the G1/S interface. The impact of SLURP1 on cell cycle regulation varied among cell lines, with H508 cells displaying the strongest response to exogenous SLURP1. Additionally, SLURP1 affects the nuclear factor kappa B expression and effectively reverses inflammatory responses elicited by purified lipopolysaccharides in H508 and Caco2 cells. This study further confirmed the expression of human SLURP1 by Salmonella, under Ptrc promoter, through Western blot analysis. Moreover, Salmonella secreting SLURP1 revealed a significant tumor regression in a mouse CT26 tumor model, suggesting the cross-species anticancer potential of human SLURP1. However, further investigations are required to fully understand the mechanisms underlying SLURP1's ability to prevent cancer proliferation and its protective function in humans.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
- Institute of Animal Transplantation, Jeonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (A.S.); (R.P.A.)
| |
Collapse
|
7
|
Seßenhausen P, Caban KM, Kreitmair N, Peitzsch M, Stöckl JB, Meinsohn MC, Pépin D, Popper B, Fröhlich T, Mayerhofer A. An ovarian phenotype of alpha 7 nicotinic receptor knockout mice. Reproduction 2023; 166:221-234. [PMID: 37432973 DOI: 10.1530/rep-23-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In brief Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is expressed by various murine ovarian cells. Morphological and molecular investigations, including a proteomic study of adult Chrna7 knockout (KO) mouse ovaries, reveal the roles of these receptors in the local regulation of the ovary. Abstract Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is involved in cellular functions ranging from synaptic transmission in neurons to regulation of inflammation, cell growth and metabolism to cell death in other cells. Our qPCR results and other studies indicated that nAChRa7 is expressed in the adult mouse ovary, while in situ hybridization and single-cell sequencing data suggested this expression may be shared by several ovarian cells, including fibroblast-like and steroidogenic stroma cells, macrophages and oocytes of small follicles. To explore a possible involvement of nAChRa7 in ovarian functions, we evaluated ovarian morphology of Chrna7-null mutant adult mice (KO) and wildtype mice (WT; 3 months, metestrus) by performing immunohistochemistry, qPCR studies, measurements of serum progesterone and proteomic analyses. The evaluation of serial sections indicated fewer primordial follicles but similar numbers of primary, secondary and tertiary follicles, as well as corpora lutea in KO and WT mice. Atresia was unchanged. Serum progesterone and mRNA levels of proliferation and most apoptosis markers were not changed, yet two typical macrophage markers were elevated. Furthermore, the proteomes of KO ovaries were significantly altered with 96 proteins increased and 32 decreased in abundance in KOs compared to WTs. Among the elevated proteins were markers for stroma cells. Hence, the lack of nAChRa7 causes changes in small follicle counts and alterations of the ovarian stroma cells. The ovarian phenotype of Chrna7 mutant mice links this channel protein to the local regulation of ovarian cells, including stroma cells.
Collapse
Affiliation(s)
- Pia Seßenhausen
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Karolina M Caban
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig Maximilian University of Munich, München, Germany
| | - Nicole Kreitmair
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Mirko Peitzsch
- Institut für Klinische Chemie und Laboratoriumsmedizin, Labor Experimentelle Massenspektrometrie und Spurenelemente Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Jan B Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig Maximilian University of Munich, München, Germany
| | - Marie C Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, and Department of Surgery, Harvard Medical School, Boston, United States
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, and Department of Surgery, Harvard Medical School, Boston, United States
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilian-University Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig Maximilian University of Munich, München, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
9
|
Ramirez-Cando LJ, Guzmán-Vallejos MS, Aguayo LG, Vera-Erazo FD, Ballaz SJ. Neurocytotoxicity of imidacloprid- and acetamiprid-based comercial insecticides over the differentiation of SH-SY5Y neuroblastoma cells. Heliyon 2023; 9:e15840. [PMID: 37180892 PMCID: PMC10172787 DOI: 10.1016/j.heliyon.2023.e15840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Neonicotinoids are effective insecticides with specificity for invertebrate nicotinic acetylcholine receptors. Neonicotinoids are chemically stable and tend to remain in the environment for long so concerns about their neurotoxicity in humans do nothing but increase. Herein, we evaluated the chronic toxic effects of acetamiprid- and imidacloprid-based insecticides over the differentiation of human neuroblastoma SH-SY5Y cells, which were exposed to these insecticides at a concentration range similar to that applied to crop fields (0.01-0.5 mM). Both insecticides did not have acute cytotoxic effects in both non-differentiated and in staurosporine-differentiated SH-SY5Y cells cytotoxicity as measured by the MTT and vital-dye exclusion tests. However, after a chronic (7-day) treatment, only imidacloprid dose-dependently decreased the viability of SH-SY5Y cells (F(4,39) = 43.05, P < 0.001), largely when administered-during cell differentiation (F(4,39) = 51.86, P < 0.001). A well-defined dose-response curve was constructed for imidacloprid on day 4 (R2 = 0.945, EC50 = 0.14 mM). During differentiation, either imidacloprid or acetamiprid dose-dependently caused neurite branch retraction on day 3, likely because of oxidative stress, to the extent that cells turned into spheres without neurites after 7-day treatment. Despite their apparent safety, the neurodevelopmental vulnerability of SH-SY5Y neurons to the chronic exposure to imidacloprid and to a lesser extent to acetamiprid points to a neurotoxic risk for humans.
Collapse
Affiliation(s)
| | | | - Luis G. Aguayo
- Department of Physiology, School of Biological Sciences, Universidad de Concepcion, Chile
| | - Fernando D. Vera-Erazo
- Department of Physiology, School of Biological Sciences, Universidad de Concepcion, Chile
| | - Santiago J. Ballaz
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
- Corresponding author. School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, Proyecto Yachay. 100115, Urcuquí. Ecuador.
