1
|
Small Heat Shock Proteins: Roles in Development, Desiccation Tolerance and Seed Longevity. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. HORTICULTURE RESEARCH 2014; 1:14047. [PMID: 26504550 PMCID: PMC4596326 DOI: 10.1038/hortres.2014.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 05/05/2023]
Abstract
Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Leonardo Soriano
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, Brazil
| | - Raju Kandel
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
3
|
Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Mol Biol Rep 2014; 41:1279-89. [PMID: 24395294 DOI: 10.1007/s11033-013-2973-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/24/2013] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1-9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.
Collapse
|
4
|
Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PLANT MOLECULAR BIOLOGY 2013; 83:59-75. [PMID: 23771582 DOI: 10.1007/s11103-013-0089-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.
Collapse
MESH Headings
- Adaptation, Biological
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/metabolism
- Disease Resistance
- Food Supply
- Food, Genetically Modified
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Engineering/methods
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Risk Factors
- Transgenes
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | | |
Collapse
|
5
|
Zhang X, Hu Y, Jiang C, Zhang W, Li Z, Ming F. Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants. Mol Biol Rep 2011; 39:1145-51. [PMID: 21573789 DOI: 10.1007/s11033-011-0843-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
Abstract
In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.8 and the function of cis-acting elements in the promoter region, a 1,910 bp fragment of the upstream sequence of the RcHSP17.8 translation initiation codon and five promoter deletion fragments were fused to a β-glucuronidase (GUS) report gene. These plasmids were transferred to Arabidopsis thaliana via Agrobacterium. GUS staining was seen in all the organs, especially in the vascular tissues after heat treatment. In transgenic Arabidopsis, GUS expression driven by the full length promoter was significantly higher under heat shock, but no GUS activity was detected under other abiotic stresses. Deletion analysis indicated that the region from -178 to -771 was essential for the promoter's response to high temperature.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Analysis of the Wsi18, a stress-inducible promoter that is active in the whole grain of transgenic rice. Transgenic Res 2010; 20:153-63. [DOI: 10.1007/s11248-010-9400-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
7
|
Rampino P, Mita G, Assab E, De Pascali M, Giangrande E, Treglia AS, Perrotta C. Two sunflower 17.6HSP genes, arranged in tandem and highly homologous, are induced differently by various elicitors. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:13-22. [PMID: 20653884 DOI: 10.1111/j.1438-8677.2009.00200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plants respond to environmental stimuli, such as heat shock, by re-programming cellular activity through differential gene expression, mainly controlled at the transcription level. The current study refers to two sunflower small heat shock protein (sHSP) genes arranged in tandem in head-to-head orientation and linked by a 3809 bp region. These genes exhibit only slight structural differences in the coding portion. They code for cytosolic class I sHSPs and are named HaHSP17.6a and HaHSP17.6b according to the molecular weight of the putative proteins. The genomic organization of these genes is consistent with the idea that many HSP genes originate from duplication events; in this case, probably an inversion and duplication occurred. The HaHSP17.6a and HaHSP17.6b genes are characterized by different expression levels under various heat stress conditions; moreover, their expression is differently induced by various elicitors. The differential regulation observed for HaHSP17.6a and HaHSP17.6b genes differs from previous observations on duplicated sHSP genes in plants.
