1
|
Strazza M, Song R, Hiner S, Mor A. Changing the location of proteins on the cell surface is a promising strategy for modulating T cell functions. Immunology 2024; 173:248-257. [PMID: 38952142 DOI: 10.1111/imm.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Targeting immune receptors on T cells is a common strategy to treat cancer and autoimmunity. Frequently, this is accomplished through monoclonal antibodies targeting the ligand binding sites of stimulatory or inhibitory co-receptors. Blocking ligand binding prevents downstream signalling and modulates specific T cell functions. Since 1985, the FDA has approved over 100 monoclonal antibodies against immune receptors. This therapeutic approach significantly improved the care of patients with numerous immune-related conditions; however, many patients are unresponsive, and some develop immune-related adverse events. One reason for that is the lack of consideration for the localization of these receptors on the cell surface of the immune cells in the context of the immune synapse. In addition to blocking ligand binding, changing the location of these receptors on the cell surface within the different compartments of the immunological synapse could serve as an alternative, efficient, and safer approach to treating these patients. This review discusses the potential therapeutic advantages of altering proteins' localization within the immune synapse and summarizes published work in this field. It also discusses the novel use of bispecific antibodies to induce the clustering of receptors on the cell surface. It presents the rationale for developing novel antibodies, targeting the organization of signalling receptor complexes on the cell surface. This approach offers an innovative and emerging technology to treat cancer patients resistant to current immunotherapies.
Collapse
Affiliation(s)
- Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Ruijiang Song
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Shannon Hiner
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
3
|
Stavropoulou De Lorenzo S, Andravizou A, Alexopoulos H, Michailidou I, Bokas A, Kesidou E, Boziki MK, Parissis D, Bakirtzis C, Grigoriadis N. Neurological Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors. Biomedicines 2024; 12:1319. [PMID: 38927526 PMCID: PMC11202292 DOI: 10.3390/biomedicines12061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) for the treatment of various advanced and aggressive types of malignancy has significantly increased both survival and long-term remission rates. ICIs block crucial inhibitory pathways of the immune system, in order to trigger an aggravated immune response against the tumor. However, this enhanced immune activation leads to the development of numerous immune-related adverse events (irAEs), which may affect any system. Although severe neurological irAEs are relatively rare, they carry a high disability burden, and they can be potentially life-threatening. Therefore, clinicians must be alert and act promptly when individuals receiving ICIs present with new-onset neurological symptoms. In this narrative review, we have collected all the currently available data regarding the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of post-ICI neurological irAEs. This review aims to raise physicians' awareness, enrich their knowledge regarding disease pathogenesis, and guide them through the diagnosis and management of post-ICI neurological irAEs.
Collapse
Affiliation(s)
- Sotiria Stavropoulou De Lorenzo
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Athina Andravizou
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Harry Alexopoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece;
| | - Iliana Michailidou
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Alexandros Bokas
- Department of Medical Oncology, Theageneio Cancer Hospital, 54639 Thessaloniki, Greece;
| | - Evangelia Kesidou
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Marina-Kleopatra Boziki
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Dimitrios Parissis
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Christos Bakirtzis
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| | - Nikolaos Grigoriadis
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (A.A.); (I.M.); (E.K.); (M.-K.B.); (D.P.); (N.G.)
