1
|
Ye Y, Shetye SS, Birk DE, Soslowsky LJ. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. J Biomech Eng 2025; 147:011003. [PMID: 39297758 PMCID: PMC11500803 DOI: 10.1115/1.4066570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Collagen XI is ubiquitous in tissues such as joint cartilage, cancellous bone, muscles, and tendons and is an important contributor during a crucial part in fibrillogenesis. The COL11A1 gene encodes one of three alpha chains of collagen XI. The present study elucidates the role of collagen XI in the establishment of mechanical properties of tendons and ligaments. We investigated the mechanical response of three tendons and one ligament tissues from wild type and a targeted mouse model null for collagen XI: Achilles tendon (ACH), the flexor digitorum longus tendon (FDL), the supraspinatus tendon (SST), and the anterior cruciate ligament (ACL). Area was substantially lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Maximum load and maximum stress were significantly lower in Col11a1ΔTen/ΔTen ACH and FDL. Stiffness was lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Modulus was reduced in Col11a1ΔTen/ΔTen FDL and SST (both insertion site and midsubstance). Collagen fiber distributions were more aligned under load in both wild type group and Col11a1ΔTen/ΔTen groups. Results also revealed that the effect of collagen XI knockout on collagen fiber realignment is tendon-dependent and location-dependent (insertion versus midsubstance). In summary, this study clearly shows that the regulatory role of collagen XI on tendon and ligament is tissue specific and that joint hypermobility in type II Stickler's Syndrome may in part be due to suboptimal mechanical response of the soft tissues surrounding joints.
Collapse
Affiliation(s)
- Yaping Ye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33647
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081
| |
Collapse
|
2
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
3
|
Atiakshin D, Kostin A, Alekhnovich A, Volodkin A, Ignatyuk M, Klabukov I, Baranovskii D, Buchwalow I, Tiemann M, Artemieva M, Medvedeva N, LeBaron TW, Noda M, Medvedev O. The Role of Mast Cells in the Remodeling Effects of Molecular Hydrogen on the Lung Local Tissue Microenvironment under Simulated Pulmonary Hypertension. Int J Mol Sci 2024; 25:11010. [PMID: 39456794 PMCID: PMC11507233 DOI: 10.3390/ijms252011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Molecular hydrogen (H2) has antioxidant, anti-inflammatory, and anti-fibrotic effects. In a rat model simulating pulmonary fibrotic changes induced by monocrotaline-induced pulmonary hypertension (MPH), we had previously explored the impact of inhaled H2 on lung inflammation and blood pressure. In this study, we further focused the biological effects of H2 on mast cells (MCs) and the parameters of the fibrotic phenotype of the local tissue microenvironment. MPH resulted in a significantly increased number of MCs in both the pneumatic and respiratory parts of the lungs, an increased number of tryptase-positive MCs with increased expression of TGF-β, activated interaction with immunocompetent cells (macrophages and plasma cells) and fibroblasts, and increased MC colocalization with a fibrous component of the extracellular matrix of connective tissue. The alteration in the properties of the MC population occurred together with intensified collagen fibrillogenesis and an increase in the integral volume of collagen and elastic fibers of the extracellular matrix of the pulmonary connective tissue. The exposure of H2 together with monocrotaline (MCT), despite individual differences between animals, tended to decrease the intrapulmonary MC population and the severity of the fibrotic phenotype of the local tissue microenvironment compared to changes in animals exposed to the MCT effect alone. In addition, the activity of collagen fibrillogenesis associated with MCs and the expression of TGF-β and tryptase in MCs decreased, accompanied by a reduction in the absolute and relative content of reticular and elastic fibers in the lung stroma. Thus, with MCT exposure, inhaled H2 has antifibrotic effects involving MCs in the lungs of rats. This reveals the unknown development mechanisms of the biological effects of H2 on the remodeling features of the extracellular matrix under inflammatory background conditions of the tissue microenvironment.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Alexander Alekhnovich
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Artem Volodkin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Michael Ignatyuk
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Igor Buchwalow
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Marina Artemieva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Nataliya Medvedeva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Cedar City, UT 84720, USA
| | - Mami Noda
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Oleg Medvedev
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia
| |
Collapse
|
4
|
Chekanov K, Danko D, Tlyachev T, Kiselev K, Hagens R, Georgievskaya A. State-of-the-Art in Skin Fluorescent Photography for Cosmetic and Skincare Research: From Molecular Spectra to AI Image Analysis. Life (Basel) 2024; 14:1271. [PMID: 39459571 PMCID: PMC11509763 DOI: 10.3390/life14101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Autofluorescence is a remarkable property of human skin. It can be excited by UV and observed in the dark using special detection systems. The method of fluorescence photography (FP) is an effective non-invasive tool for skin assessment. It involves image capturing by a camera the emission of light quanta from fluorophore molecules in the skin. It serves as a useful tool for cosmetic and skincare research, especially for the detection of pathological skin states, like acne, psoriasis, etc. To the best of our knowledge, there is currently no comprehensive review that fully describes the application and physical principles of FP over the past five years. The current review covers various aspects of the skin FP method from its biophysical basis and the main fluorescent molecules of the skin to its potential applications and the principles of FP recording and analysis. We pay particular attention to recently reported works on the automatic analysis of FP based on artificial intelligence (AI). Thus, we argue that FP is a rapidly evolving technology with a wide range of potential applications. We propose potential directions of the development of this method, including new AI algorithms for the analysis and expanding the range of applications.
Collapse
Affiliation(s)
- Konstantin Chekanov
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Daniil Danko
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Timur Tlyachev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Konstantin Kiselev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Ralf Hagens
- Beiersdorf AG, Beiersdorfstraße 1-9, 22529 Hamburg, Germany;
| | | |
Collapse
|
5
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
6
|
Lin Y, Shi H, Yang R, Li S, Tang J, Li S. A transcriptomic analysis of incisional hernia based on high-throughput sequencing technology. Hernia 2024; 28:1899-1907. [PMID: 39073735 DOI: 10.1007/s10029-024-03116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Incisional hernia is a common postoperative complication; however, few transcriptomic studies have been conducted on it. In this study, we used second-generation high-throughput sequencing to explore the pathogenesis and potential therapeutic targets of incisional hernias. METHODS Superficial fasciae were collected from 15 patients without hernia and 21 patients with an incisional hernia. High-throughput sequencing of the fascia was performed to generate an expression matrix. We analyzed the matrix to identify differentially expressed genes (DEGs) and performed gene ontology and enrichment analyses of these DEGs. Additionally, an external dataset was utilized to identify key DEGs. RESULTS We identified 1,823 DEGs closely associated with extracellular matrix (ECM) imbalance, bacterial inflammatory response, and fibrillar collagen trimerization. TNNT3, CMAY5, ATP1B4, ASB5, CILP, SIX4, FBN1 and FNDC5 were identified as key DEGs at the intersection of the two expression matrices. Moreover, non-alcoholic fatty liver disease-related, TNF, and IL-17 signaling pathways were identified as key enrichment pathways. CONCLUSIONS We identified eight key DEGs and three pathways associated with incisional hernias. Our findings offer new insights into the pathogenesis of incisional hernias and highlight potential targets for their prevention and treatment.