Collapse
Affiliation(s)
- P Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
9
|
Rochester JR, Millam JR. Phytoestrogens and avian reproduction: Exploring the evolution and function of phytoestrogens and possible role of plant compounds in the breeding ecology of wild birds. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:279-88. [PMID: 19559809 DOI: 10.1016/j.cbpa.2009.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022]
Abstract
Phytoestrogens are secondary plant compounds, which can act to mimic estrogen and cause the disruption of estrogenic responses in organisms. Although there is a substantial body of research studying phytoestrogens, including their mechanisms of estrogenic effects, evolution, and detection in biological systems, little is known about their ecological significance. There is evidence, however, that an ecological relationship involving phytoestrogens exists between plants and animals-plants may produce phytoestrogens to reduce fecundity of organisms that eat them. Birds and other vertebrates may also exploit phytoestrogens to regulate their own reproduction-there are well known examples of phytoestrogens inhibiting reproduction in higher vertebrates, including birds. Also, common plant stressors (e.g., high temperature) increase the production of secondary plant compounds, and, as evidence suggests, also induce phytoestrogen biosynthesis. These observations are consistent with the single study ever done on phytoestrogens and reproduction in wild birds [Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens adverse effects on reproduction in California quail. Science 191, 98-100.], which found that drought stress correlated with increased levels of phytoestrogens in plants, and that increased phytoestrogen levels correlated with decreased young. This review discusses the hypothesis that plants may have an effect on the reproduction of avian species by producing phytoestrogens as a plant defense against herbivory, and that birds may "use" changing levels of phytoestrogens in the vegetation to ensure that food resources will support potential young produced. Evidence from our laboratory and others appear to support this hypothesis.
Collapse
|
10
|
Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:851-61. [PMID: 19135278 DOI: 10.1016/j.jplph.2008.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 05/03/2023]
Abstract
Expression profiles of nine rice heat shock protein genes (OsHSPs) were analyzed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The nine genes exhibited distinctive expression in different organs. Expression of nine OsHSP genes was affected differentially by abiotic stresses and abscisic acid (ABA). All nine OsHSP genes were induced strongly by heat shock treatment, whereas none of them were induced by cold. The transcripts of OsHSP80.2, OsHSP71.1 and OsHSP23.7 were increased during salt tress treatment. Expression of OsHSP80.2 and OsHSP24.1 genes were enhanced while treated with 10% PEG. Only OsHSP71.1 was induced by ABA while OsHSP24.1 was suppressed by ABA. These observations imply that the nine OsHSP genes may play different roles in plant development and abiotic stress responses.
Collapse
Affiliation(s)
- Jie Zou
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Krishnaswamy SS, Srivastava S, Mohammadi M, Rahman MH, Deyholos MK, Kav NNV. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC PLANT BIOLOGY 2008; 8:91. [PMID: 18783601 PMCID: PMC2559843 DOI: 10.1186/1471-2229-8-91] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/10/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pathogenesis-related proteins belonging to group 10 (PR10) are elevated in response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-induced increase in the levels of ABR17, a member of the PR10 family, in pea. Furthermore, we have also demonstrated that the constitutive expression of pea ABR17 cDNA in Arabidopsis thaliana and Brassica napus enhances their germination and early seedling growth under stress. Although it has been reported that several members of the PR10 family including ABR17 possess RNase activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17 is unknown at this time. We hypothesized that a study of differences in transcriptome between wild type (WT) and ABR17 transgenic A. thaliana may shed light on this process. RESULTS The molecular changes brought about by the expression of pea ABR17 cDNA in A. thaliana in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number of genes which were over represented among up- or down-regulated transcripts in the transgenic line. Our results highlight the important roles of many abscisic acid (ABA) and cytokinin (CK) responsive genes in ABR17 transgenic lines. Although the transcriptional changes followed a general salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited differential expression patterns when the transgenic and WT lines were compared. These genes include plant defensins, heat shock proteins, other defense related genes, and several transcriptional factors. Our microarray results for selected genes were validated using quantitative real-time PCR. CONCLUSION Transcriptional analysis in ABR17 transgenic Arabidopsis plants, both under normal and saline conditions, revealed significant changes in abundance of transcripts for many stress responsive genes, as well as those related to plant growth and development. Our results also suggest that ABR17 may mediate stress tolerance through the modulation of many ABA- and CK-responsive genes and may further our understanding of the role of ABR17 in mediating plant stress responses.