| |
Collapse
|
4
|
Xing J, Hu Y, Liu W, Tang X, Sheng X, Chi H, Zhan W. The interaction between the costimulatory molecules CD80/86 and CD28 contributed to CD4 + T lymphocyte activation in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109482. [PMID: 38458503 DOI: 10.1016/j.fsi.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yujie Hu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenjing Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Chen DP, Lin WT, Hsu FP, Yu KH. The susceptibility of single nucleotide polymorphisms located within co-stimulatory pathways to systemic lupus erythematosus. Front Immunol 2024; 14:1331796. [PMID: 38361527 PMCID: PMC10867627 DOI: 10.3389/fimmu.2023.1331796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction Autoimmune diseases result from the loss of immune tolerance, and they exhibit complex pathogenic mechanisms that remain challenging to effectively treat. It has been reported that the altered expression levels of co-stimulatory/inhibitory molecules will affect the level of T/B cell activation and lead to the loss of immune tolerance. Methods In this study, we evaluated the gene polymorphisms of the ligand genes corresponding co-stimulatory system that were expressed on antigen-presenting cells (CD80, CD86, ICOSLG, and PDL1) from 60 systemic lupus erythematosus (SLE) patients and 60 healthy controls. Results The results showed that rs16829984 and rs57271503 of the CD80 gene and rs4143815 of the PDL1 gene were associated with SLE, in which the G-allele of rs16829984 (p=0.022), the A-allele of rs57271503 (p=0.029), and the GG and GC genotype of rs4143815 (p=0.039) may be risk polymorphisms for SLE. Discussion These SNPs are in the promoter and 3'UTR of the genes, so they may affect the transcription and translation activity of the genes, thereby regulating immune function and contributing to the development of SLE.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuang-Hui Yu
- Division of Rheumatology, Allergy, and Immunology, Linkou Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
6
|
Paillon N, Mouro V, Dogniaux S, Maurin M, Saez Pons JJ, Ferran H, Bataille L, Zucchetti AE, Hivroz C. PD-1 inhibits T cell actin remodeling at the immunological synapse independently of its signaling motifs. Sci Signal 2023; 16:eadh2456. [PMID: 38015913 DOI: 10.1126/scisignal.adh2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Violette Mouro
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Juan-José Saez Pons
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Hermine Ferran
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Andrés Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| |
Collapse
|
7
|
You Y, Jin F, Du Y, Zhu L, Liu D, Zhu M, Du Y, Lang J, Li W, Ji JS, Du YZ. A photo-activable nano-agonist for the two-signal model of T cell in vivo activation. J Control Release 2023; 361:681-693. [PMID: 37595667 DOI: 10.1016/j.jconrel.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
The two-signal model of T cell activation has helped shape our understanding of the adaptive immune response for over four decades. According to the model, activation of T cells requires a stimulus through the T cell receptor/CD3 complex (signal 1) and a costimulatory signal 2. Stimulation of activatory signals via T cell agonists has thus emerged. However, for a robust T cell activation, it necessitates not only the presence of both signal 1 and signal 2, but also a high signaling strength. Herein, we report a photo-activable nano-agonist for the two-signal model of T cell in vivo activation. A UV-crosslinkable polymer is coated onto upconversion nanoparticles with satisfactory NIR-to-UV light conversion efficiency. Then dual signal molecules, i.e., signal 1 and signal 2, are conjugated to the polymer end to yield the photo-activable T cell nano-agonist. In melanoma and breast cancer models, photo-activable nano-agonist could bind onto corresponding activatory receptors on the surface of T cells, but has limited activity without the application of NIR light (absence of photo-crosslinking of receptors and consequently a poor signaling strength). While when the NIR light is switched on locally, T cells in tumor are remarkably activated and kill tumor cells effectively. Moreover, we do not observe any detectable toxicities related to the photo-activable nano-agonist. We believe with two activatory signals being simultaneously strengthened by local photo-switched crosslinking, T cells realize a robust and selective activation in tumor and, consequently contribute to an enhanced and safe tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchan You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Feiyang Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yan Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Luwen Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Di Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Minxia Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yuyin Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jialu Lang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Weishuo Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Jian-Song Ji
- Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Radiology, 289 Kuocang Road, Lishui 323000, PR China.
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Innovation Center of Transformational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
8
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
10
|
Zhao Y, Cai H, Ding X, Zhou X. An integrative analysis of the single-cell transcriptome identifies DUSP4 as an exhaustion-associated gene in tumor-infiltrating CD8+ T cells. Funct Integr Genomics 2023; 23:136. [PMID: 37086337 DOI: 10.1007/s10142-023-01056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Yu Zhao
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China.
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.
| |
Collapse
|
11
|
Li T, Hu Z, Song F, Wu C, Miao Q, Wang Z, Feng W, Guo J, Chen Y. Photonic Hyperthermia Synergizes with Immune-Activators to Augment Tumor-Localized Immunotherapy. SMALL METHODS 2023; 7:e2300116. [PMID: 37075769 DOI: 10.1002/smtd.202300116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Photothermal immunotherapy, the combination of photothermal hyperthermia and immunotherapy, is a noninvasive and desirable therapeutic strategy to address the deficiency of traditional photothermal ablation for tumor treatment. However, insufficient T-cell activation following photothermal treatment is a bottleneck to achieve satisfactory therapeutic effectiveness. In this work, a multifunctional nanoplatform is rationally designed and engineered on the basis of polypyrrole-based magnetic nanomedicine modified by T-cell activators of anti-CD3 and anti-CD28 monoclonal antibodies, which have achieved robust near infrared laser-triggered photothermal ablation and long-lasting T-cell activation, realizing diagnostic imaging-guided immunosuppressive tumor microenvironment regulation following photothermal hyperthermia by reinvigorating tumor-infiltrating lymphocytes. By virtue of high-efficient immunogenic cell death and dendritic cell maturation combined with T-cell activation, this nanosystem markedly restrains primary and abscopal tumors as well as metastatic tumors with negligible side effects in vivo, exerting the specific function for suppressing tumor recurrence and metastasis by establishing a long-term memory immune response.