Collapse
Affiliation(s)
- Yiming Lin
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Hekai Shi
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Rongduo Yang
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Shaochun Li
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Jianxiong Tang
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Shaojie Li
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China.
| |
Collapse
|
7
|
Yang F, Yang J, Wu M, Chen C, Chu X. Tertiary lymphoid structures: new immunotherapy biomarker. Front Immunol 2024; 15:1394505. [PMID: 39026662 PMCID: PMC11254617 DOI: 10.3389/fimmu.2024.1394505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Immunotherapy shows substantial advancement in cancer and is becoming widely used in clinical practice. A variety of biomarkers have been proposed to predict the efficacy of immunotherapy, but most of them have low predictive ability. Tertiary lymphoid structures (TLSs), the aggregation of multiple lymphocytes, have been found to exist in various tumor tissues. TLSs have been shown to correlate with patient prognosis and immunotherapy response. This review summarizes the characteristics of TLSs and the inducing factors of TLS formation, presents available evidence on the role of TLSs in predicting immunotherapy response in different cancers, and lastly emphasizes their predictive potential for neoadjuvant immunotherapy efficacy.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Wang T, Shu H, Hu J, Wang Y, Chen J, Peng J, Shang X. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster. Brief Bioinform 2024; 25:bbae329. [PMID: 38975895 DOI: 10.1093/bib/bbae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Spatial transcriptomics provides valuable insights into gene expression within the native tissue context, effectively merging molecular data with spatial information to uncover intricate cellular relationships and tissue organizations. In this context, deciphering cellular spatial domains becomes essential for revealing complex cellular dynamics and tissue structures. However, current methods encounter challenges in seamlessly integrating gene expression data with spatial information, resulting in less informative representations of spots and suboptimal accuracy in spatial domain identification. We introduce stCluster, a novel method that integrates graph contrastive learning with multi-task learning to refine informative representations for spatial transcriptomic data, consequently improving spatial domain identification. stCluster first leverages graph contrastive learning technology to obtain discriminative representations capable of recognizing spatially coherent patterns. Through jointly optimizing multiple tasks, stCluster further fine-tunes the representations to be able to capture complex relationships between gene expression and spatial organization. Benchmarked against six state-of-the-art methods, the experimental results reveal its proficiency in accurately identifying complex spatial domains across various datasets and platforms, spanning tissue, organ, and embryo levels. Moreover, stCluster can effectively denoise the spatial gene expression patterns and enhance the spatial trajectory inference. The source code of stCluster is freely available at https://github.com/hannshu/stCluster.
Collapse
Affiliation(s)
- Tao Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Han Shu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Jing Chen
- School of Computer Science and Engineering, Xi'an University of Technology, No.5 South Jinhua rd., Xi'an 710048, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| |
Collapse
|
9
|
Jiang N, Tan P, Sun Y, Zhou J, Ren R, Li Z, Zhu S. Microstructural, Micromechanical Atlas of the Temporomandibular Joint Disc. J Dent Res 2024; 103:555-564. [PMID: 38594786 DOI: 10.1177/00220345241227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc. First, the naive microstructure and mechanical properties were investigated in porcine TMJ discs (resting and functional conditions). Subsequently, the perforation and tear models (pathological conditions) were compared. Following this, a rabbit model of anterior disc displacement (abnormal stress) was studied. Results show diverse microstructures and mechanical properties at the nanometer to micrometer scale. In the functional state, gradual unfolding of the crimping cycle in secondary and tertiary structures leads to D-cycle prolongation in the primary structure, causing tissue failure. Pathological conditions lead to stress concentration near the injury site due to collagen interfibrillar traffic patterns, resulting in earlier damage manifestation. Additionally, the abnormal stress model shows collagen damage initiating at the primary structure and extending to the superstructure over time. These findings highlight collagen's various roles in different pathophysiological states. Our study offers valuable insights into TMJ disc function and dysfunction, aiding the development of diagnostic and therapeutic strategies for TMJ disorders, as well as providing guidance for the design of structural biomimetic materials.
Collapse
Affiliation(s)
- N Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - P Tan
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Sun
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Zhou
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Ren
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Li
- Ao Research Institute Davos, Davos, Graubünden, Switzerland
| | - S Zhu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
11
|
Shi H, Yuan M, Cai J, Lan L, Wang Y, Wang W, Zhou J, Wang B, Yu W, Dong Z, Deng D, Qian Q, Li Y, Zhou X, Liu J. HTRA1-driven detachment of type I collagen from endoplasmic reticulum contributes to myocardial fibrosis in dilated cardiomyopathy. J Transl Med 2024; 22:297. [PMID: 38515161 PMCID: PMC10958933 DOI: 10.1186/s12967-024-05098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Ming Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Lan Lan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumou Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Dawei Deng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
Schroeter S, Heiss R, Hammer CM, Best R, Brucker P, Hinterwimmer S, Grim C, Engelhardt M, Hotfiel T. Pathogenesis and Diagnosis of Proximal Hamstring Tendinopathies. SPORTVERLETZUNG SPORTSCHADEN : ORGAN DER GESELLSCHAFT FUR ORTHOPADISCH-TRAUMATOLOGISCHE SPORTMEDIZIN 2024; 38:31-39. [PMID: 37348536 DOI: 10.1055/a-2010-8121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The proximal hamstring complex is a highly vulnerable area that is especially prone to injury. Proximal hamstring tendinopathies (PHTs) remain challenging in diagnosis, treatment, rehabilitation, and prevention due to a large variety of different injuries, slow healing response, persistent symptoms, and functional impairments. PHTs are often misdiagnosed or underdiagnosed, leading to delayed treatment and therapy failure. In addition, many athletes are at a high risk of PHT recurrence, a leading cause of prolonged rehabilitation and impaired individual performance. Until now, there have been no clear criteria for the diagnosis and classification of PHT. Tendinopathies can be graded based on their symptoms and onset. Additionally, radiological characteristics exist that describe the severity of tendinopathies. The diagnosis usually includes a battery of pain provocation tests, functional tests, and imaging to ensure a proper classification. Understanding the specific tasks in the pathogenesis and diagnostic process of PHT requires knowledge of functional anatomy, injury pattern and pathophysiological mechanisms as well as examination and imaging techniques. This work provides a structured overview of the pathogenesis and diagnostic work-up of PHT, emphasizing structured examination and imaging to enable a reliable diagnosis and rapid treatment decisions.
Collapse
Affiliation(s)
- Sarah Schroeter
- Center for Muskuloskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Committee Muscle and Tendon, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS), Germany
| | - Christian Manfred Hammer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Anatomy Unit, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Raymond Best
- Committee Muscle and Tendon, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS), Germany
- Department of Sports Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Orthopaedic and Sports Trauma Surgery, Sportklinik Stuttgart GmbH, Stuttgart, Germany
| | | | | | - Casper Grim
- Center for Muskuloskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
- Department of Human Sciences Institute for Health Research and Education, University of Osnabrück, Osnabrück, Germany
| | - Martin Engelhardt
- Center for Muskuloskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Thilo Hotfiel
- Center for Muskuloskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
- Committee Muscle and Tendon, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS), Germany
- Department of Orthopedic and Trauma Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Li L, Ye H, Chen Q, Wei L. COL28 promotes proliferation, migration, and EMT of renal tubular epithelial cells. Ren Fail 2023; 45:2187236. [PMID: 36883360 PMCID: PMC10013395 DOI: 10.1080/0886022x.2023.2187236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Type XXVIII collagen (COL28) is involved in cancer and lung fibrosis. COL28 polymorphisms and mutations might be involved in kidney fibrosis, but the exact role of COL28 in renal fibrosis is unknown. This study explored the function of COL28 in renal tubular cells by examining the expression of COL28 mRNA and the effects of COL28 overexpression in human tubular cells. COL28 mRNA expression and localization were observed in normal and fibrotic kidney tissues from humans and mice using real-time PCR, western blot, immunofluorescence, and immunohistochemistry. The consequences of COL28 overexpression on cell proliferation, migration, cell polarity, and epithelial-to-mesenchymal transition (EMT) induced by TGF-β1 were examined in human tubular HK-2 cells. COL28 expression was low in human normal renal tissues, mainly observed in the renal tubular epithelial cells and especially in proximal renal tubules. COL28 protein expression in human and mouse obstructive kidney disease was higher than in normal tissues (p < 0.05) and more significant in the UUO2-Week than the UUO1-Week group. The overexpression of COL28 promoted HK-2 cell proliferation and enhanced their migration ability (all p < 0.05). TGF-β1 (10 ng/ml) induced COL28 mRNA expression in HK-2 cells, decreased E-cadherin and increased α-SMA in the COL28-overexpression group compared with controls (p < 0.05). ZO-1 expression decreased while COL6 increased in the COL28-overexpression group compared with controls (p < 0.05). In conclusion, COL28 overexpression promotes the migration and proliferation of renal tubular epithelial cells. The EMT could also be involved. COL28 could be a therapeutic target against renal- fibrotic diseases.
