1
|
Drummer C, Saaoud F, Jhala NC, Cueto R, Sun Y, Xu K, Shao Y, Lu Y, Shen H, Yang L, Zhou Y, Yu J, Wu S, Snyder NW, Hu W, Zhuo J‘J, Zhong Y, Jiang X, Wang H, Yang X. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front Immunol 2023; 14:1113883. [PMID: 36776889 PMCID: PMC9909353 DOI: 10.3389/fimmu.2023.1113883] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% of the population and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs) and monocyte-derived macrophages, act as key players in the progression of NAFLD. Caspases are a family of endoproteases that provide critical connections to cell regulatory networks that sense disease risk factors, control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends against bacterial pathogens that invade the cytosol. However, it's still unknown whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD. Methods To examine this hypothesis, we performed liver pathological analysis, RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of macrophages and bone marrow transplantation on HFD-induced NAFLD in WT and Casp11-/- mice. Results and Discussion Our results showed that 1) HFD increases body wight, liver wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11, GSDMD, interleukin-1β, and guanylate-binding proteins in WT mice; 3) Caspase-11 deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis (inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that caspase-11 significantly contributes to maintain dual fuel bioenergetics-glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results provide novel insights on the roles of the caspase-11-GSDMD pathway in promoting hepatic macrophage inflammation and pyroptosis and novel targets for future therapeutic interventions involving the transition of NAFLD to NASH, hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver transplantation, and hepatic cancers.
Collapse
Affiliation(s)
- Charles Drummer
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Huimin Shen
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jia ‘Joe’ Zhuo
- Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Pitstick LD, Goral J, Schmelter RA, Fuja CM, Ciancio MJ, Pytynia M, Meyer A, Green JM. Fat and exposure to 4-nitroquinoline-1-oxide causes histologic and inflammatory changes in murine livers. PLoS One 2022; 17:e0268891. [PMID: 35639668 PMCID: PMC9154184 DOI: 10.1371/journal.pone.0268891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Risk factors for liver cancer include tobacco use, alcohol consumption, obesity, and male sex. Administration of 4-nitroquinonline-1-oxide (4NQO) in drinking water mimics the effects of tobacco and leads to oral carcinoma in mice. This study compared the effects of diets high and low in saturated fat (HF and LF, respectively), and sex, on liver histopathology in 4NQO-treated mice and controls. We hypothesized that 4NQO would cause histopathological changes in liver, and that a HF diet would increase hepatic pathology when compared to the LF diet. Mice (C57Bl/6, 36/sex), were divided into a low fat (10 kcal% fat; LF) or high fat (60 kcal% fat, HF) diet. Mice were further subdivided into one of 3 water treatment groups for 17 weeks: water (control), vehicle (1.25% propylene glycol in water [PG]), or 4NQO in (50 μg/ml; 4NQO). All mice were subsequently given water alone for 6 more weeks. Upon euthanasia, livers were harvested, fixed, sectioned, and stained with hematoxylin and eosin (H&E). H&E slides were graded for histopathology; frozen liver samples were analyzed for triglyceride content. Trichrome stained sections were graded for fibrosis. CD3+ T cells, CD68+ macrophages, and Ly6+ neutrophils were detected by immunohistochemistry. Compared to water controls, 4NQO-treatment caused mouse liver histopathological changes such as fibrosis, and increases in hepatic neutrophils, T cells, and macrophages. HF diet exacerbated pathological changes compared to LF diet. Male controls, but not females, demonstrated severe steatosis and increased triglyceride content. 4NQO treatment decreased hepatic fat accumulation, even in animals on a HF diet. In conclusion, this murine model of oral cancer may serve as a model to study the effects of tobacco and diet on liver.