Collapse
Affiliation(s)
- Sowmya S Krishnaswamy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Sanjeeva Srivastava
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Mohsen Mohammadi
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Muhammad H Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nat NV Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
13
|
Guo L, Chen S, Liu K, Liu Y, Ni L, Zhang K, Zhang L. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1306-1315. [PMID: 18641404 DOI: 10.1093/pcp/pcn105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The information about DNA-binding sites of regulatory protein is important to understanding the regulatory network of DNA-protein interactions in the genome. In this report we integrated chromatin immunoprecipitation with DNA cloning to isolate genomic sites bound in vivo by heat shock factor HsfA1a in Arabidopsis thaliana. Plantlets were subjected to formaldehyde crosslinking, followed by immunoprecipitation of chromatin. The immunoprecipitated DNA was amplified by PCR and cloned. From a library enriched in putative HsfA1a-binding sites, 21 different genomic fragments were identified (65-332 bp). Six fragments contained known HsfA1a-binding motif (perfect heat shock element). Six fragments contained novel HsfA1a-binding motifs: (1) gap-type, (2) TTC-rich-type, (3) stress responsive element (STRE). Representatives of each were verified by in vitro electrophoretic mobility shift assay. About 81% of the isolated fragments contained the HsfA1a-binding motifs, and/or could be bound by HsfA1a, demonstrating that the method is efficient in the isolation of genomic binding sites of a regulatory protein. The nearest downstream genes to the HsfA1a-binding fragments, which were considered as potential HsfA1a target genes, include a set of classical heat shock protein genes: Hsp17.4, Hsp18.2, Hsp21, Hsp81-1, Hsp101, and several novel genes encoding a non-race specific disease resistance protein and a transmembrane CLPTM1 family protein.
Collapse
Affiliation(s)
- Lihong Guo
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 2008; 13:183-97. [PMID: 18369739 PMCID: PMC2673886 DOI: 10.1007/s12192-008-0032-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022] Open
Abstract
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants.
Collapse
Affiliation(s)
- Masood Siddique
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Sascha Gernhard
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Pascal von Koskull-Döring
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721 USA
| | - Klaus-Dieter Scharf
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Li HY, Wang TY, Shi YS, Fu JJ, Song YC, Wang GY, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). ACTA ACUST UNITED AC 2008; 18:445-60. [PMID: 17676474 DOI: 10.1080/10425170701292051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Maize female organs are sensitive to drought stress, leading to reproductive failure and yield reduction. In the present study gene expression profiles of ears and silks of maize at the flowering stage under drought stress were investigated. From 1920 white positive clones of a forward suppression subtractive hybridization (SSH) library, 1439 available sequences of expression sequence tags (ESTs) were obtained, resulting in 361 unique ESTs after assembling. Data analysis showed that 218 of the unique ESTs had significant protein homology by BLASTX in UNIPROT database. Totally 99 uniESTs were found in TIGR maize gene indices and nr database by BLASTN, while 44 uniESTs were not found to have homologous nucleic acid sequences and putatively classified as "maize-specific" uniESTs. The 218 cDNAs with significant protein homology were sorted into 13 groups according to the functional categories of the Arabidopsis proteins. Among those genes, the genes associated with the metabolisms were the largest group (account for 27%), and the genes related to protein synthesis, protein fate, transcription, cell cycle and DNA processing accounted for 16, 10, 10 and 9%, respectively. After analysis of macroarray data and real-time quantitative polymerase chain reaction (PCR), it was found that 160 of the 218 homologous protein uniESTs were up-regulated genes in the ears, 129 in the silks, and 125 in both of the tissues. The present work provided a valuable starting point for further elucidation of the roles played by these genes/gene products in drought tolerance in maize.
Collapse
Affiliation(s)
- Hui-Yong Li
- College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Barcala M, García A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C. Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. PLANT MOLECULAR BIOLOGY 2008; 66:151-64. [PMID: 18046507 DOI: 10.1007/s11103-007-9259-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/02/2007] [Indexed: 05/08/2023]
Abstract
Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (-83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses.