| |
Collapse
|
10
|
Physiologic Functions and Therapeutic Applications of α7 Nicotinic Acetylcholine Receptor in Brain Disorders. Pharmaceutics 2022; 15:pharmaceutics15010031. [PMID: 36678660 PMCID: PMC9865019 DOI: 10.3390/pharmaceutics15010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Accumulating data suggest that α7 nicotinic acetylcholine receptors (α7nAChRs) are an important therapeutic target for the treatment of Alzheimer's disease (AD) and schizophrenia. The homopentameric ligand-gated ion channel α7nAChR consists of five identical α7 subunits that are encoded by the CHRNA7 (cholinergic receptor nicotinic alpha7 subunit) gene. Moreover, α7nAChRs are densely distributed throughout the hippocampus, cortex, and thalamus brain regions, but sparsely in the striatum, forebrain, and medulla. Compared with other nAChRs, α7nAChR binds with low affinity to the naturally occurring neurotransmitter acetylcholine and the non-specific exogenous agonist nicotine, and with high affinity to the specific antagonists α-bungarotoxin and methyllycaconitine. Reports indicate that α7nAChR plays important roles in neurotransmitter release, cognitive functioning, and the cholinergic anti-inflammatory response. Genetic variations that alter CHRNA7 mRNA and protein expression or cause α7nAChR dysfunction are associated with many brain disorders. Our previous studies revealed that α7nAChR exerts neuroprotection in AD by acting as a cargo receptor for binding the autophagosomal marker protein LC3 and engulfing extracellular neurotoxic Aβ1-42 during autophagic degradation of the α7nAChR-Aβ1-42 complex. However, the role of α7nAChRs in other diseases remains unknown. Here, we review and summarize the essential characteristics and current findings concerning α7nAChRs in four common brain diseases (AD, Parkinson's disease, schizophrenia, and depression), which may elucidate the role of α7nAChRs and inform innovative research and novel treatments that target α7nAChRs in brain disease.
Collapse
|
11
|
Engin AB, Neagu M. Editorial overview: Neuroreceptors and neurotoxic effect through altered synaptic transmission of neurotransmitters. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Cheng Q, Lamb P, Stevanovic K, Bernstein BJ, Fry SA, Cushman JD, Yakel JL. Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus in vitro and in vivo. J Physiol 2021; 599:4687-4704. [PMID: 34487349 DOI: 10.1113/jp280505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
The activation of α7 nicotinic acetylcholine receptors (nAChRs) has been shown to improve hippocampus-dependent learning and memory. α7 nAChRs are densely expressed among several different cell types in the hippocampus, with high Ca2+ permeability, although it is unclear if α7 nAChRs mobilize differential signalling mechanisms among distinct neuronal populations. To address this question, we compared α7 nAChR agonist-induced responses (i.e. calcium and cAMP changes) between granule cells and GABAergic neurons in the hippocampal dentate gyrus both in vitro and in vivo. In cultured organotypic hippocampal slices, we observed robust intracellular calcium and cAMP increases in dentate granule cells upon activation of α7 nAChRs. In contrast, GABAergic interneurons displayed little change in either calcium or cAMP concentration after α7 nAChR activation, even though they displayed much larger α7 nAChR current responses than those of dentate granule cells. We found that this was due to smaller α7 nAChR-induced Ca2+ rises in GABAergic interneurons. Thus, the regulation of the Ca2+ transients in different cell types resulted in differential subsequent intracellular signalling cascades and likely the ultimate outcome of α7 nAChR activation. Furthermore, we monitored neuronal activities of dentate granule cells and GABAergic interneurons in vivo via optic fibre photometry. We observed enhancement of neuronal activities after nicotine administration in dentate granule cells, but not in GABAergic neurons, which was absent in α7 nAChR-deficient granule cells. In summary, we reveal a mechanism for α7 nAChR-mediated increase of neuronal activity via cell type-specific intracellular signalling pathways. KEY POINTS: α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and regulate a variety of brain functions including learning and memory. Understanding the cellular signalling mechanisms of their activations among different neuronal populations is important for delineating their actions in cognitive function, and developing effective treatment strategies for cognitive deficits. We report that α7 nAChR activation leads to Ca2+ and cAMP increases in granule cells (but not in GABAergic interneurons) in hippocampal dentate gyrus in vitro, a key region for pattern separation during learning. We also found that nicotine enhanced granule cell (but not in GABAergic interneurons) activity in an α7 nAChR-dependent manner via in vivo fibre photometry recording. Based on our findings, we propose that differential responses to α7 nAChR activation between granule cells and GABAergic interneurons is responsible for the increase of excitation by α7 nAChR agonists in hippocampal circuits synergistically.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA.,Biological/Biomedical Research Institute, North Carolina Central University, Durham, NC, USA
| | - Patricia Lamb
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Korey Stevanovic
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Briana J Bernstein
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Sydney A Fry
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| |
Collapse
|
13
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
14
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
15
|
Gaidhani N, Tucci FC, Kem WR, Beaton G, Uteshev VV. Therapeutic efficacy of α7 ligands after acute ischaemic stroke is linked to conductive states of α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1684-1704. [PMID: 33496352 DOI: 10.1111/bph.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting α7 nicotinic ACh receptors (nAChRs) in neuroinflammatory disorders including acute ischaemic stroke holds significant therapeutic promise. However, therapeutically relevant signalling mechanisms remain unidentified. Activation of neuronal α7 nAChRs triggers ionotropic signalling, but there is limited evidence for it in immunoglial tissues. The α7 ligands which are effective in reducing acute ischaemic stroke damage promote α7 ionotropic activity, suggesting a link between their therapeutic effects for treating acute ischaemic stroke and activation of α7 conductive states. EXPERIMENTAL APPROACH This hypothesis was tested using a transient middle cerebral artery occlusion (MCAO) model of acute ischaemic stroke, NS6740, a known selective non-ionotropic agonist of α7 nAChRs and 4OH-GTS-21, a partial α7 agonist. NS6740-like ligands exhibiting low efficacy/potency for ionotropic activity will be referred to as non-ionotropic agonists or "metagonists". KEY RESULTS 4OH-GTS-21, used as a positive control, significantly reduced neurological deficits and brain injury after MCAO as compared to vehicle and NS6740. By contrast, NS6740 was ineffective in identical assays and reversed the effects of 4OH-GTS-21 when these compounds were co-applied. Electrophysiological recordings from acute hippocampal slices obtained from NS6740-injected animals demonstrated its remarkable brain availability and protracted effects on α7 nAChRs as evidenced by sustained (>8 h) alterations in α7 ionotropic responsiveness. CONCLUSION AND IMPLICATIONS These results suggest that α7 ionotropic activity may be obligatory for therapeutic efficacy of α7 ligands after acute ischaemic stroke yet, highlight the potential for selective application of α7 ligands to disease states based on their mode of receptor activation.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fabio C Tucci
- Epigen Biosciences, Inc., San Diego, California, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Graham Beaton
- Epigen Biosciences, Inc., San Diego, California, USA
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
16
|
Martín-Sánchez C, Alés E, Balseiro-Gómez S, Atienza G, Arnalich F, Bordas A, Cedillo JL, Extremera M, Chávez-Reyes A, Montiel C. The human-specific duplicated α7 gene inhibits the ancestral α7, negatively regulating nicotinic acetylcholine receptor-mediated transmitter release. J Biol Chem 2021; 296:100341. [PMID: 33515545 PMCID: PMC7949125 DOI: 10.1016/j.jbc.2021.100341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Gene duplication generates new functions and traits, enabling evolution. Human-specific duplicated genes in particular are primary sources of innovation during our evolution although they have very few known functions. Here we examine the brain function of one of these genes (CHRFAM7A) and its product (dupα7 subunit). This gene results from a partial duplication of the ancestral CHRNA7 gene encoding the α7 subunit that forms the homopentameric α7 nicotinic acetylcholine receptor (α7-nAChR). The functions of α7-nAChR in the brain are well defined, including the modulation of synaptic transmission and plasticity underlying normal attention, cognition, learning, and memory processes. However, the role of the dupα7 subunit remains unexplored at the neuronal level. Here, we characterize that role by combining immunoblotting, quantitative RT-PCR and FRET techniques with functional assays of α7-nAChR activity using human neuroblastoma SH-SY5Y cell variants with different dupα7 expression levels. Our findings reveal a physical interaction between dupα7 and α7 subunits in fluorescent protein-tagged dupα7/α7 transfected cells that negatively affects normal α7-nAChR activity. Specifically, in both single cells and cell populations, the [Ca2+]i signal and the exocytotic response induced by selective stimulation of α7-nAChR were either significantly inhibited by stable dupα7 overexpression or augmented after silencing dupα7 gene expression with specific siRNAs. These findings identify a new role for the dupα7 subunit as a negative regulator of α7-nAChR-mediated control of exocytotic neurotransmitter release. If this effect is excessive, it would result in an impaired synaptic transmission that could underlie the neurocognitive and neuropsychiatric disorders associated with α7-nAChR dysfunction.