Collapse
Affiliation(s)
- Lenore D. Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Ryan A. Schmelter
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States of America
| | - Christine M. Fuja
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States of America
| | - Mae J. Ciancio
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Matthew Pytynia
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Jacalyn M. Green
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
- * E-mail:
| |
Collapse
|
3
|
Smith JR, Hayman GT, Wang SJ, Laulederkind SJF, Hoffman MJ, Kaldunski ML, Tutaj M, Thota J, Nalabolu HS, Ellanki SLR, Tutaj MA, De Pons JL, Kwitek AE, Dwinell MR, Shimoyama ME. The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res 2020; 48:D731-D742. [PMID: 31713623 PMCID: PMC7145519 DOI: 10.1093/nar/gkz1041] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Formed in late 1999, the Rat Genome Database (RGD, https://rgd.mcw.edu) will be 20 in 2020, the Year of the Rat. Because the laboratory rat, Rattus norvegicus, has been used as a model for complex human diseases such as cardiovascular disease, diabetes, cancer, neurological disorders and arthritis, among others, for >150 years, RGD has always been disease-focused and committed to providing data and tools for researchers doing comparative genomics and translational studies. At its inception, before the sequencing of the rat genome, RGD started with only a few data types localized on genetic and radiation hybrid (RH) maps and offered only a few tools for querying and consolidating that data. Since that time, RGD has expanded to include a wealth of structured and standardized genetic, genomic, phenotypic, and disease-related data for eight species, and a suite of innovative tools for querying, analyzing and visualizing this data. This article provides an overview of recent substantial additions and improvements to RGD's data and tools that can assist researchers in finding and utilizing the data they need, whether their goal is to develop new precision models of disease or to more fully explore emerging details within a system or across multiple systems.
Collapse
Affiliation(s)
- Jennifer R Smith
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- To whom correspondence should be addressed. Tel: +1 414 955 8871; Fax: +1 414 955 6595;
| | - G Thomas Hayman
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shur-Jen Wang
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stanley J F Laulederkind
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Hoffman
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L Kaldunski
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jyothi Thota
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Harika S Nalabolu
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Santoshi L R Ellanki
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marek A Tutaj
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L De Pons
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anne E Kwitek
- Genomic Sciences and Precision Medicine Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melinda R Dwinell
- Genomic Sciences and Precision Medicine Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary E Shimoyama
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Xiao L, Liang S, Ge L, Qiu S, Wan H, Wu S, Fei J, Peng S, Zeng X. Si-Wei-Qing-Gan-Tang Improves Non-Alcoholic Steatohepatitis by Modulating the Nuclear Factor-κB Signal Pathway and Autophagy in Methionine and Choline Deficient Diet-Fed Rats. Front Pharmacol 2020; 11:530. [PMID: 32425782 PMCID: PMC7206618 DOI: 10.3389/fphar.2020.00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Si-Wei-Qing-Gan-Tang (SWQGT) is a Chinese medicine formula that is widely used as a folk remedy of herbal tea for the treatment of chronic hepatitis, like non-alcoholic steatohepatitis (NASH), around Ganzhou City (Jiangxi province, China). However, the underlying mechanisms of this formula against NASH are still unknown. This study aimed to explore the effect and mechanisms of SWQGT against NASH. A network pharmacology approach was used to predict the potential mechanisms of SWQGT against NASH. Then a rat model of NASH established by feeding the methionine and choline deficient (MCD) diet was used to verify the effect and mechanisms of SWQGT on NASH in vivo. SWQGT (1 g/kg/d and 3 g/kg/d) were given by intragastric administration. Body weight, liver weight, serum biochemical indicators, liver triglyceride and total cholesterol were all measured. Tumor necrosis factor-α (TNF-α), Interleukin (IL)-1β, IL-6 levels in the livers were evaluated using ELISA. Hematoxylin and eosin (HE) and Oil Red O staining were used to determine histology, while western blot was used to assess the relative expression levels of the nuclear factor-κB (NF-κB) pathway- and autophagy-related proteins. Functional and pathway enrichment analyses revealed that SWQGT obviously influenced inflammation-related signal pathways in NASH. Furthermore, in vivo experiment showed that SWQGT caused a reduction in liver weight and liver index of MCD diet-fed rats. The formula also helped to reduce hepatomegaly and improve pathological liver changes and hepatic steatosis. SWQGT likewise reduced liver TNF-α, IL-1β, and IL-6 levels and down-regulated p-NF-κB p65, p-p38 MAPK, p-MEK1/2, p-ERK1/2, p-mTOR, and p62, while up-regulating p-ULK1 and LC3II protein expression levels. SWQGT could improve NASH in MCD diet-fed rats, and this effect may be associated with its down-regulation of NF-κB and activation of autophagy.