Collapse
Affiliation(s)
- Marta Barcala
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Campus de la Real Fábrica de Armas, 45071 Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007. [PMID: 17519032 DOI: 10.1186/1471‐2164‐8‐125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues. RESULTS All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots). CONCLUSION Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional analysis under conditions apart from heat shock treatment. In addition, our analysis revealed several family and tissue-specific heat shock gene expression patterns that have not been previously described. These results have implications regarding the molecular basis of cross-tolerance in plant species, and raise new questions to be pursued in future experimental studies of the Arabidopsis heat shock response network.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
18
|
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007; 8:125. [PMID: 17519032 PMCID: PMC1887538 DOI: 10.1186/1471-2164-8-125] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 05/22/2007] [Indexed: 12/29/2022] Open
Abstract
Background The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues. Results All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots). Conclusion Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional analysis under conditions apart from heat shock treatment. In addition, our analysis revealed several family and tissue-specific heat shock gene expression patterns that have not been previously described. These results have implications regarding the molecular basis of cross-tolerance in plant species, and raise new questions to be pursued in future experimental studies of the Arabidopsis heat shock response network.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Andreas P Weber
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. THE PLANT CELL 2007; 19:182-95. [PMID: 17220197 PMCID: PMC1820961 DOI: 10.1105/tpc.106.048165] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Within the Arabidopsis thaliana family of 21 heat stress transcription factors (Hsfs), HsfA9 is exclusively expressed in late stages of seed development. Here, we present evidence that developmental expression of HsfA9 is regulated by the seed-specific transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). Intriguingly, ABI3 knockout lines lack detectable levels of HsfA9 transcript and protein, and further ectopic expression of ABI3 conferred the ability to accumulate HsfA9 in response to abscisic acid in transgenic plantlets. Consequently, the most abundant heat stress proteins (Hsps) in seeds (Hsp17.4-CI, Hsp17.7-CII, and Hsp101) were not detectable in the ABI3 knockout lines, but their expression could be detected in plants ectopically expressing HsfA9 in vegetative tissues. Furthermore, this seed-specific transcription factor cascade was reconstructed in transient beta-glucuronidase reporter assays in mesophyll protoplasts by showing that ABI3 could activate the HsfA9 promoter, whereas HsfA9 in turn was shown to be a potent activator on the promoters of Hsp genes. Thus, our study establishes a genetic framework in which HsfA9 operates as a specialized Hsf for the developmental expression of Hsp genes during seed maturation.
Collapse
Affiliation(s)
- Sachin Kotak
- Institute of Molecular Biosciences, Biocenter N200/R306, Goethe University, D-60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
20
|
Yi SY, Sun AQ, Sun Y, Yang JY, Zhao CM, Liu J. Differential regulation of Lehsp23.8 in tomato plants: Analysis of a multiple stress-inducible promoter. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:398-407. [PMID: 22980210 DOI: 10.1016/j.plantsci.2006.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/28/2006] [Accepted: 04/28/2006] [Indexed: 06/01/2023]
Abstract
Small heat shock proteins (sHSPs) are the major family of HSP induced by heat stress in plants. In this report, an approximately 1.9kb of Lehsp23.8 5'-flanking sequence was isolated from tomato genome. By using the β-glucuronidase (GUS) reporter gene system, the developmental and tissue specific expression of the gus gene controlled by the Lehsp23.8 promoter was characterized in transgenic tomato plants. Strong GUS staining was detected in the roots, leaves, flowers, fruits and germinated seeds after heat shock. The heat-induced GUS activity was different in the floral tissues at various developmental stages. Fluorometric GUS assay showed that the heat-induced GUS activity was higher in the pericarp than in the placenta, and it was the lowest in the locular gel. The heat-shock induction of the Lehsp23.8 promoter depended on the different stages of fruit development. The optimal heat-shock temperatures leading to the maximal GUS activity in the pericarp of green, breaker, pink and red fruits were 42, 36, 39 and 39°C, respectively. The heat-induced GUS activity in tomato fruits increased gradually within 48h of treatment and weakened during tomato fruit ripening. Obvious GUS activities under cold, exogenous ABA and heavy metal (Cd(2+), Cu(2+), Pb(2+) or Zn(2+)) stress conditions were also detected. These results show that the Lehsp23.8 promoter is characterized as strongly heat-inducible and multiple-stress responsive.