Collapse
Affiliation(s)
- Linlin Li
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Hong Ye
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Qiaoling Chen
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Lixin Wei
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Liu Y, Wang Y, Wang Y, Zhou J, Ding W. The growth status and functions of olfactory ensheathing cells cultured on randomly oriented and aligned type-I-collagen-based nanofibrous scaffolds. NANOTECHNOLOGY 2023; 35:035101. [PMID: 37905427 DOI: 10.1088/1361-6528/ad02a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Yansong Wang
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Ying Wang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Jihui Zhou
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Wenyuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
| |
Collapse
|
16
|
Araujo ASL, Simões MDJ, Araujo-Jr OP, Simões RS, Baracat EC, Nader HB, Soares-Jr JM, Gomes RCT. Hyperprolactinemia modifies extracellular matrix components associated with collagen fibrillogenesis in harderian glands of non- and pregnant female mice. Exp Eye Res 2023; 235:109612. [PMID: 37580001 DOI: 10.1016/j.exer.2023.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
The harderian gland (HG) is a gland located at the base of the nictating membrane and fills the inferomedial aspect of the orbit in rodents. It is under the influence of the hypothalamic-pituitary-gonadal axis and, because of its hormone receptors, it is a target tissue for prolactin (PRL) and sex steroid hormones (estrogen and progesterone). In humans and murine, the anterior surface of the eyes is protected by a tear film synthesized by glands associated with the eye. In order to understand the endocrine changes caused by hyperprolactinemia in the glands responsible for the formation of the tear film, we used an animal model with metoclopramide-induced hyperprolactinemia (HPRL). Given the evidences that HPRL can lead to a process of cell death and tissue fibrosis, the protein expression of small leucine-rich proteoglycans (SLRPs) was analyzed through immunohistochemistry in the HG of the non- and the pregnant female mice with hyperprolactinemia. The SRLPs are related to collagen fibrillogenesis and they participate in pro-apoptotic signals. Our data revealed that high prolactin levels and changes in steroid hormones (estrogen and progesterone) can lead to an alteration in the amount of collagen, and in the structure of type I and III collagen fibers through changes in the amounts of lumican and decorin, which are responsible for collagen fibrillogenesis. This fact can lead to the impaired functioning of the HG by excessive apoptosis in the HG of the non- and the pregnant female mice with HPRL and especially in the HG of pregnancy-associated hyperprolactinemia.
Collapse
Affiliation(s)
- Ariadne S L Araujo
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Manuel de J Simões
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Osvaldo P Araujo-Jr
- Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Ricardo S Simões
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Edmund C Baracat
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Helena B Nader
- Molecular Biology Division of the Department of Biochemistry, Federal University of São Paulo, Brazil
| | - José M Soares-Jr
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Regina C T Gomes
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil.
| |
Collapse
|
17
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
18
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
19
|
Synytsya A, Janstová D, Šmidová M, Synytsya A, Petrtýl J. Evaluation of IR and Raman spectroscopic markers of human collagens: Insides for indicating colorectal carcinogenesis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122664. [PMID: 36996519 DOI: 10.1016/j.saa.2023.122664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Vibrational spectroscopic methods are widely used in the molecular diagnostics of carcinogenesis. Collagen, a component of connective tissue, plays a special role as a biochemical marker of pathological changes in tissues. The vibrational bands of collagens are very promising to distinguish between normal colon tissue, benign and malignant colon polyps. Differences in these bands indicate changes in the amount, structure, conformation and the ratio between the individual structural forms (subtypes) of this protein. The screening of specific collagen markers of colorectal carcinogenesis was carried out based on the FTIR and Raman (λex 785 nm) spectra of colon tissue samples and purified human collagens. It was found that individual types of human collagens showed significant differences in their vibrational spectra, and specific spectral markers were found for them. These collagen bands were assigned to specific vibrations in the polypeptide backbone, amino acid side chains and carbohydrate moieties. The corresponding spectral regions for colon tissues and colon polyps were investigated for the contribution of collagen vibrations. Mentioned spectral differences in collagen spectroscopic markers could be of interest for early ex vivo diagnosis of colorectal carcinoma if combine vibrational spectroscopy and colonoscopy.
Collapse
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Daniela Janstová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Miroslava Šmidová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jaromír Petrtýl
- 4th Internal Clinic-Gastroenterology and Hepatology, 1(st) Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00 Prague 2, Czech Republic
| |
Collapse
|
20
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
21
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
22
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
23
|
Kornmuller A, Cooper TT, Jani A, Lajoie GA, Flynn LE. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors. J Biomed Mater Res A 2023; 111:415-434. [PMID: 36210786 DOI: 10.1002/jbm.a.37459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
Recognizing the cell-instructive capacity of the extracellular matrix (ECM), this study investigated the effects of expanding human adipose-derived stromal cells (hASCs) on ECM-derived microcarriers fabricated from decellularized adipose tissue (DAT) or decellularized cartilage tissue (DCT) within spinner flask bioreactors. Protocols were established for decellularizing porcine auricular cartilage and electrospraying methods were used to generate microcarriers comprised exclusively of DAT or DCT, which were compositionally distinct, but had matching Young's moduli. Both microcarrier types supported hASC attachment and growth over 14 days within a low-shear spinner culture system, with a significantly higher cell density observed on the DCT microcarriers at 7 and 14 days. Irrespective of the ECM source, dynamic culture on the microcarriers altered the expression of genes and proteins associated with cell adhesion and ECM remodeling. Label-free mass spectrometry analysis showed upregulation of proteins associated with cartilage development and ECM in the hASCs expanded on the DCT microcarriers. Based on Luminex analysis, the hASCs expanded on the DCT microcarriers secreted significantly higher levels of IL-8 and PDGFAA, supporting that the ECM source can modulate hASC paracrine factor secretion. Finally, the hASCs expanded on the microcarriers were extracted for analysis of adipogenic and chondrogenic differentiation relative to baseline controls. The microcarrier-cultured hASCs showed enhanced intracellular lipid accumulation at 7 days post-induction of adipogenic differentiation. In the chondrogenic studies, a low level of differentiation was observed in all groups. Future studies are warranted using alternative cell sources with greater chondrogenic potential to further assess the chondro-inductive properties of the DCT microcarriers.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Tyler T Cooper
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Ammi Jani
- Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
24
|
Prasad KN. A micronutrient mixture with collagen peptides, probiotics, cannabidiol, and diet may reduce aging, and development and progression of age-related alzheimer's disease, and improve its treatment. Mech Ageing Dev 2023; 210:111757. [PMID: 36460123 DOI: 10.1016/j.mad.2022.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Human aging involves gradual decline in organ functions leading to organ specific age-related chronic diseases such as Alzheimer's disease (AD). Although advances in the development of new drugs, novel surgical procedures, improved diet and lifestyle, have resulted in doubling of lifespan of humans, the quality of life in many cases remains poor because of increased incidence of age-related chronic diseases. Using experimental models of accelerated aging, several cellular defects associated with aging and AD have been identified. Some cellular defects due to increased oxidative stress, chronic inflammation, autophagy defects, mitochondrial dysfunction, and imbalances in the composition probiotics in favor of harmful bacteria over beneficial bacteria are common to both aging and AD, while others such as telomere attrition, loss of collagen, elastin, and hyaluronic acid, failure of DNA repair system, and impaired immune function are unique to aging; and some such as increased production of beta-amyloids, hyperphosphorylation of tau protein, and abnormal behaviors are unique to AD. It is suggested that supplementation with a micronutrient mixture, probiotics, collagen peptides, CBD, and modifications in the diet and lifestyle may reduce the aging processes, and the development, progression of AD, and improve the treatments of this disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, Inc. 245 El Faisan Dr., San Rafael, CA 94903, USA.