Collapse
Affiliation(s)
- Carolina Martín-Sánchez
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Alés
- Department of Medical Physiology and Biophysics, Medical School, Universidad de Sevilla, Sevilla, Spain
| | - Santiago Balseiro-Gómez
- Department of Medical Physiology and Biophysics, Medical School, Universidad de Sevilla, Sevilla, Spain
| | - Gema Atienza
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Arnalich
- Internal Medicine Service, University Hospital La Paz-IdiPAZ, Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Cedillo
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Extremera
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Carmen Montiel
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
18
|
Soto-Mercado V, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Multi-Target Effects of the Cannabinoid CP55940 on Familial Alzheimer's Disease PSEN1 E280A Cholinergic-Like Neurons: Role of CB1 Receptor. J Alzheimers Dis 2020; 82:S359-S378. [PMID: 33252082 PMCID: PMC8293648 DOI: 10.3233/jad-201045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by structural damage, death, and functional disruption of cholinergic neurons (ChNs) as a result of intracellular amyloid-β (Aβ) aggregation, extracellular neuritic plaques, and hyperphosphorylation of protein tau (p-Tau) overtime. OBJECTIVE To evaluate the effect of the synthetic cannabinoid CP55940 (CP) on PSEN1 E280A cholinergic-like nerve cells (PSEN1 ChLNs)-a natural model of familial AD. METHODS Wild type (WT) and PSEN1 ChLNs were exposed to CP (1μM) only or in the presence of the CB1 and CB2 receptors (CB1Rs, CB2Rs) inverse agonist SR141716 (1μM) and SR144528 (1μM) respectively, for 24 h. Untreated or treated neurons were assessed for biochemical and functional analysis. RESULTS CP in the presence of both inverse agonists (hereafter SR) almost completely inhibits the aggregation of intracellular sAβPPβf and p-Tau, increases ΔΨm, decreases oxidation of DJ-1Cys106-SH residue, and blocks the activation of c-Jun, p53, PUMA, and caspase-3 independently of CB1Rs signaling in mutant ChLNs. CP also inhibits the generation of reactive oxygen species partially dependent on CB1Rs. Although CP reduced extracellular Aβ42, it was unable to reverse the Ca2+ influx dysregulation as a response to acetylcholine stimuli in mutant ChLNs. Exposure to anti-Aβ antibody 6E10 (1:300) in the absence or presence of SR plus CP completely recovered transient [Ca2+]i signal as a response to acetylcholine in mutant ChLNs. CONCLUSION Taken together our findings suggest that the combination of cannabinoids, CB1Rs inverse agonists, and anti-Aβ antibodies might be a promising therapeutic approach for the treatment of familial AD.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| |
Collapse
|
19
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
20
|
Blanco-Lezcano L, Alberti-Amador E, González-Fraguela ME, Zaldívar-Lelo de Larrea G, Pérez-Serrano RM, Jiménez-Luna NA, Serrano-Sánchez T, Francis-Turner L, Camejo-Rodriguez D, Vega-Hurtado Y. Nurr1, Pitx3, and α7 nAChRs mRNA Expression in Nigral Tissue of Rats with Pedunculopontine Neurotoxic Lesion. ACTA ACUST UNITED AC 2019; 55:medicina55100616. [PMID: 31547185 PMCID: PMC6843810 DOI: 10.3390/medicina55100616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The knowledge that the cholinergic neurons from pedunculopontine nucleus (PPN) are vulnerable to the degeneration in early stages of the Parkinson disease progression has opened new perspectives to the development of experimental model focused in pontine lesions that could increase the risk of nigral degeneration. In this context it is known that PPN lesioned rats exhibit early changes in the gene expression of proteins responsible for dopaminergic homeostasis. At the same time, it is known that nicotinic cholinergic receptors (nAChRs) mediate the excitatory influence of pontine-nigral projection. However, the effect of PPN injury on the expression of transcription factors that modulate dopaminergic neurotransmission in the adult brain as well as the α7 nAChRs gene expression has not been studied. The main objective of the present work was the study of the effects of the unilateral neurotoxic lesion of PPN in nuclear receptor-related factor 1 (Nurr1), paired-like homeodomain transcription factor 3 (Pitx3), and α7 nAChRs mRNA expression in nigral tissue. Materials and Methods: The molecular biology studies were performed by means of RT-PCR. The following experimental groups were organized: Non-treated rats, N-methyl-D-aspartate (NMDA)-lesioned rats, and Sham operated rats. Experimental subjects were sacrificed 24 h, 48 h and seven days after PPN lesion. Results: Nurr1 mRNA expression, showed a significant increase both 24 h (p < 0.001) and 48 h (p < 0.01) after PPN injury. Pitx3 mRNA expression evidenced a significant increase 24 h (p < 0.001) followed by a significant decrease 48 h and seven days after PPN lesion (p < 0.01). Finally, the α7 nAChRs nigral mRNA expression remained significantly diminished 24 h, 48 h (p < 0.001), and 7 days (p < 0.01) after PPN neurotoxic injury. Conclusion: Taking together these modifications could represent early warning signals and could be the preamble to nigral neurodegeneration events.