Collapse
Affiliation(s)
- Shu-Ying Yi
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | |
Collapse
|
21
|
Dezar CA, Gago GM, Gonzalez DH, Chan RL. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res 2005; 14:429-40. [PMID: 16201409 DOI: 10.1007/s11248-005-5076-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I. It is regulated at the transcriptional level by water availability and abscisic acid. In order to establish if this gene plays a functional role in drought responses, transgenic Arabidopsis thaliana plants that overexpress Hahb-4 under the control of the 35S Cauliflower Mosaic Virus promoter were obtained. Transformed plants show a specific phenotype: they develop shorter stems and internodes, rounder leaves and more compact inflorescences than their non-transformed counterparts. Shorter stems and internodes are due to a lower rate in cell elongation rather than to a stop in cell division. Transgenic plants were more tolerant to water stress conditions, showing improved development, a healthier appearance and higher survival rates than wild-type plants. Indeed, either under normal or drought conditions, they produce approximately the same seed weight per plant as wild-type plants under normal growth conditions. Plants transformed with a construct that bears the Hahb-4 promoter fused to gusA show reporter gene expression in defined cell-types and developmental stages and are induced by drought and abscisic acid. Since Hahb-4 is a transcription factor, we propose that it may participate in the regulation of the expression of genes involved in developmental responses of plants to desiccation.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Crops, Agricultural/genetics
- Crops, Agricultural/physiology
- DNA, Plant/isolation & purification
- Disasters
- Gene Expression Regulation, Plant
- Genes, Homeobox/physiology
- Genes, Plant
- Helianthus/genetics
- Homeodomain Proteins
- Leucine Zippers/genetics
- Phenotype
- Plant Growth Regulators/genetics
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- Carlos Alberto Dezar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | |
Collapse
|
22
|
Volkov RA, Panchuk II, Schöffl F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. PLANT MOLECULAR BIOLOGY 2005; 57:487-502. [PMID: 15821976 DOI: 10.1007/s11103-005-0339-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/07/2005] [Indexed: 05/23/2023]
Abstract
In plants small heat shock proteins (sHsp) are abundantly expressed upon heat stress in vegetative tissue, however, sHsp expression is also developmentally induced in pollen. The developmental induction of sHsp has been related to the potential for stress-induced microspore embryogenesis. We investigated the polymorphism among sHsp and their expression during pollen development and after heat stress in tobacco. Real-time RT-PCR was used for quantification of mRNA of two known and nine newly isolated cDNAs representing cytosolic sHsp. At normal temperature most of these genes are not transcribed in vegetative tissues, however, all genes were expressed during pollen development. Low levels of mRNAs were found for sHsp-1A and -1B in early-unicellular stage, increasing four to sevenfold in mature pollen. Nine other genes are up-regulated in unicellular and down-regulated in bicellular pollen; three these genes show stage-specific expression. Western analysis revealed that cytosolic class I and II sHsp are developmentally expressed during all stages of pollen development. Different subsets of cytosolic sHsp genes are expressed in a stage-specific fashion suggesting that certain sHsp genes may play specific roles in early, others during later stages of pollen development. Heat stress results in a relatively weak and incomplete response in pollen: (i) the heat-induced levels of mRNA (excepting sHsp-2B, -3C and -6) are much lower than in leaves, (ii) several sHsp are not detected after heat stress in pollen, although, they are heat-inducibly expressed in leaves. Application of heat stress, cold, and starvation, which induce microspore embryogenesis, modify mRNA levels and the patterns of 2-D-separated sHsp, but only heat stress enhances the expression of sHsp in microspores. There is no correlation of the expression of specific sHsp with the potential for microspore embryogenesis.