Collapse
Affiliation(s)
- Lingyun Xiao
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shu Liang
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Lanlan Ge
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shuling Qiu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Haoqiang Wan
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Shipin Wu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Jia Fei
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shusong Peng
- Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Xiaobin Zeng
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
5
|
Fang M, Yao M, Yang J, Zheng WJ, Wang L, Yao DF. Abnormal CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointest Oncol 2020; 12:66-76. [PMID: 31966914 PMCID: PMC6960074 DOI: 10.4251/wjgo.v12.i1.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prevalence of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing, and NAFLD has become one of the most common chronic liver diseases worldwide. With abnormal CD44 activation, the severe form of NAFLD can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Thus, the molecular mechanism of CD44 in NAFLD needs to be identified.
AIM To investigate the relationship between CD44 activation and malignant transformation of rat hepatocytes under nonalcoholic lipid accumulation.
METHODS Sprague-Dawley rats were fed a high-fat (HF) for 12 wk to entice NAFLD and then with HF plus 2-fluorenylacetamide (0.05%) to induce HCC. Rats were sacrificed every 2 wk, and subsequently divided into the groups based on liver pathological examination (hematoxylin and eosin staining): NAFLD, denaturation, precancerosis, HCC, and control. Liver CD44 mRNA was detected by OneArray. Liver fat as assessed by Oil red O staining or CD44 by immunohistochemical assay was compared with their integral optic density. Serum CD44, alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and AFP levels were quantitatively tested.
RESULTS Elevated CD44 was first reported in hepatocarcinogenesis, with increasing expression from NAFLD to HCC at the protein or mRNA level. The CD44 integral optic density values were significantly different between the control group and the NAFLD (t = 25.433, P < 0.001), denaturation (t = 48.822, P < 0.001), precancerosis (t = 27.751, P < 0.001), and HCC (t = 16.239, P < 0.001) groups, respectively. Hepatic CD44 can be secreted into the blood, and serum CD44 levels in HCC or precancerous rats were significantly higher (P < 0.001) than those in any of the other rats. Positive correlations were found between liver CD44 and CD44 mRNA (rs = 0.373, P = 0.043) and serum CD44 (rs = 0.541, P = 0.002) and between liver CD44 mRNA and serum CD44 (rs = 0.507, P = 0.004). Moreover, significant correlations were found between liver CD44 and liver AFP (rs = 0.572, P = 0.001), between serum CD44 and serum AFP (rs = 0.608, P < 0.001), and between CD44 mRNA and AFP mRNA (rs = 0.370, P = 0.044).
CONCLUSION The data suggested that increasing CD44 expression is associated with the malignant transformation of hepatocytes in NAFLD.
Collapse
Affiliation(s)
- Miao Fang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jie Yang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
6
|
Therapeutic Effect of Tanshinone IIA on Liver Fibrosis and the Possible Mechanism: A Preclinical Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7514046. [PMID: 31915451 PMCID: PMC6930756 DOI: 10.1155/2019/7514046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/27/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Background Liver fibrosis is a serious human health problem, and there is a need for specific antifibrosis drugs in the clinic. Tanshinone IIA has recently been reported to have a role in the treatment of liver fibrosis. However, the evidence supporting its antifibrotic effect is not sufficient, and the underlying mechanism is not clear. We thus performed this meta-analysis of animal research to assess the therapeutic effect of tanshinone IIA on liver fibrosis and analyzed the possible associated mechanism to provide a reference for further clinical drug preparation and clinical research. Methods We collect related articles from the databases PubMed, Web of Science, Embase, Wanfang, VIP, and CNKI. The quality of the included studies was evaluated according to the SYRCLE risk of bias tool for animal studies. Data were analyzed using RavMan 5.3 and Stata 12.0 software. Results A total of 404 articles were retrieved from the databases. After screening, 11 articles were included in the analysis. The included studies' methodological quality was generally low, and an obvious publication bias was found. The results showed that tanshinone IIA significantly improved liver function in experimental animals and reduced the level of liver fibrosis by reducing inflammation and inhibiting immunity, antiapoptotic processes, and HSC activation. Conclusion Tanshinone IIA can effectively improve liver fibrosis and liver function in animal models and is worthy of future higher quality animal studies and clinical drug trials.