Collapse
Affiliation(s)
- Lisette Blanco-Lezcano
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
- Correspondence: ; Tel.: +53-7-271-6385 (ext. 219)
| | - Esteban Alberti-Amador
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - María Elena González-Fraguela
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | | | - Rosa Martha Pérez-Serrano
- Faculty of Medicine, Autonomous University of Queretaro, Querétaro 76176, Mexico; (G.Z.-L.d.L.); (R.M.P.-S.); (N.A.J.-L.)
| | - Nadia Angélica Jiménez-Luna
- Faculty of Medicine, Autonomous University of Queretaro, Querétaro 76176, Mexico; (G.Z.-L.d.L.); (R.M.P.-S.); (N.A.J.-L.)
| | - Teresa Serrano-Sánchez
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - Liliana Francis-Turner
- Experimental Group: “Experimental Models for Zoo-Human Sciences”, Faculty of Sciences, Tolima University, Ibagué 730001, Colombia;
| | - Dianet Camejo-Rodriguez
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - Yamilé Vega-Hurtado
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| |
Collapse
|
21
|
Capsaicin inhibits the function of α 7-nicotinic acetylcholine receptors expressed in Xenopus oocytes and rat hippocampal neurons. Eur J Pharmacol 2019; 857:172411. [PMID: 31152699 DOI: 10.1016/j.ejphar.2019.172411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022]
Abstract
Capsaicin is a naturally occurring alkaloid derived from Chili peppers fruits. Using the two-electrode voltage-clamp technique in Xenopus oocyte expression system, actions of capsaicin on the functional properties of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor were investigated. Ion currents activated by ACh (100 μM) were reversibly inhibited with an IC50 value of 8.6 μM. Inhibitory actions of capsaicin was independent of membrane potential. Furthermore, Ca2+-dependent Cl- channels expressed endogenously in oocytes were not involved in inhibitory actions of capsaicin. In addition, increasing the ACh concentrations could not reverse the inhibitory effects of capsaicin. Importantly, specific binding of [125I] α-bungarotoxin remained unaltered by capsaicin suggesting that its effect is noncompetitive. Whole cell patch-clamp technique was performed in CA1 stratum radiatum interneurons of rat hippocampal slices. Ion currents induced by choline, a selective-agonist of α7-receptor, were reversibly inhibited by 10 min bath application of capsaicin (10 μM). Collectively, results of our investigation indicate that the function of the α7-nACh receptor expressed in Xenopus oocytes and in hippocampal interneurons are inhibited by capsaicin.
Collapse
|
22
|
Gaydukov AE, Bogacheva PO, Balezina OP. The Participation of Presynaptic Alpha7 Nicotinic Acetylcholine Receptors in the Inhibition of Acetylcholine Release during Long-Term Activity of Mouse Motor Synapses. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Grassi F, Fucile S. Calcium influx through muscle nAChR-channels: One route, multiple roles. Neuroscience 2019; 439:117-124. [PMID: 30999028 DOI: 10.1016/j.neuroscience.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/31/2023]
Abstract
Although Ca2+ influx through muscle nAChR-channels has been described over the past 40 years, its functions remain still poorly understood. In this review we suggest possible roles of Ca2+ entry at all stages of muscle development, summarizing the evidence present in literature. nAChRs are expressed in myoblasts prior to fusion, and can be activated in the absence of an ACh-releasing nerve terminal, with Ca2+ influx likely contributing to regulate cell fusion. Upon establishment of nerve-muscle contact, Ca2+ influx contributes to orchestrate the signaling required for the correct formation of the neuromuscular junction. Finally, in the mature synapse, Ca2+ entry through postsynaptic nAChR-channels - highly Ca2+ permeable, in particular in humans - acts on K+ and Na+ channels to shape endplate excitability. However, when genetic defects cause excessive channel activation, Ca2+ influx becomes toxic and causes endplate myopathy. Throughout the review, we highlight how Ricardo Miledi has contributed to construct this whole body of knowledge, from the initial description of Ca2+ permeability of endplate nAChR channels, to the rationale for the treatment of endplate excitotoxic damage under pathological conditions. This article is part of a Special Issue entitled: SI: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University, piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, piazzale Aldo Moro 5, 00185, Rome, Italy; IRCCS Neuromed, Viale dell'Elettronica, 86077, Pozzilli, Italy
| |
Collapse
|
24
|
Mulcahy MJ, Paulo JA, Hawrot E. Proteomic Investigation of Murine Neuronal α7-Nicotinic Acetylcholine Receptor Interacting Proteins. J Proteome Res 2018; 17:3959-3975. [PMID: 30285449 DOI: 10.1021/acs.jproteome.8b00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel that is expressed widely in vertebrates and is the principal high-affinity α-bungarotoxin (α-bgtx) binding protein in the mammalian CNS. α7-nAChRs associate with proteins that can modulate its properties. The α7-nAChR interactome is the summation of proteins interacting or associating with α7-nAChRs in a protein complex. To identify an α7-nAChR interactome in neural tissue, we isolated α-bgtx-affinity protein complexes from wild-type and α7-nAChR knockout (α7 KO) mouse whole brain tissue homogenates using α-bgtx-affinity beads. Affinity precipitated proteins were trypsinized and analyzed with an Orbitrap Fusion mass spectrometer. Proteins isolated with the α7-nAChR specific ligand, α-bgtx, were determined to be α7-nAChR associated proteins. The α7-nAChR subunit and 120 additional proteins were identified. Additionally, 369 proteins were identified as binding to α-bgtx in the absence of α7-nAChR expression, thereby identifying nonspecific proteins for α7-nAChR investigations using α-bgtx enrichment. These results expand on our previous investigations of α7-nAChR interacting proteins using α-bgtx-affinity bead isolation by controlling for differences between α7-nAChR and α-bgtx-specific proteins, developing an improved protein isolation methodology, and incorporating the latest technology in mass spectrometry. The α7-nAChR interactome identified in this study includes proteins associated with the expression, localization, function, or modulation of α7-nAChRs, and it provides a foundation for future studies to elucidate how these interactions contribute to human disease.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
25
|
Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. Eur J Med Chem 2018; 160:207-228. [PMID: 30342362 DOI: 10.1016/j.ejmech.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are relevant therapeutic targets for a variety of disorders including neurodegeneration, cognitive impairment, and inflammation. Although traditionally identified as an ionotropic receptor, the α7 subtype showed metabotropic-like functions, mainly linked to the modulation of immune responses. In the present work, we investigated the structure-activity relationships in a set of novel α7 ligands incorporating the 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole scaffold, i.e. derivatives 21a-34a and 21b-34b, aiming to identify the structural requirements able to preferentially trigger one of the two activation modes of this receptor subtype. The new compounds were characterized as partial and silent α7 nAChR agonists in electrophysiological assays, which allowed to assess the contribution of the different groups towards the final pharmacological profile. Overall, modifications of the selected structural backbone mainly afforded partial agonists, among them tertiary bases 27a-33a, whereas additional hydrogen-bond acceptor groups in permanently charged ligands, such as 29b and 31b, favored a silent desensitizing profile at the α7 nAChR.