Collapse
Affiliation(s)
- Roman A Volkov
- Zentrum für Molekularbiologie der Pflanzen-Allgemeine Genetik, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | |
Collapse
|
23
|
Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2005. [PMID: 0 DOI: 10.1080/07352680590910410] [Citation(s) in RCA: 1058] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
24
|
Escobar C, Barcala M, Portillo M, Almoguera C, Jordano J, Fenoll C. Induction of the Hahsp17.7G4 promoter by root-knot nematodes: involvement of heat-shock elements in promoter activity in giant cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1062-8. [PMID: 14651339 DOI: 10.1094/mpmi.2003.16.12.1062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes feed from specialized giant cells induced in the plants that they parasitize. We found that the promoter of the Hahsp17.7G4 gene, which encodes a small heat-shock protein involved in embryogenesis and stress responses, directed GUS expression in tobacco galls induced by the root-knot nematode Meloidogyne incognita. In roots containing a GUS reporter fusion to the Hahsp17.7G4 promoter, 10% of the galls stained for GUS expression 1 to 3 days after infection and the fraction stained increased to 60 to 80% 17 to 20 days after infection. A DNA fragment from -83 to +163, which contains heat-shock element (HSE) core sequences, is sufficient to support a promoter activity largely restricted to giant cells within the galls. Two-point mutations in HSE cores, previously reported to abolish the heat-shock response and to strongly reduce the embryogenesis response of the same promoter, did not reduce expression in giant cells. This suggests a distinct regulation of the promoter by nematodes. However, additional point mutations located at positions crucial for binding of heat-shock transcription factors (HSFs) caused a severe decrease in the nematode response. These results demonstrate that HSEs are involved in the promoter activation in giant cells and suggest that HSFs may mediate this response.
Collapse
Affiliation(s)
- Carolina Escobar
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Campus de la Real Fábrica de Armas, E-45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Rinne PLH, Schoot CVD. Plasmodesmata at the crossroads between development, dormancy, and defense. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-123] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plants are frequently exposed to environmental stress and organisms that seek to benefit from their autotrophic nature. To cope with these challenges plants have developed stress-resistance mechanisms, which involve sensing, activation of signal transduction cascades, changes in gene expression, and physiological adjustment. Exposure to one kind of stress often leads to cross-tolerance, that is, resistance to different kinds of stresses. The search for a common underlying mechanism concentrates mostly on changes in cellular physiology and gene expression. We focus on the cross-protective measures that are taken at the level above the single cell. We argue that the controlled alterations in symplasmic permeability that underlie development also play a role in survival and defense strategies. In development, most of the alterations are transient and dynamic, whereas the more persistent alterations function predominantly in dormancy and defense and are under the control of two key enzymes: 1,3-β-D-glucan synthase and 1,3-β-D-glucanase. 1,3-β-D-Glucan synthase functions in the narrowing or closing of plasmodesmata, whereas 1,3-β-D-glucanase counteracts this process. We propose that the closing of symplasmic paths constitutes an unspecific but effective early measure in adaptation and defense, which is accompanied by specific strategies tailored to the various challenges plants face.Key words: cross-adaptation, dormancy sphincter, 1,3-β-D-glucanase, 1,3-β-D-glucan synthase, meristem, overwintering, plasmodesmata, virus movement.