| |
Collapse
|
25
|
Mariné-Casadó R, Teichenné J, Tobajas Y, Caimari A, Villar A, Zangara A, Mulà A, Del Bas JM. Pomegranate natural extract Pomanox ® positively modulates skin health-related parameters in normal and UV-induced photoaging conditions in Hs68 human fibroblast cells. Int J Food Sci Nutr 2023; 74:51-63. [PMID: 36457282 DOI: 10.1080/09637486.2022.2152189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skin photoaging is primarily caused by ultraviolet radiation and can lead to the degradation of skin extracellular matrix components, resulting in hyperpigmentation and skin elasticity loss. In this area, polyphenols have become of great interest because of their antioxidant, anti-inflammatory and antiaging properties. Here, we evaluated the effects of the pomegranate natural extract Pomanox® on skin health-related parameters in normal and UV-induced photoaging conditions in human fibroblast Hs68 cells. Moreover, the inhibitory effects of Pomanox® on tyrosinase activity were assessed. In normal conditions, Pomanox® significantly modulated collagen and hyaluronic acid metabolisms. In UV-exposed cells, both preventive and regenerative treatments with Pomanox® positively modulated hyaluronic acid metabolism and decreased ROS levels. However, only the preventive treatment modulated collagen metabolism. Finally, Pomanox® showed a marked inhibitory capacity of tyrosinase activity (IC50 = 394.7 μg/mL). The modulation of skin health-related parameters exhibited by Pomanox® open a wide range of potential applications of this product.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Technological Unit of Nutrition and Health, Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Joan Teichenné
- Technological Unit of Nutrition and Health, Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Yaiza Tobajas
- Technological Unit of Nutrition and Health, Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Antoni Caimari
- Biotechnology Area, Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | | | | | | | | |
Collapse
|
26
|
Chalidis B, Givissis P, Papadopoulos P, Pitsilos C. Molecular and Biologic Effects of Platelet-Rich Plasma (PRP) in Ligament and Tendon Healing and Regeneration: A Systematic Review. Int J Mol Sci 2023; 24:2744. [PMID: 36769065 PMCID: PMC9917492 DOI: 10.3390/ijms24032744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Platelet-rich plasma (PRP) has been introduced and applied to a wide spectrum of acute and chronic ligament and tendon pathologic conditions. Although the biological effect of PRP has been studied thoroughly in both animal and human studies, there is no consensus so far on the exact mechanism of its action as well as the optimal timing and dosage of its application. Therefore, we conducted a systematic review aiming to evaluate the molecular effect of the administration of PRP in tendoligamentous injuries and degenerative diseases. The literature search revealed 36 in vitro and in vivo studies examining the healing and remodeling response of animal and human ligament or tendon tissues to PRP. Platelet-rich plasma added in the culture media was highly associated with increased cell proliferation, migration, viability and total collagen production of both ligament- and tendon-derived cells in in vitro studies, which was further confirmed by the upregulation of collagen gene expression. In vivo studies correlated the PRP with higher fibroblastic anabolic activity, including increased cellularity, collagen production and vascularity of ligament tissue. Similarly, greater metabolic response of tenocytes along with the acceleration of the healing process in the setting of a tendon tear were noticed after PRP application, particularly between the third and fourth week after treatment. However, some studies demonstrated that PRP had no or even negative effect on tendon and ligament regeneration. This controversy is mainly related to the variable processes and methodologies of preparation of PRP, necessitating standardized protocols for both investigation and ap-plication.
Collapse
Affiliation(s)
- Byron Chalidis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Panagiotis Givissis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Pericles Papadopoulos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| | - Charalampos Pitsilos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| |
Collapse
|
27
|
Holm Nielsen S, Sun S, Bay-Jensen AC, Karsdal M, Sørensen IJ, Weber U, Loft AG, Kollerup G, Thamsborg G, Madsen OR, Møller J, Østergaard M, Pedersen SJ. Levels of extracellular matrix metabolites are associated with changes in Ankylosing Spondylitis Disease Activity Score and MRI inflammation scores in patients with axial spondyloarthritis during TNF inhibitor therapy. Arthritis Res Ther 2022; 24:279. [PMID: 36564778 PMCID: PMC9783808 DOI: 10.1186/s13075-022-02967-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/PURPOSE In axial spondyloarthritis (axSpA) inflammation of the sacroiliac joints and spine is associated with local extracellular matrix (ECM) remodeling of affected tissues. We aimed to investigate the association of ECM metabolites with treatment response in axSpA patients treated with TNF-α inhibitory therapy for 46 weeks. METHODS In a prospective clinical study of axSpA patients (n=55) initiating a TNF inhibitor (infliximab, etanercept, or adalimumab), serum concentrations of formation of type I (PRO-C1), type III (PRO-C3), and type VI (PRO-C6) collagen; turnover of type IV collagen (PRO-C4), and matrix-metalloproteinase (MMP)-degraded type III (C3M) collagen, MMP-degraded type IV (C4M), type VI (C6M), and type VII (C7M) collagen, and cathepsin-degraded type X collagen (C10C), MMP-mediated metabolite of C-reactive protein (CRPM), citrullinated vimentin (VICM), and neutrophil elastase-degraded elastin (EL-NE) were measured at baseline, week 2, week 22, and week 46. RESULTS Patients were mostly males (82%), HLA-B27 positive (84%), with a median age of 40 years (IQR: 32-48), disease duration of 5.5 years (IQR: 2-10), and a baseline Ankylosing Spondylitis Disease Activity Score (ASDAS) of 3.9 (IQR: 3.0-4.5). Compared to baseline, PRO-C1 levels were significantly increased after two weeks of treatment, C6M levels were significantly decreased after two and 22 weeks (repeated measures ANOVA, p=0.0014 and p=0.0015, respectively), EL-NE levels were significantly decreased after 2 weeks (p=0.0008), VICM levels were significantly decreased after two and 22 weeks (p=0.0163 and p=0.0374, respectively), and CRP were significantly decreased after two and 22 weeks (both p=0.0001). Baseline levels of PRO-C1, PRO-C3, C6M, VICM, and CRP were all associated with ASDAS clinically important and major improvement after 22 weeks (ΔASDAS ≥1.1) (Mann-Whitney test, p=0.006, p=0.008, p<0.001, <0.001, <0.001, respectively), while C6M, VICM and CRP levels were associated with ASDAS clinically important and major improvement after 46 weeks (ΔASDAS ≥2.0) (p=0.002, p=0.044, and p<0.001, respectively). PRO-C1 and C6M levels were associated with a Bath AS Disease Activity Score (BASDAI) response to TNF-inhibitory therapy after 22 weeks (Mann-Whitney test, p=0.020 and p=0.049, respectively). Baseline levels of PRO-C4 and C6M were correlated with the total SPARCC MRI Spine and Sacroiliac Joint Inflammation score (Spearman's Rho ρ=0.279, p=0.043 and ρ=0.496, p=0.0002, respectively). CONCLUSIONS Extracellular matrix metabolites were associated with ASDAS response, MRI inflammation, and clinical treatment response during TNF-inhibitory treatment in patients with axSpA.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Nordic Bioscience, Herlev, Denmark.
- Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Shu Sun
- Nordic Bioscience, Herlev, Denmark
| | | | | | - Inge Juul Sørensen
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Weber
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
- Practice Buchsbaum, Rheumatology, Schaffhausen, Switzerland
| | - Anne Gitte Loft
- Departments of Rheumatology, Hospital Lillebælt, Vejle, Denmark
- Aarhus University Hospital, Aarhus, Denmark
| | - Gina Kollerup
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gorm Thamsborg
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Rintek Madsen
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Møller
- Department of Radiology, Herlev Hospital, Copenhagen, Denmark
| | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Juhl Pedersen
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Andriotis OG, Nalbach M, Thurner PJ. Mechanics of isolated individual collagen fibrils. Acta Biomater 2022; 163:35-49. [PMID: 36509398 DOI: 10.1016/j.actbio.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Collagen fibrils are the fundamental structural elements in vertebrate animals and compose a framework that provides mechanical support to load-bearing tissues. Understanding how these fibrils initially form and mechanically function has been the focus of a myriad of detailed investigations over the last few decades. From these studies a great amount of knowledge has been acquired as well as a number of new questions to consider. In this review, we examine the current state of our knowledge of the mechanical properties of extant fibrils. We emphasize on the mechanical response and related deformation of collagen fibrils upon tension, which is the predominant load imposed in most collagen-rich tissues. We also illuminate the gaps in knowledge originating from the intriguing results that the field is still trying to interpret. STATEMENT OF SIGNIFICANCE: : Collagen is the result of millions of years of biological evolution and is a unique family of proteins, the majority of which provide mechanical support to biological tissues. Cells produce collagen molecules that self-assemble into larger structures, known as collagen fibrils. As simple as they appear under an optical microscope, collagen fibrils display a complex ultrastructural architecture tuned to the external forces that are imposed upon them. Even more complex is the way collagen fibrils deform under loading, and the nature of the mechanisms that drive their formation in the first place. Here, we present a cogent synthesis of the state-of-knowledge of collagen fibril mechanics. We focus on the information we have from in vitro experiments on individual, isolated from tissues, collagen fibrils and the knowledge available from in silico tests.
Collapse
Affiliation(s)
- Orestis G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria
| | - Mathis Nalbach
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria
| | - Philipp J Thurner
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria.
| |
Collapse
|
29
|
Gong C, Lu Y, Jia C, Xu N. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy. J Cosmet Dermatol 2022; 21:5696-5703. [PMID: 35947511 DOI: 10.1111/jocd.15298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The carbon dioxide (CO2 ) fractional laser resurfacing has become one of the hottest therapies for dermatoses. However, complications such as skin swelling, prolonged erythema, post-inflammatory hyperpigmentation, and scar formation remain. Low-level laser (LLL) therapy is accepted to promote skin wound healing and regeneration, decrease inflammation and pain, and modulate immunoreaction with low-dose laser of different wavelength. 532 nm laser therapy is commonly used to remove pigmented spots and to tender skin, but not utilized in wound care. OBJECTIVE We aimed to determine the efficacy of the low-level 532 nm green laser in wound healing after CO2 fractional laser. METHODS Six adult male mice (C57BL/6, 8 weeks old) were prepared for animal experiments. The dorsum of each mouse was divided into four parts that, respectively, received designed treatments, as controlled (group Ctrl), 532 nm LLL-treated (group GL), CO2 fractional laser-treated (group FL), and CO2 fractional laser followed by three times 532 nm LLL-treated (group FG). Hematoxylin-eosin staining (H&E), Masson-trichrome staining, CD31 immunohistochemical staining were performed to evaluate the efficacy of wound healing after treated by different irradiations. Western blotting was used to detect the expression of related proteins. Mouse skin fibroblasts (MSFs) were treated with LLL using a wavelength of 532 nm once. Cellular responses were observed and analyzed after 48 hours. Cell viability and migration of different groups were assessed by scratch and the Cell Counting Kit-8 (CCK8) assays, respectively. RESULTS Collagen remodeling and epidermis thickness were significantly enhanced in group FG than that in group FL in morphology. Besides, CD31 immunohistochemical staining indicated prominently increased angiogenesis in both groups FL and FG than non-irradiation group. The expression of extracellular matrix (ECM)-related protein (Col1, Col3 and MMP1) showed a remarkable improvement in wound healing in group FG than that in group FL. Irradiated MSFs showed a better migration ability compared with non-irradiated controls. LLL enhanced the secretion function of MSFs on Collagen I and III. CONCLUSIONS Low-level green laser promotes wound healing after CO2 fractional laser by improving the integrity of skin barrier and allowing for scarless healing. Therefore, low-level green laser therapy might serve as a sequential therapy of invasive laser surgery to ensure a better wound care.
Collapse
Affiliation(s)
- Chengchen Gong
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Gurler G, Altunbuker H, Cankaya O, Esen-Aydinli F, Incebay O, Sel SA, Lay I, Kerem-Gunel M, Anlar B. Clinical evaluation of muscle functions in neurofibromatosis type 1. J Paediatr Child Health 2022; 58:1997-2002. [PMID: 35869836 DOI: 10.1111/jpc.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
AIM Muscle weakness, fatigue and speech problems can occur in neurofibromatosis type 1 (NF1). The pathogenesis of these symptoms is unclear, likely multifactorial. We examined motor function in limb and speech muscles in NF1 patients. METHODS We evaluated NF1 and control groups aged 4-18 years for muscle strength, tone and mobility using standard manual testing, joint motion and Beighton score measurements. Speech and language functions were assessed by speech articulation and resonance. As a marker of muscle tissue turnover, we determined collagen degradation products in urine before and after submaximal exercise. RESULTS NF1 patients had reduced strength in proximal limb muscles compared to control subjects. Speech articulation problems and hypernasality were more common in NF1 (47% and 38%, respectively). Collagen products excreted in urine correlated with gluteal and biceps muscle strength. CONCLUSION Muscle dysfunction can be detected in some children with NF1 and may explain certain clinical features including fatigue, speech and articulation problems. If confirmed by further research, these findings may be relevant to the management of this condition.
Collapse
Affiliation(s)
- Gokce Gurler
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Ozge Cankaya
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Fatma Esen-Aydinli
- Department of Speech and Language Therapy, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Onal Incebay
- Department of Speech and Language Therapy, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Sinem A Sel
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mintaze Kerem-Gunel
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Banu Anlar
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Jin J, Yang QQ, Zhou YL. Non-Viral Delivery of Gene Therapy to the Tendon. Polymers (Basel) 2022; 14:3338. [PMID: 36015594 PMCID: PMC9415435 DOI: 10.3390/polym14163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 01/19/2023] Open
Abstract
The tendon, as a compact connective tissue, is difficult to treat after an acute laceration or chronic degeneration. Gene-based therapy is a highly efficient strategy for diverse diseases which has been increasingly applied in tendons in recent years. As technology improves by leaps and bounds, a wide variety of non-viral vectors have been manufactured that attempt to have high biosecurity and transfection efficiency, considered to be a promising treatment modality. In this review, we examine the unwanted biological barriers, the categories of applicable genes, and the introduction and comparison of non-viral vectors. We focus on lipid-based nanoparticles and polymer-based nanoparticles, differentiating between them based on their combination with diverse chemical modifications and scaffolds.