Collapse
|
26
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
27
|
Ren C, Li XH, Wang SB, Wang LX, Dong N, Wu Y, Yao YM. Activation of Central Alpha 7 Nicotinic Acetylcholine Receptor Reverses Suppressed Immune Function of T Lymphocytes and Protects Against Sepsis Lethality. Int J Biol Sci 2018; 14:748-759. [PMID: 29910685 PMCID: PMC6001681 DOI: 10.7150/ijbs.24576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/07/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis remains the leading cause of high mortality and huge financial burden in intensive care units (ICU), but with scarce effective treatments due to refractory multiple organ dysfunction and persistent immunosuppression. Treatments that aim at modulating immune function and attenuating multiple organ injury will certainly benefit septic cases. Alpha 7 nicotinic acetylcholine receptor (α7nAchR) has been reported with potent immunomodulatory properties in various diseases as the essential mediator of the cholinergic anti-inflammatory pathway (CAP). Few studies have demonstrated the potential effect of central α7nAchR on the progression and prognosis of septic response, while its expression was first discovered on neurons and most abundant in the central nervous system. In the present study, it was found severe damage of multiple organs under the operation of cecal ligation and puncture (CLP) in rats, including heart, liver, kidneys, and lungs, as evidenced by abnormal histomorphology and notable elevation of injury markers. Concurrently, the function of spleen CD4+ T cells was disrupted under septic challenge, accompanied by polarization of helper T cell (Th)2, which exhibited outward signs of immunosuppression. Intracerebroventricular injection of PNU282987, a selective agonist of α7nAchR, significantly alleviated multiple organ injury, reversed immunosuppressive state, and improved the outcome of septic rats, while they were exacerbated by treatment with methyllycaconitine, a selective antagonist of α7nAchR. This study provides the first evidence that activation of central α7nAchR is beneficial for attenuating multiple organ dysfunction as well as abnormal immune response, and improving the prognosis of rats when exposed with sepsis.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.,School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiu-Hua Li
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.,Emergency Department, Jin Hua Municipal Central Hospital, Jinhua 321001, People's Republic of China
| | - Shi-Bin Wang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Li-Xue Wang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ning Dong
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yao Wu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.,School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
28
|
El Nebrisi EG, Bagdas D, Toma W, Al Samri H, Brodzik A, Alkhlaif Y, Yang KHS, Howarth FC, Damaj IM, Oz M. Curcumin Acts as a Positive Allosteric Modulator of α7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J Pharmacol Exp Ther 2018; 365:190-200. [PMID: 29339457 DOI: 10.1124/jpet.117.245068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Effects of curcumin, a major ingredient of turmeric, were tested on the function of the α7-subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in Xenopus oocytes and on nociception in mouse models of tonic and visceral pain. Curcumin caused a significant potentiation of currents induced by acetylcholine (ACh; 100 μM) with an EC50 value of 0.2 µM. The effect of curcumin was not dependent on the activation of G-proteins and protein kinases and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Importantly, the extent of curcumin potentiation was enhanced significantly by decreasing ACh concentrations. Curcumin did not alter specific binding of [125I]α-bungarotoxin. In addition, curcumin attenuated nociceptive behavior in both tonic and visceral pain models without affecting motor and locomotor activity and without producing tolerance. Pharmacological and genetic approaches revealed that the antinociceptive effect of curcumin was mediated by α7-nACh receptors. Curcumin potentiated the antinociceptive effects of the α7-nACh receptor agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU282987). Collectively, our results indicate that curcumin is a positive allosteric modulator of α7-nACh receptor and reverses nociception in mouse models of tonic and visceral pain.
Collapse
Affiliation(s)
- Eslam Gaber El Nebrisi
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Deniz Bagdas
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Wisam Toma
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Halima Al Samri
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Anna Brodzik
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Yasmin Alkhlaif
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Keun-Hang Susan Yang
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Frank Christopher Howarth
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Imad M Damaj
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Murat Oz
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| |
Collapse
|
29
|
Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Lung epithelial response to cigarette smoke and modulation by the nicotinic alpha 7 receptor. PLoS One 2017; 12:e0187773. [PMID: 29117258 PMCID: PMC5678682 DOI: 10.1371/journal.pone.0187773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) is a principal contributor to a spectrum of devastating lung diseases whose occurrence and severity may vary between individuals and not appear for decades after prolonged use. One explanation for the variability and delay in disease onset is that nicotine, the addictive component of CS, acts through the ionotropic nicotinic acetylcholine receptor (nAChR) alpha7 (α7) to modulate anti-inflammatory protection. In this study we measured the impact α7 signaling has on the mouse distal lung response to side-stream CS exposure for mice of the control genotype (α7G) and those in which the α7-receptor signaling mechanisms are restricted by point mutation (α7E260A:G). Flow cytometry results show that after CS there is an increase in a subset of CD11c (CD11chi) alveolar macrophages (AMs) and histology reveals an increase in these cells within the alveolar space in both genotypes although the α7E260A:G AMs tend to accumulate into large aggregates rather than more widely distributed solitary cells common to the α7G lung after CS. Changes to lung morphology with CS in both genotypes included increased tissue cavitation due to alveolar expansion and bronchial epithelium dysplasia in part associated with altered club cell morphology. RNA-Seq analysis revealed changes in epithelium gene expression after CS are largely independent of the α7-genotype. However, the α7E260A:G genotype did reveal some unique variations to transcript expression of gene sets associated with immune responsiveness and macrophage recruitment, hypoxia, genes encoding mitochondrial respiration complex I and extracellular fibrillary matrix proteins (including alterations to fibrotic deposits in the α7G proximal airway bronchioles after CS). These results suggest α7 has a central role in modulating the response to chronic CS that could include altering susceptibility to associated lung diseases including fibrosis and cancer.