Collapse
|
7
|
Zhu W, Zhang M, Chang L, Zhu W, Li C, Xie F, Zhang H, Zhao T, Jiang J. Characterizing the composition, metabolism and physiological functions of the fatty liver in Rana omeimontis tadpoles. Front Zool 2019; 16:42. [PMID: 31754367 PMCID: PMC6854647 DOI: 10.1186/s12983-019-0341-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fat storage is required for the life cycle of many organisms. The primary fat depot for most vertebrates is white adipose tissue. However, in primitive vertebrates (e.g., agnathan group and elasmobranchs), the liver is usually responsible for fat storage. Among the vertebrates, amphibians have a unique status, as their larvae live in the water and exhibit some primitive traits that are similar to fish. Although it has been recognized that adult frogs use their abdominal white adipose tissue as a primary fat depot, how tadpoles store their fat is still inconclusive. The metabolic traits and physiological functions of primitive fat depots may have wide-ranging implications on the pathology of abnormal lipid deposition in mammals and the evolution of fat storage. Results Rana omeimontis tadpoles used their liver as the primary fat depot. In sufficiently fed tadpoles at stage 30-31, the hepatosomatic index (HSI) reached up to 7%, and triglycerides (TG) accounted for 15% of liver weight. Their liver resembled white adipose tissue in histological morphology, characterized by polygonal hepatocytes filled with fat. Their liver metabolic composition was unique, characterized by the dominance of maltotriose, arachidonic acid and dipeptides in soluble carbohydrates, free fatty acids and amino acids. Hepatic fat was the major metabolic fuel of fasted R. omeimontis tadpoles, which had similar reserve mobilization and allocation patterns as mammals. From a developmental perspective, hepatic fat was important to fuel late metamorphic climax. Interestingly, starvation induced accelerated metamorphosis in tadpoles with high HSI (4.96 ± 0.21%). However, this phenomenon was not observed in tadpoles with low HSI (2.71 ± 0.16%), even though they had similar initial body weight and developmental stage. Hepatic fat abundance was the most prominent difference between the two groups. Conclusion To the best of our knowledge, this is the first report that liver can be the primary fat depot in vertebrates with higher evolutionary status than bony fish. The unique hepatic histological and metabolic traits likely either guard their liver against lipotoxicity or make their hepatocytes adapt to fat accumulation. This fatty liver could be a primitive counterpart of mammalian white adipose tissue (WAT). In addition, our study showed that the hepatic reserves of tadpoles, especially TG content, may provide body condition signals to modulate metamorphosis.
Collapse
Affiliation(s)
- Wei Zhu
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China
| | - Meihua Zhang
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liming Chang
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbo Zhu
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cheng Li
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China
| | - Feng Xie
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China
| | - Huan Zhang
- 3State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tian Zhao
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China
| | - Jianping Jiang
- 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041 China
| |
Collapse
|
8
|
Neureiter D, Stintzing S, Kiesslich T, Ocker M. Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 2019; 25:3136-3150. [PMID: 31333307 PMCID: PMC6626722 DOI: 10.3748/wjg.v25.i25.3136] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global medical burden with rising incidence due to chronic viral hepatitis and non-alcoholic fatty liver diseases. Treatment of advanced disease stages is still unsatisfying. Besides first and second generation tyrosine kinase inhibitors, immune checkpoint inhibitors have become central for the treatment of HCC. New modalities like epigenetic therapy using histone deacetylase inhibitors (HDACi) and cell therapy approaches with chimeric antigen receptor T cells (CAR-T cells) are currently under investigation in clinical trials. Development of such novel drugs is closely linked to the availability and improvement of novel preclinical and animal models and the identification of predictive biomarkers. The current status of treatment options for advanced HCC, emerging novel therapeutic approaches and different preclinical models for HCC drug discovery and development are reviewed here.
Collapse
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Oncology and Hematology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin 10117, Germany
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK) and Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, Berlin 13353, Germany
- Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|