Collapse
Affiliation(s)
| | | | - You Lang Zhou
- Hand Surgery Research Center, Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
32
|
Noriega-González DC, Drobnic F, Caballero-García A, Roche E, Perez-Valdecantos D, Córdova A. Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review. Nutrients 2022; 14:2663. [PMID: 35807843 PMCID: PMC9267994 DOI: 10.3390/nu14132663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tendinopathies represent 30-50% of all sports injuries. The tendon response is influenced by the load (volume, intensity, and frequency) that the tendon support, resulting in irritability and pain, among others. The main molecular component of tendons is collagen I (60-85%). The rest consist of glycosaminoglycans-proteoglycans, glycoproteins, and other collagen subtypes. This study's aim was to critically evaluate the efficacy of vitamin C supplementation in the treatment of tendinopathies. At the same time, the study aims to determine the optimal conditions (dose and time) for vitamin C supplementation. A structured search was carried out in the SCOPUS, Medline (PubMed), and Web of Science (WOS) databases. The inclusion criteria took into account studies describing optimal tendon recovery when using vitamin C alone or in combination with other compounds. The study design was considered, including randomized, double-blind controlled, and parallel designs in animal models or humans. The main outcome is that vitamin C supplementation is potentially useful as a therapeutic approach for tendinopathy recovery. Vitamin C supplementation, alone or in combination with other products, increases collagen synthesis with a consequent improvement in the patient's condition. On the other hand, vitamin C deficiency is mainly associated with a decrease in procollagen synthesis and reduced hydroxylation of proline and lysine residues, hindering the tendon repair process.
Collapse
Affiliation(s)
- David C. Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47002 Valladolid, Spain;
| | | | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Los Pajaritos, University of Valladolid, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Perez-Valdecantos
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain;
| | - Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain;
| |
Collapse
|
33
|
Lu J, Jiang L, Chen Y, Lyu K, Zhu B, Li Y, Liu X, Liu X, Long L, Wang X, Xu H, Wang D, Li S. The Functions and Mechanisms of Basic Fibroblast Growth Factor in Tendon Repair. Front Physiol 2022; 13:852795. [PMID: 35770188 PMCID: PMC9234302 DOI: 10.3389/fphys.2022.852795] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tendon injury is a disorder of the musculoskeletal system caused by overuse or trauma, which is characterized by pain and limitations in joint function. Since tendon healing is slowly and various treatments are generally ineffective, it remains a clinically challenging problem. Recent evidences suggest that basic fibroblast growth factor (bFGF) not only plays an important role in tendon healing, but also shows a positive effect in laboratory experimentations. The purpose of this review is to summarize the effects of bFGF in the tendon healing. Firstly, during the inflammatory phase, bFGF stimulates the proliferation and differentiation of vascular endothelial cells to foster neovascularization. Furthermore, bFGF enhances the production of pro-inflammatory factors during the early phase of tendon healing, thereby accelerating the inflammatory response. Secondly, the cell proliferation phase is accompanied by the synthesis of a large number of extracellular matrix components. bFGF speeds up tendon healing by stimulating fibroblasts to secrete type III collagen. Lastly, the remodeling phase is characterized by the transition from type III collagen to type I collagen, which can be promoted by bFGF. However, excessive injection of bFGF can cause tendon adhesions as well as scar tissue formation. In future studies, we need to explore further applications of bFGF in the tendon healing process.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Bin Zhu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Houping Xu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Houping Xu, ; Dingxuan Wang, ; Sen Li,
| | - Dingxuan Wang
- School of Physical Education, Southwest Medical University, Luzhou, China
- *Correspondence: Houping Xu, ; Dingxuan Wang, ; Sen Li,
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Houping Xu, ; Dingxuan Wang, ; Sen Li,
| |
Collapse
|
34
|
Chakravarti S, Enzo E, de Barros MRM, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet 2022; 23:193-222. [PMID: 35537467 DOI: 10.1146/annurev-genom-083117-021702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examine genetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shukti Chakravarti
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | | | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| |
Collapse
|
35
|
Lühmann P, Kremer T, Siemers F, Rein S. Comparative histomorphological analysis of elbow ligaments and capsule. Clin Anat 2022; 35:1070-1084. [DOI: 10.1002/ca.23913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/23/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Paul Lühmann
- Department of Plastic and Hand Surgery with Burn Unit Hospital Sankt Georg Leipzig Germany
| | - Thomas Kremer
- Department of Plastic and Hand Surgery with Burn Unit Hospital Sankt Georg Leipzig Germany
| | - Frank Siemers
- Department of Plastic and Hand Surgery with Burn Unit Trauma Center Bergmannstrost Halle Germany
- Martin‐Luther‐University Halle‐Wittenberg Halle Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery with Burn Unit Hospital Sankt Georg Leipzig Germany
- Martin‐Luther‐University Halle‐Wittenberg Halle Germany
| |
Collapse
|
36
|
Durouchoux A, Liguoro D, Sesay M, Le Petit L, Jecko V. Subarachnoid space of the optic nerve sheath and intracranial hypertension: a macroscopic, light and electron microscopic study. Surg Radiol Anat 2022; 44:759-766. [PMID: 35507023 DOI: 10.1007/s00276-022-02948-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The optic nerve (ON) is an extension of the central nervous system via the optic canal to the orbital cavity. It is accompanied by meninges whose arachnoid layer is in continuity with that of the chiasmatic cistern. This arachnoid layer is extended along the ON, delimiting a subarachnoid space (SAS) around the ON. Not all forms of chronic intracranial hypertension (ICH) present papilledema. The latter is sometimes asymmetric, unilateral, or absent. The radiological signs of optic nerve sheath (ONS) dilation, in magnetic resonance imaging, are inconsistent or difficult to interpret. The objective of this study was to analyze the anatomy, the constitution, and the variability of the SAS around the ON in its intraorbital segment to improve the understanding of the pathophysiologic mechanism of asymmetric or unilateral or absent papilledema in certain ICH. METHODS The study was carried out on nine cadaveric specimens. In four embalmed specimens, macroscopic analysis of the SAS of the ONS were performed, with description about density of the arachnoid trabecular meshwork in three distinct areas (bulbar segment, mid-orbital segment and the precanal segment). In three other embalmed specimens, after staining of SAS by methylene blue (MB), we performed macroscopic analysis of MB progression in the SAS of the ONS. Then, in two non-embalmed specimens, light and electron microscopy (EM) analysis were also done. RESULTS On the macroscopic level, after staining of SAS, we found in all cases that MB progressed on 16 mm average throughout the SAS of the ONS without reaching the papilla. In four embalmed specimens, in the SAS of the ONS, the density of the arachnoid trabecular meshwork showed inter-individual variability (100%) and intra-individual variability with bilateral variability (50%) and/or variability within the same ONS (88%). On the microscopic level, the arachnoid trabeculae of the ONS are composed of dense connective tissue. The EM perfectly depicted its composition which is mainly of collagen fibers of parallel orientation. CONCLUSION The variability of the SAS around the ONS probably impacts the symmetrical or asymmetrical nature of papilledema in ICH.