Collapse
|
26
|
Ayadi R, Papon N, Chénieux JC, Rideau M, Trémouillaux-Guiller J. Clonage, caractérisation et expression d'un ADNc partiel codant une protéine de choc thermique de faible masse moléculaire chezGinkgo bilobaL. ACTA ACUST UNITED AC 2003. [DOI: 10.1080/12538078.2003.10515989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Yu LX, Setter TL. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. PLANT PHYSIOLOGY 2003; 131:568-82. [PMID: 12586881 PMCID: PMC166833 DOI: 10.1104/pp.014365] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2002] [Revised: 10/07/2002] [Accepted: 11/06/2002] [Indexed: 05/20/2023]
Abstract
The early post-pollination phase of maize (Zea mays) development is particularly sensitive to water deficit stress. Using cDNA microarray, we studied transcriptional profiles of endosperm and placenta/pedicel tissues in developing maize kernels under water stress. At 9 d after pollination (DAP), placenta/pedicel and endosperm differed considerably in their transcriptional responses. In placenta/pedicel, 79 genes were significantly affected by stress and of these 89% were up-regulated, whereas in endosperm, 56 genes were significantly affected and 82% of these were down-regulated. Only nine of the stress-regulated genes were in common between these tissues. Hierarchical cluster analysis indicated that different sets of genes were regulated in the two tissues. After rewatering at 9 DAP, profiles at 12 DAP suggested that two regulons exist, one for genes responding specifically to concurrent imposition of stress, and another for genes remaining affected after transient stress. In placenta, genes encoding recognized stress tolerance proteins, including heat shock proteins, chaperonins, and major intrinsic proteins, were the largest class of genes regulated, all of which were up-regulated. In contrast, in endosperm, genes in the cell division and growth category represented a large class of down-regulated genes. Several cell wall-degrading enzymes were expressed at lower levels than in controls, suggesting that stress delayed normal advance to programmed cell death in the central endosperm. We suggest that the responsiveness of placenta to whole-plant stress factors (water potential, abscisic acid, and sugar flux) and of endosperm to indirect factors may play key roles in determining the threshold for kernel abortion.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
28
|
Almoguera C, Rojas A, Díaz-Martín J, Prieto-Dapena P, Carranco R, Jordano J. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 2002; 277:43866-72. [PMID: 12228226 DOI: 10.1074/jbc.m207330200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and functional characterization of the first heat-shock transcription factor that is specifically expressed during embryogenesis in the absence of environmental stress. In sunflower embryos this factor, HaHSFA9, trans-activated promoters with poor consensus heat-shock cis-elements, including that of the seed-specific Hahsp17.6G1 gene. Mutations that improved the heat-shock cis-element consensus at the Hahsp17.7G4 promoter impaired transient activation by HaHSFA9 in sunflower embryos. The same mutations did not affect heat-shock-induced gene expression of this promoter in transgenic tobacco plants but reduced the developmental activation by endogenous heat-shock transcription factors (HSFs) in seeds. Sunflower, and perhaps other plants such as tobacco, differs from the vertebrate animal systems in having at least one specialized HSF with expression and (or) activation patterns strictly restricted to embryos. Our results strongly indicate that HaHSFA9 is a transcription factor critically involved in the developmental activation of Hahsp17.6G1 and in that of similar target genes as Hahsp17.7G4.
Collapse
Affiliation(s)
- Concepción Almoguera
- Instituto de Recursos Naturales y Agrobiologia, C.S.I.C. Apartado 1052, 41080 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:1-9. [PMID: 12151089 DOI: 10.1016/s0167-4781(02)00417-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small heat shock proteins (sHsps) are produced ubiquitously in prokaryotic and eukaryotic cells upon heat. The special importance of sHsps in plants is suggested by unusual abundance and diversity. Six classes of sHsps have been identified in plants based on their intracellular localization and sequence relatedness. In addition to heat stress, plant sHsps are also produced under other stress conditions and at certain developmental stages. Induction of sHsp gene expression and protein accumulation upon environmental stresses point to the hypothesis that these proteins play an important role in stress tolerance. The function of sHsps as molecular chaperones is supported by in vitro and in vivo assays. This review summarizes recent knowledge about plant sHsp gene expression, protein structure and functions.