Collapse
Affiliation(s)
- Tiankuan Li
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhongqian Hu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Feifei Song
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Qizeng Miao
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, P. R. China
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinhe Guo
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
12
|
Zwolak A, Chan SR, Harvilla P, Mahady S, Armstrong AA, Luistro L, Tamot N, Yamada D, Derebe M, Pomerantz S, Chiu M, Ganesan R, Chowdhury P. A stable, engineered TL1A ligand co-stimulates T cells via specific binding to DR3. Sci Rep 2022; 12:20538. [PMID: 36446890 PMCID: PMC9709071 DOI: 10.1038/s41598-022-24984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
TL1A (TNFSF15) is a TNF superfamily ligand which can bind the TNFRSF member death receptor 3 (DR3) on T cells and the soluble decoy receptor DcR3. Engagement of DR3 on CD4+ or CD8+ effector T cells by TL1A induces downstream signaling, leading to proliferation and an increase in secretion of inflammatory cytokines. We designed a stable recombinant TL1A molecule that (1) displays high monodispersity and stability, (2) displays the ability to activate T cells in vitro and in vivo, and (3) lacks binding to DcR3 while retaining functional activity via DR3. Together these results suggest the TL1A ligand can be amenable to therapeutic development on its own or paired with a tumor-targeting moiety.
Collapse
Affiliation(s)
- Adam Zwolak
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Szeman Ruby Chan
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Paul Harvilla
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Sally Mahady
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Anthony A. Armstrong
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Leopoldo Luistro
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Ninkka Tamot
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Douglas Yamada
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mehabaw Derebe
- grid.417993.10000 0001 2260 0793Merck Research Laboratories, Discovery Biologics, Protein Sciences, South San Francisco, CA USA
| | - Steven Pomerantz
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mark Chiu
- Tavotek Biotherapeutics, Spring House, PA USA
| | - Rajkumar Ganesan
- grid.417886.40000 0001 0657 5612Immunotherapeutics, Amgen, South San Francisco, CA USA
| | - Partha Chowdhury
- grid.497530.c0000 0004 0389 4927Cell Engineering and Early Development, Janssen Research & Development, Spring House, PA USA
| |
Collapse
|
13
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
14
|
Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun 2021; 123:102702. [PMID: 34311143 DOI: 10.1016/j.jaut.2021.102702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/12/2023]
Abstract
Programmed Cell Death 1 (PD-1) receptor and its ligands (PD-Ls) are essential to maintain peripheral immune tolerance and to avoid tissue damage. Consequently, altered gene or protein expression of this system of co-inhibitory molecules has been involved in the development of cancer and autoimmunity. Substantial progress has been achieved in the study of the PD-1/PD-Ls system in terms of regulatory mechanisms and therapy. However, the role of the PD-1/PD-Ls pathway in neuroinflammation has been less explored despite being a potential target of treatment for neurodegenerative diseases. Multiple Sclerosis (MS) is the most prevalent, chronic, inflammatory, and autoimmune disease of the central nervous system that leads to demyelination and axonal damage in young adults. Recent studies have highlighted the key role of the PD-1/PD-Ls pathway in inducing a neuroprotective response and restraining T cell activation and neurodegeneration in MS. In this review, we outline the molecular and cellular mechanisms regulating gene expression, protein synthesis and traffic of PD-1/PD-Ls as well as relevant processes that control PD-1/PD-Ls engagement in the immunological synapse between antigen-presenting cells and T cells. Also, we highlight the most recent findings regarding the role of the PD-1/PD-Ls pathway in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), including the contribution of PD-1 expressing follicular helper T (TFH) cells in the pathogenesis of these diseases. In addition, we compare and contrast results found in MS and EAE with evidence reported in other autoimmune diseases and their experimental models, and review PD-1/PD-Ls-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Vilchez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Karin Jimenez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Carlos Guevara
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Chile.
| | - Rodrigo Naves
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Hokello J, Sharma AL, Tyagi M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020; 12:v12080868. [PMID: 32784426 PMCID: PMC7472175 DOI: 10.3390/v12080868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+ T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF-κB) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF-κB, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF-κB. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University-Western Campus, P.O Box 71, Bushenyi, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|