Collapse
Affiliation(s)
- A Durouchoux
- Neurosurgery B Department, University Hospital Bordeaux, Bordeaux, France.
| | - D Liguoro
- Neurosurgery A Department, Bordeaux Hospital, Bordeaux, France.,Department of Anatomy, University of Bordeaux, Bordeaux, France
| | - M Sesay
- Neuroanesthesia, Bordeaux Hospital, Bordeaux, France
| | - L Le Petit
- Neurosurgery A Department, Bordeaux Hospital, Bordeaux, France
| | - V Jecko
- Neurosurgery A Department, Bordeaux Hospital, Bordeaux, France
| |
Collapse
|
37
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
38
|
Yuan J, Gong Z, Liu K, Song J, Wen Q, Tan W, Zhan S, Shen Q. Correlation between diffusion kurtosis and intravoxel incoherent motion derived (IVIM) parameters and tumor tissue composition in rectal cancer: a pilot study. Abdom Radiol (NY) 2022; 47:1223-1231. [PMID: 35107589 DOI: 10.1007/s00261-022-03426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To correlate non-invasive quantitative diffusion kurtosis imaging (DKI) and intravoxel incoherent motion-derived (IVIM) parameters with rectal cancer composition assessed by the expression of caudal-type homeobox 2 (CDX-2), Vimentin (VIM), CD34 and Ki-67 on resected tissues, as well as the tumor stroma ratio (TSR) and the results of H&E and Masson staining. MATERIALS AND METHODS A prospective study of 26 patients with rectal cancer who underwent magnetic resonance (MR) imaging, including DKI with 4 b values and IVIM at 3.0 T prior to surgery. Primary tumor was harvested and fixed for H&E, immunohistochemistry and Masson staining. One-way ANOVA was used to test the differences. Pearson correlation coefficients and multiple linear regression analyses were applied to evaluation the correlations. RESULTS The apparent diffusion coefficient (ADCDKI) and MKDKI all exhibited significant differences in subgroups with different T stages (P < 0.05) and among high- and low- grade rectal cancer (P < 0.05). MDDKI showed a moderate negative correlation with CDX-2 (r = - 0.42, P = 0.040) and a moderate positive correlation with CD34 (r = 0.42, P = 0.041). ADCIVIM exhibited a moderate positive correlation with Masson staining (r = 0.426, P = 0.048) DIVIM showed a moderate negative correlation with CDX-2 (r = - 0.58, P = 0.005). [Formula: see text] showed a moderate positive correlation with VIM (r = 0.445, P = 0.033). CONCLUSION ADCDKI and MKDKI demonstrated a higher correlation with T stages and histologic grades. MDDKI showed significant correlations with CDX-2 and CD34. ADCIVIM showed significant correlation with Masson. DIVIM showed significant correlations with CDX-2 and [Formula: see text] showed significant correlation with VIM. These findings should be validated in a larger study.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| | - Kun Liu
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China.
| | - Jingjing Song
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| | - Qun Wen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| | - Wenli Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China.
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| | - Qiang Shen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong District, Shanghai, China
| |
Collapse
|
39
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
40
|
Leiphart RJ, Pham H, Harvey T, Komori T, Kilts TM, Shetye SS, Weiss SN, Adams SM, Birk DE, Soslowsky LJ, Young MF. Coordinate roles for collagen VI and biglycan in regulating tendon collagen fibril structure and function. Matrix Biol Plus 2022; 13:100099. [PMID: 35036900 PMCID: PMC8749075 DOI: 10.1016/j.mbplus.2021.100099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.
Collapse
Affiliation(s)
- Ryan J. Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hai Pham
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Harvey
- Carnegie Institution for Science, Department of Embryology, The Johns Hopkins University, USA
| | - Taishi Komori
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tina M. Kilts
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snehal S. Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila M. Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - David E. Birk
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Marian F. Young
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Davis SC, Gil J, Solis M, Higa A, Mills A, Simms C, Pena PV, Li J, Raut V. Antimicrobial effectiveness of wound matrices containing native extracellular matrix with polyhexamethylene biguanide. Int Wound J 2022; 19:86-99. [PMID: 33955663 PMCID: PMC8684887 DOI: 10.1111/iwj.13600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of wound matrix materials that are designed to help heal both acute and chronic wounds are currently available. Because wounds often encounter opportunistic microbes that can delay healing, the effectiveness of these materials is often suboptimal, resulting in delayed or compromised wound healing. The importance of reducing and controlling wound microbes is well recognised and there are several antimicrobial options available to address this unmet clinical need. This study compares the antimicrobial and wound healing capabilities, both in vivo and in vitro against methicillin-resistant Staphylococcus aureus (MRSA) USA 300, for the following compounds: Collagen Wound Matrix-Anti Microbial (CWM-AM); Collagen Wound Matrix-Anti Microbial XT (CWM-AM XT); Antimicrobial Hydrofiber Wound Dressing (AHWD); Dermal Scaffold with Silver (DRSAg); Collagen Extracellular Matrix (CEM); Collagen Wound Matrix (CWM); Matrix Wound Dressing with Silver (MWDAg); Cadexomer Iodine Gel (CIG); Triple Antibiotic Ointment (TAO); and Antimicrobial Wound Gel (AWG). For the in vitro zone of inhibition assay, AWG and CIG had the largest diffused areas, followed by CWM-AM and CWM-AM XT. Furthermore, CWM-AM, CWM-AM XT, AWG, and CIG exhibited a persistent antimicrobial activity for up to 10 days after incubation. However, in the cytotoxicity studies performed using human fibroblasts, CWM-AM and CWM-AM XT had no detrimental effects in cell proliferation and viability, while AWG and CIG were cytotoxic and prohibitive for cell proliferation. Treatments were then assessed for microbiology and wound healing efficacy using an in vivo porcine deep reticular dermal wound model. CWM-AM XT displayed the greatest in vivo antimicrobial activity against MRSA USA300 and expedited the reepithelialisation at a faster rate than other treatment groups. This study shows that a novel collagen matrix containing an antimicrobial agent can reduce the bacterial load and support healing.
Collapse
Affiliation(s)
- Stephen C. Davis
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Joel Gil
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Michael Solis
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Alexander Higa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | | | - Colin Simms
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Pilar Valencia Pena
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Jie Li
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Vivek Raut
- Organogenesis Inc.CantonMassachusettsUSA
| |
Collapse
|
42
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
43
|
Shagdarova B, Konovalova M, Zhuikova Y, Lunkov A, Zhuikov V, Khaydapova D, Il’ina A, Svirshchevskaya E, Varlamov V. Collagen/Chitosan Gels Cross-Linked with Genipin for Wound Healing in Mice with Induced Diabetes. MATERIALS (BASEL, SWITZERLAND) 2021; 15:15. [PMID: 35009173 PMCID: PMC8745956 DOI: 10.3390/ma15010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.K.); (E.S.)
| | - Yuliya Zhuikova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Alexey Lunkov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Dolgor Khaydapova
- Faculty of Soil Science, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Alla Il’ina
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.K.); (E.S.)