Collapse
Affiliation(s)
- Lorise C. Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Elizabeth J. Myers
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Diane M. Dunn
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Robert B. Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Scott W. Rogers
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
30
|
Fluegge K. Environmental contributors to modulation of brain estrogen signaling and male gender bias in autism: A reply to the oral contraceptive use hypothesis by Strifert (2015). Med Hypotheses 2017; 104:178-181. [PMID: 28673581 DOI: 10.1016/j.mehy.2017.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022]
Abstract
Strifert has recently put forward an interesting hypothesis regarding the role of oral contraceptive (OC) use in mothers and risk of offspring autism spectrum disorder (ASD). First, the author reports that combined oral contraceptives (COCs), containing both estrogen and progesterone, were developed in the late 1950s and early 60s, which is a time-frame distinct from Leo Kanner's documentation of infantile ASD in 1943 that Strifert just briefly mentions. While this important temporal inconsistency of ASD origin does not invalidate the potential role of OC use in contributing to the rise of ASD, it does support the likely possibility of other environmental exposures at play. Second, the epigenetic basis of the hypothesis is that the endocrine-disrupting components (i.e., ethinylestradiol) of OC perturb estrogenic signaling in the fetal brain by triggering aberrant DNA methylation of the estrogen receptor β (ERβ) gene, and such methylation patterns may be imprinted to future generations and could theoretically increase subsequent ASD offspring risk. The premise of the hypothesis is challenged, however, with the recognition that MeCP2, a "reader" of DNA methylation sites, is not only associated with age-dependent alteration in ERβ in females but is also significantly reduced in ASD brain. Furthermore, Strifert does not clearly address how the OC hypothesis accounts for the male bias in ASD. Therefore, the purpose of this correspondence is to address these inconsistencies by proposing a hypothesis that challenges these points. That is, gestational exposure to the agricultural and combustion air pollutant, nitrous oxide (N2O), may be a leading contributor to the development of an ASD phenotype. The mechanism undergirding this hypothesis suggests that compensatory estrogenic activity may mitigate the effects of fetal N2O exposure and thereby confer a protective effect against ASD development in a sex-dependent manner (i.e., male bias in ASD).
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| |
Collapse
|
31
|
Quadri M, Matera C, Silnović A, Pismataro MC, Horenstein NA, Stokes C, Papke RL, Dallanoce C. Identification of α7 Nicotinic Acetylcholine Receptor Silent Agonists Based on the Spirocyclic Quinuclidine-Δ 2 -Isoxazoline Scaffold: Synthesis and Electrophysiological Evaluation. ChemMedChem 2017; 12:1335-1348. [PMID: 28494140 DOI: 10.1002/cmdc.201700162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/10/2017] [Indexed: 12/29/2022]
Abstract
Compound 11 (3-(benzyloxy)-1'-methyl-1'-azonia-4H-1'-azaspiro[isoxazole-5,3'-bicyclo[2.2.2]octane] iodide) was selected from a previous set of nicotinic ligands as a suitable model compound for the design of new silent agonists of α7 nicotinic acetylcholine receptors (nAChRs). Silent agonists evoke little or no channel activation but can induce the α7 desensitized Ds state, which is sensitive to a type II positive allosteric modulator, such as PNU-120596. Introduction of meta substituents into the benzyloxy moiety of 11 led to two sets of tertiary amines and quaternary ammonium salts based on the spirocyclic quinuclidinyl-Δ2 -isoxazoline scaffold. Electrophysiological assays performed on Xenopus laevis oocytes expressing human α7 nAChRs highlighted four compounds that are endowed with a significant silent-agonism profile. Structure-activity relationships of this group of analogues provided evidence of the crucial role of the positive charge at the quaternary quinuclidine nitrogen atom. Moreover, the present study indicates that meta substituents, in particular halogens, on the benzyloxy substructure direct specific interactions that stabilize a desensitized conformational state of the receptor and induce silent activity.
Collapse
Affiliation(s)
- Marta Quadri
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.,Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA.,Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.,Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona (PCB), Carrer Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Almin Silnović
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Maria Chiara Pismataro
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Nicole A Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
32
|
LaLone CA, Villeneuve DL, Wu-Smart J, Milsk RY, Sappington K, Garber KV, Housenger J, Ankley GT. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:751-775. [PMID: 28126277 PMCID: PMC6156782 DOI: 10.1016/j.scitotenv.2017.01.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 04/14/2023]
Abstract
Ongoing honey bee (Apis mellifera) colony losses are of significant international concern because of the essential role these insects play in pollinating crops. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure; however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate pest insects. However, mounting evidence indicates that neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Potential for exposure was not a consideration in AOP development and therefore this effort should not be considered a risk assessment. Nonetheless, development of the AOPs described herein has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect normal colony functions, causing colony instability and subsequent bee population failure. A putative AOP network was developed, laying the foundation for further insights as to the role of combined chemical and non-chemical stressors in impacting bee populations. Insights gained from the AOP network assembly, which more realistically represents multi-stressor impacts on honey bee colonies, are promising toward understanding common sensitive nodes in key biological pathways and identifying where mitigation strategies may be focused to reduce colony losses.
Collapse
Affiliation(s)
- Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Judy Wu-Smart
- University of Nebraska-Lincoln, Department of Entomology, 105A Entomology Hall, Lincoln, NE 68583, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Keith Sappington
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Kristina V Garber
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Justin Housenger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
33
|
Thujone inhibits the function of α 7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm. Toxicology 2017; 384:23-32. [PMID: 28395994 DOI: 10.1016/j.tox.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.
Collapse
|
34
|
Ren C, Tong YL, Li JC, Lu ZQ, Yao YM. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism. Int J Biol Sci 2017; 13:46-56. [PMID: 28123345 PMCID: PMC5264260 DOI: 10.7150/ijbs.16404] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ya-Lin Tong
- Department of Burns and Plastic Surgery, the 181st Hospital of Chinese PLA, Guilin 541002, People's Republic of China
| | - Jun-Cong Li
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.; State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
35
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
36
|
Chen TJ, Chen SS, Wang DC, Hung HS. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons. J Cell Physiol 2016; 231:2428-38. [PMID: 26895748 DOI: 10.1002/jcp.25347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shun-Sheng Chen
- Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Dean-Chuan Wang
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Shan Hung
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Nurulain S, Prytkova T, Sultan AM, Ievglevskyi O, Lorke D, Yang KHS, Petroianu G, Howarth FC, Kabbani N, Oz M. Inhibitory actions of bisabolol on α7-nicotinic acetylcholine receptors. Neuroscience 2015; 306:91-9. [PMID: 26283025 DOI: 10.1016/j.neuroscience.2015.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
Bisabolol is a plant-derived monocyclic sesquiterpene alcohol with antinociceptive and antiinflammatory actions. However, molecular targets mediating these effects of bisabolol are poorly understood. In this study, using a two-electrode voltage-clamp and patch-clamp techniques and live cellular calcium imaging, we have investigated the effect of bisabolol on the function of human α7 subunit of nicotinic acetylcholine receptor (nAChR) in Xenopus oocytes, interneurons of rat hippocampal slices. We have found that bisabolol reversibly and concentration dependently (IC50 = 3.1 μM) inhibits acetylcholine (ACh)-induced α7 receptor-mediated currents. The effect of bisabolol was not dependent on the membrane potential. Bisabolol inhibition was not changed by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free solution containing Ba(2+), suggesting that endogenous Ca(2+)-dependent Cl(-) channels are not involved in bisabolol actions. Increasing the concentrations of ACh did not reverse bisabolol inhibition. Furthermore, the specific binding of [(125)I] α-bungarotoxin was not attenuated by bisabolol. Choline-induced currents in CA1 interneurons of rat hippocampal slices were also inhibited with IC50 of 4.6 μM. Collectively, our results suggest that bisabolol directly inhibits α7-nAChRs via a binding site on the receptor channel.