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| |
Collapse
|
44
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
45
|
Omar R, Malfait F, Van Agtmael T. Four decades in the making: Collagen III and mechanisms of vascular Ehlers Danlos Syndrome. Matrix Biol Plus 2021; 12:100090. [PMID: 34849481 PMCID: PMC8609142 DOI: 10.1016/j.mbplus.2021.100090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Vascular Ehlers Danlos (vEDS) syndrome is a severe multi-systemic connective tissue disorder characterized by risk of dissection and rupture of the arteries, gastro-intestinal tract and gravid uterus. vEDS is caused by mutations in COL3A1, that encodes the alpha 1 chain of type III collagen, which is a major extracellular matrix component of the vasculature and hollow organs. The first causal mutations were identified in the 1980s but progress in our understanding of the pathomolecular mechanisms has been limited. Recently, the application of more refined animal models combined with global omics approaches has yielded important new insights both in terms of disease mechanisms and potential for therapeutic intervention. However, it is also becoming apparent that vEDS is a complex disorder in terms of its molecular disease mechanisms with a poorly understood allelic and mechanistic heterogeneity. In this brief review we will focus our attention on the disease mechanisms of COL3A1 mutations and vEDS, and recent progress in therapeutic approaches using animal models.
Collapse
Affiliation(s)
- Ramla Omar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Fransiska Malfait
- Centre for Medical Genetics, Ghent University Hospital, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
46
|
Siadat SM, Silverman AA, Susilo ME, Paten JA, DiMarzio CA, Ruberti JW. Development of Fluorescently Labeled, Functional Type I Collagen Molecules. Macromol Biosci 2021; 22:e2100144. [PMID: 34856056 DOI: 10.1002/mabi.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/22/2021] [Indexed: 11/11/2022]
Abstract
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.
Collapse
Affiliation(s)
| | | | - Monica E Susilo
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey A Paten
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
| | - Charles A DiMarzio
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
47
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
48
|
Xiao X, Wang M, Qiu X, Ling W, Chu X, Huang Y, Li T. Construction of extracellular matrix-based 3D hydrogel and its effects on cardiomyocytes. Exp Cell Res 2021; 408:112843. [PMID: 34563515 DOI: 10.1016/j.yexcr.2021.112843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/26/2023]
Abstract
Some discoveries resulted from 2-dimensional (2D) cultured cardiac cells have been disqualified in animal testing and later clinical trials. Extracellular matrix (ECM) plays a vital role in cardiac homeostasis, cardiac ECM (cECM)-based 3D cell cultures can mimics the physiological and pathological conditions in vivo closely, it is hopeful of addressing this challenge. Construction of cECM-based 3-dimensional (3D) hydrogel (cECM3DH) and its effects on cell behaviors were studied here. The results indicated that cellular compartments could be efficiently removed from heart tissue via sodium dodecyl sulfonate (SDS)- and Triton X-100-mediated decellularization, remaining the natural fibrous network structure and major proteins. 3D hydrogel consisted of 1 × 107 cells/mL cells and 75% cECM could promote the proliferation and anti-apoptosis ability of human embryonic kidney (HEK)-293T cells. 0.25% trypsin or 0.20% collagenase was suitable to retrieve these cells from 3D hydrogel for further researches. Compared with 2D culture system, cECM3DH could significantly increase the proportion of GATA 4+ cardiomyocytes (CMs) derived from heart tissue of neonatal mouse or induced differentiation of embryonic stem cells (ESCs) (P < 0.05) The expression levels of mature genes including cTnT, JCN, CaV1.2, MYL2, CASQ2, NCX1, and Cx43 of these CMs in adult pig cECM-based 3D hydrogel (APcECM3DH) were significantly higher than that in 2D culture system and in newborn piglet cECM-based 3D hydrogel (NPcECM3DH), respectively (P < 0.05). Therefore, cECM3DH supports the generation of primary CMs and ESC-derived CMs, APcECM3DH was more conducive to promoting CM maturation, which contributes to building 3D model for pathogenesis exploration, drug screening, and regenerative medicine of heart diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Institute of Laboratory Animal Science, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Wenhui Ling
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
49
|
Meng H, Zhao MM, Yang RY, Deng XF, Zhang HY, Choi YM, An IS, An SK, Dong YM, He YF, Li L, Guo MM, Yi F. Salvianolic acid B regulates collagen synthesis: Indirect influence on human dermal fibroblasts through the microvascular endothelial cell pathway. J Cosmet Dermatol 2021; 21:3007-3015. [PMID: 34648670 DOI: 10.1111/jocd.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Salvianolic acid B (SAB) is one of the main active ingredients of Salvia Miltiorrhiza. It has significant skin anti-aging, whitening, and sun protection properties. AIMS The study aimed at studying the mechanism underlying the effect of salvianolic acid Bon collagen synthesis, which has good anti-aging efficacy and modulates microcirculation. METHODS This study employed available public databases, bioinformatics methodologies, and the inverse docking approach to explore the effectiveness of SAB in the regulating collagen synthesis, and then used an human dermal fibroblast (HDF)- Human dermal microvascular endothelial cell (HDMEC) in vitro model to validate the predicted mechanism of SAB in influencing collagen synthesis. RESULTS The results showed that NO production in SAB-treated HDMEC-conditioned medium was increased compared to that in control media, and the same tendency was also observed for growth factor production. SAB also upregulated HDMEC cellular eNOS and VEGF. When SAB-treated HDMEC conditioned medium was transferred to HDFs, the expression of collagen I, collagen III, and elastin in HDFs was upregulated and MMP-1 was downregulated. CONCLUSIONS The results show that SAB regulates collagen through the HDMEC-HDF pathway. Furthermore, the mechanisms might be closely related to the microcirculation factors NO and VEGF.
Collapse
Affiliation(s)
- Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Meng-Meng Zhao
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Ru-Ya Yang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Xiao-Feng Deng
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hong-Yan Zhang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yeong-Min Choi
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Korea
| | - In-Sook An
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Korea
| | - Sung-Kwan An
- Department of Cosmetics Engineering, Research Institute for Molecular-Targeted Drugs, Konkuk University, Seoul, Korea
| | - Yin-Mao Dong
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yi-Fan He
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Miao-Miao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
50
|
Sun M, Zafrullah N, Adams S, Devaux F, Avila MY, Ziebarth N, Margo CE, Koch M, Espana EM. Collagen XIV Is an Intrinsic Regulator of Corneal Stromal Structure and Function. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2184-2194. [PMID: 34560063 DOI: 10.1016/j.ajpath.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022]
Abstract
Collagen XIV is poorly characterized in the body, and the current knowledge of its function in the cornea is limited. The aim of the current study was to elucidate the role(s) of collagen XIV in regulating corneal stromal structure and function. Analysis of collagen XIV expression, temporal and spatial, was performed at different postnatal days (Ps) in wild-type C57BL/6 mouse corneal stromas and after injury. Conventional collagen XIV null mice were used to inquire the roles that collagen XIV plays in fibrillogenesis, fibril packing, and tissue mechanics. Fibril assembly and packing as well as stromal organization were evaluated using transmission electron microscopy and second harmonic generation microscopy. Atomic force microscopy was used to assess stromal stiffness. Col14a1 mRNA expression was present at P4 to P10 and decreased at P30. No immunoreactivity was noted at P150. Abnormal collagen fibril assembly with a shift toward larger-diameter fibrils and increased interfibrillar spacing in the absence of collagen XIV was found. Second harmonic generation microscopy showed impaired fibrillogenesis in the collagen XIV null stroma. Mechanical testing suggested that collagen XIV confers stiffness to stromal tissue. Expression of collagen XIV is up-regulated following injury. This study indicates that collagen XIV plays a regulatory role in corneal development and in the function of the adult cornea. The expression of collagen XIV is recapitulated during wound healing.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Nabeel Zafrullah
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Sheila Adams
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Floriane Devaux
- Biomedical Atomic Force Microscopy Laboratory, Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida
| | - Marcel Y Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Noel Ziebarth
- Biomedical Atomic Force Microscopy Laboratory, Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Curtis E Margo
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M Espana
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|