Collapse
Affiliation(s)
- S Nurulain
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - T Prytkova
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - A M Sultan
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - O Ievglevskyi
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - D Lorke
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - K-H S Yang
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - G Petroianu
- Department of Cellular Biology & Pharmacology, College of Medicine, Florida International University, Miami, FL 33199, USA
| | - F C Howarth
- Laboratory of Functional Lipidomics, Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - N Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - M Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
38
|
Voytenko LP, Lushnikova IV, Savotchenko AV, Isaeva EV, Skok MV, Lykhmus OY, Patseva MA, Skibo GG. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation. Brain Res 2015; 1616:134-45. [PMID: 25966616 DOI: 10.1016/j.brainres.2015.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023]
Abstract
The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in efficiency of therapeutic strategies against post-ischemic pathology.
Collapse
Affiliation(s)
- L P Voytenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - I V Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A V Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - E V Isaeva
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - M V Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - O Yu Lykhmus
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - M A Patseva
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - G G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| |
Collapse
|
39
|
Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons. Brain Res 2015; 1592:1-10. [PMID: 25451094 DOI: 10.1016/j.brainres.2014.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/05/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023]
Abstract
The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.
Collapse
|
40
|
Cheng Q, Yakel JL. The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochem Pharmacol 2015. [PMID: 26212541 DOI: 10.1016/j.bcp.2015.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory, however the cellular mechanism of these actions remains elusive. With help from newly developed biosensors and optogenetic tools, recent studies provide new insights on signaling mechanisms involved in the activation of nAChRs. Here we will review α7 nAChR's action in the tri-synaptic pathway in the hippocampus. The effects of α7 nAChR activation via either exogenous compounds or endogenous cholinergic innervation are detailed for spontaneous and evoked glutamatergic synaptic transmission and synaptic plasticity, as well as the underlying signaling mechanisms. In summary, α7 nAChRs trigger intracellular calcium rise and calcium-dependent signaling pathways to enhance glutamate release and induce glutamatergic synaptic plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
41
|
Cheng Q, Yakel JL. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 2015; 95:405-14. [PMID: 25937212 DOI: 10.1016/j.neuropharm.2015.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The activation of α7 nAChRs has been shown to improve hippocampal-dependent learning and memory. However, the molecular mechanism of α7 nAChRs' action remains elusive. We previously reported that activation of α7 nAChRs induced a prolonged enhancement of glutamatergic synaptic transmission in a PKA-dependent manner. Here, we investigated any connection between the activation of the α7 nAChR and cAMP signaling in hippocampal neurons. To address this question, we employed a FRET-based biosensor to measure the intracellular cAMP levels directly via live cell imaging. We found that application of the α7 nAChR-selective agonist choline, in the presence of the α7 nAChR positive allosteric modulator PNU-120596, induced a significant change in emission ratio of F535/F470, which indicated an increase in intracellular cAMP levels. This choline-induced increase was abolished by the α7 nAChR antagonist MLA and the calcium chelator BAPTA, suggesting that the cAMP increase depends on the α7 nAChR activation and subsequent intracellular calcium rise. The selective AC1 inhibitor CB-6673567 and siRNA-mediated deletion of AC1 both blocked the choline-induced cAMP increase, suggesting that calcium-dependent AC1 is required for choline's action. Furthermore, α7 nAChR activation stimulated the phosphorylation of synapsin, which serves as a downstream effector to regulate neurotransmitter release. Our findings provide the first direct evidence to link activation of α7 nAChRs to a cAMP rise via AC1, which defines a new signaling pathway employed by α7 nAChRs. Our study sheds light into potential molecular mechanisms of the positive cognitive actions of α7 nAChR agonists and development of therapeutic treatments for cognitive impairments.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA.
| |
Collapse
|
42
|
The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity. Eur J Pharmacol 2015; 758:82-8. [PMID: 25861937 DOI: 10.1016/j.ejphar.2015.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 02/08/2023]
Abstract
It was demonstrated that treatment with beta amyloid (Aβ) led to extreme alterations in the intrinsic electrophysiological properties of CA1 pyramidal neurons. Also, malfunction of the cholinergic system is correlated to the memory and cognitive impairments. Several new studies have suggested that Berberis vulgaris can act as a cholinesterase inhibitor. The present study aimed to investigate the effects of berberine (BER) on the Aβ-induced impairments in learning and memory. The male Wistar rats were divided into 4 groups of Sham, BER, Aβ and Aβ+BER. The administration of BER or its vehicle started immediately after the injection of Aβ and followed by 13 days. Then, the animals were tested for learning and memory performance using the Morris water maze (MWM) and passive avoidance tests. Then, they were sacrificed for the whole cell patch clamp recording. The results of the MWM and passive avoidance tasks indicated that administration of the BER in the Aβ+BER group prevented the memory impairment induced by Aβ. The results of the whole cell patch clamp also showed that administration of the BER restored the Aβ-induced impairments in the firing frequency, half-width and rebound action potential. These results suggested that administration of the BER could ameliorate neurotoxicity induced by Aβ. However, this neuroprotection impact could be resulted from the balance effect of the Ca(2+) entry. The optimal level of Ca(2+) entry by BER could be a major factor that modified the function of the Ca(2+)-activated K(+) channels and decreased the half-width in the Aβ treated rats.
Collapse
|
43
|
High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: proof-of-concept. Brain Res Bull 2015; 112:35-41. [PMID: 25647232 DOI: 10.1016/j.brainresbull.2015.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/25/2022]
Abstract
There are currently no clinically efficacious drug therapies to treat brain damage secondary to traumatic brain injury (TBI). In this proof-of-concept study, we used a controlled cortical impact model of TBI in young adult rats to explore a novel promising approach that utilizes PNU-120596, a previously reported highly selective Type-II positive allosteric modulator (α7-PAM) of α7 nicotinic acetylcholine receptors (nAChRs). α7-PAMs enhance and prolong α7 nAChR activation, but do not activate α7 nAChRs when administered without an agonist. The rational basis for the use of an α7-PAM as a post-TBI treatment is tripartite and arises from: (1) the intrinsic ability of brain injury to elevate extracellular levels of choline (a ubiquitous cell membrane-building material and a selective endogenous agonist of α7 nAChRs) due to the breakdown of cell membranes near the site and time of injury; (2) the ubiquitous expression of functional α7 nAChRs in neuronal and glial/immune brain cells; and (3) the potent neuroprotective and anti-inflammatory effects of α7 nAChR activation. Therefore, both neuroprotective and anti-inflammatory effects can be achieved post-TBI by targeting only a single player (i.e., the α7 nAChR) using α7-PAMs to enhance the activation of α7 nAChRs by injury-elevated extracellular choline. Our data support this hypothesis and demonstrate that subcutaneous administration of PNU-120596 post-TBI in young adult rats significantly reduces both brain cell damage and reactive gliosis. Therefore, our results introduce post-TBI systemic administration of α7-PAMs as a promising therapeutic intervention that could significantly restrict brain injury post-TBI and facilitate recovery of TBI patients.
Collapse
|
44
|
Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SE, Sabermarouf B, Mahmoudi J. Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Shelukhina I, Paddenberg R, Kummer W, Tsetlin V. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct 2014; 220:1885-99. [PMID: 24706047 DOI: 10.1007/s00429-014-0762-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons.
Collapse
Affiliation(s)
- Irina Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia,
| | | | | | | |
Collapse
|
46
|
Kalappa BI, Sun F, Johnson SR, Jin K, Uteshev VV. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia. Br J Pharmacol 2014; 169:1862-78. [PMID: 23713819 DOI: 10.1111/bph.12247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. EXPERIMENTAL APPROACH An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. KEY RESULTS Choline (20-200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg(-1) , s.c. and 1 mg·kg(-1) , i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg(-1) , i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. CONCLUSIONS AND IMPLICATIONS PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting neuroprotective effects of endogenous choline/ACh.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | |
Collapse
|
47
|
The mechanism of choline-mediated inhibition of acetylcholine release in mouse motor synapses. Acta Naturae 2014; 6:110-5. [PMID: 25558401 PMCID: PMC4273098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of action of tonically applied choline, the agonist of α7 nicotinic acetylcholine receptors (nAChRs), to the spontaneous and evoked release of a neurotransmitter in mouse motor synapses in diaphragm neuromuscular preparations using intracellular microelectrode recordings of miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) was studied. Exogenous choline was shown to exhibit a presynaptic inhibitory effect on the amplitude and quantal content of EPPs for the activity of neuromuscular junction evoked by single and rhythmic stimuli. This effect was inhibited either by antagonists of α7-nAChRs, such as methyllycaconitine and α-cobratoxin, or by blocking SK-type calcium-activated potassium (KCa) channels with apamin or blocking intraterminal ryanodine receptors with ryanodine. A hypothesis was put forward that choline in mouse motoneuron nerve terminals can activate presynaptic α7-nAChRs, followed by the release of the stored calcium through ryanodine receptors and activation of SK-type KCa channels, resulting in sustained decay of the quantal content of the evoked neurotransmitter release.
Collapse
|
48
|
Nicotinic Cholinergic Signaling in Adipose Tissue and Pancreatic Islets Biology: Revisited Function and Therapeutic Perspectives. Arch Immunol Ther Exp (Warsz) 2013; 62:87-101. [DOI: 10.1007/s00005-013-0266-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
|
49
|
Mahgoub M, Keun-Hang SY, Sydorenko V, Ashoor A, Kabbani N, Al Kury L, Sadek B, Howarth CF, Isaev D, Galadari S, Oz M. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol 2013; 720:310-9. [PMID: 24140434 DOI: 10.1016/j.ejphar.2013.10.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/16/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022]
Abstract
The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Inhibition by CBD was not reversed by increasing ACh concentrations. Furthermore, specific binding of [(125)I] α-bungarotoxin was not inhibited by CBD (10 µM) in oocytes membranes. Using whole cell patch clamp technique in CA1 stratum radiatum interneurons of rat hippocampal slices, currents induced by choline, a selective-agonist of α7-receptor induced currents were also recoded. Bath application of CBD (10 µM) for 10 min caused a significant inhibition of choline induced currents. Finally, in hippocampal slices, [(3)H] norepinephrine release evoked by nicotine (30 µM) was also inhibited by 10 µM CBD. Our results indicate that CBD inhibits the function of the α7-nACh receptor.
Collapse
Affiliation(s)
- Mohamed Mahgoub
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Abu Dhabi, Al Ain, United Arab Emirates
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kalappa BI, Uteshev VV. The dual effect of PNU-120596 on α7 nicotinic acetylcholine receptor channels. Eur J Pharmacol 2013; 718:226-34. [PMID: 24036349 DOI: 10.1016/j.ejphar.2013.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
PNU-120596 (1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)urea), a Type-II positive allosteric modulator of α(7) nicotinic acetylcholine receptors inhibits α(7) desensitization and robustly prolongs openings of α(7) channels. However, these effects may render α(7) channels more accessible to positively charged molecules and thus, more susceptible to voltage-dependent open-channel-block-like inhibition. To test this hypothesis, choline chloride (i.e., choline), a selective endogenous α(7) agonist, and bicuculline methochloride (i.e., bicuculline), a competitive α(7) antagonist, were used as membrane voltage-sensitive probes in whole-cell voltage-clamp recordings from hippocampal CA1 interneurons in acute brain slices in the absence and presence of PNU-120596. PNU-120596 enhanced voltage-dependent inhibition of α(7) responses by bicuculline and choline. In the presence of PNU-120596, α(7) channels favored a burst-like kinetic modality in the presence, but not absence of bicuculline and bursts of α(7) openings were voltage-dependent. These results suggest that PNU-120596 alters the pharmacology of α(7) channels by making these channels more susceptible to voltage-dependent inhibitory interactions with positively charged drugs at concentrations that do not potently inhibit α(7) channels without PNU-120596. This inhibition imitates α(7) nicotinic receptor desensitization and compromises the potentiating anti-desensitization effects of PNU-120596 on α(7) nicotinic receptors. This unexpected dual action of PNU-120596, and possibly other Type-II positive allosteric modulators of α(7) nicotinic receptors, may lead to unanticipated α(7) channel-drug interactions and misinterpretation of α(7) single-channel data.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Southern Illinois University School of Medicine, Department of Pharmacology, MC #9629, PO Box 19629, Springfield, IL 62702, United States
| | | |
Collapse
|