Collapse
Affiliation(s)
- Weining Sun
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
30
|
Rojas A, Almoguera C, Carranco R, Scharf KD, Jordano J. Selective activation of the developmentally regulated Ha hsp17.6 G1 promoter by heat stress transcription factors. PLANT PHYSIOLOGY 2002; 129:1207-15. [PMID: 12114574 PMCID: PMC166514 DOI: 10.1104/pp.010927] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 01/22/2002] [Accepted: 02/27/2002] [Indexed: 05/20/2023]
Abstract
Using two well-characterized heat stress transcription factors (Hsfs) from tomato (Lycopersicon peruvianum; LpHsfA1 and LpHsfA2), we analyzed the transcriptional activation of the Ha hsp17.6 G1 promoter in sunflower (Helianthus annuus) embryos. In this system, we observed transient promoter activation only with LpHsfA2. In contrast, both factors were able to activate mutant versions of the promoter with improved consensus Hsf-binding sites. Exclusive activation by LpHsfA2 was also observed in yeast (Saccharomyces cerevisiae) without other Hsfs and with a minimal Cyc1 promoter fused to the Ha hsp17.6 G1 heat stress cis-element. Furthermore, the same promoter mutations reproduced the loss of activation selectivity, as observed in sunflower embryos. The results of in vitro binding experiments rule out differential DNA binding of the two factors as the explanation for the observed differential activation capacity. We conclude that the specific sequence of this heat stress cis-element is crucial for Hsf promoter selectivity, and that this selectivity could involve preferential transcriptional activation following DNA binding. In sunflower embryos, we also observed synergistic transcriptional activation by co-expression of LpHsfA1 and LpHsfA2. Mutational analyses of the Ha hsp17.6 G1 promoter, combined with in vitro binding assays, suggest that mixed oligomers of the two factors may be involved in promoter activation. We discuss the relevance of our observations for mechanisms of developmental regulation of plant heat stress protein genes.
Collapse
Affiliation(s)
- Anabel Rojas
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas Apartado 1052, 41080 Sevilla, Spain
| | | | | | | | | |
Collapse
|
31
|
Almoguera C, Rojas A, Jordano J. Reversible heat-induced inactivation of chimeric beta-glucuronidase in transgenic plants. PLANT PHYSIOLOGY 2002; 129:333-41. [PMID: 12011363 PMCID: PMC155896 DOI: 10.1104/pp.000992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 01/29/2002] [Accepted: 02/04/2002] [Indexed: 05/23/2023]
Abstract
We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to beta-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5'-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions.
Collapse
Affiliation(s)
- Concepción Almoguera
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Apartado 1052, 41080 Sevilla, Spain
| | | | | |
Collapse
|
32
|
Roja-Herrera R, Quiroz-Figueroa F, Monforte-González M, Sánchez-Teyer L, Loyola-Vargas VM. Differential gene expression during somatic embryogenesis in Coffea arabica L., revealed by RT-PCR differential display. Mol Biotechnol 2002; 21:43-50. [PMID: 11989658 DOI: 10.1385/mb:21:1:043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular and biochemical studies of somatic embryogenesis may help to shed light on the mechanisms governing this phenomenon. In this article, a differential display analysis approach was employed to investigate the changes taking place during the induction of somatic embryogenesis in leaf explants and suspension cultures of coffee. Cloned fragments show homologies to several proteins reported in databases, but only one has previously been described as regulated during somatic embryogenesis. By a reverse dot blot modification, the expression pattern of such fragments was evaluated.
Collapse
Affiliation(s)
- R Roja-Herrera
- Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigacíon Científicas de Yucatán, Mérida, México
| | | | | | | | | |
Collapse
|
33
|
Treglia AS, Gulli M, Perrottab C. Isolation and characterisation of a cDNA for a novel small HSP from sunflower suspension cell cultures. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:397-400. [PMID: 11913786 DOI: 10.3109/10425170109084464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A full-length cDNA encoding a novel small heat shock protein (HaHSP17.9) was isolated from a cDNA library of sunflower (Helianthus annuus cv. Gloriasol). The deduced amino acid sequence exhibited high degree homology to the class I cytosolic sHSPs from other plant species, and contained all the conserved regions characteristic of this class of proteins. Northern analyses showed that the transcript homologous to HaHSP17.9 accumulates during heat shock in suspension cultured cells and in the different parts of sunflower seedlings.
Collapse
Affiliation(s)
- A S Treglia
- Department of Biology, University of Lecce, Italy
| | | | | |
Collapse
|
34
|
Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:407-15. [PMID: 11576425 DOI: 10.1046/j.1365-313x.2001.01107.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to their sessile lifestyle, it is crucial for plants to acquire stress tolerance. The function of heat-shock proteins, including small heat-shock proteins (smHSPs), in stress tolerance is not fully explored. To gain further knowledge about the smHSPs, the gene that encoded the cytosolic class II smHSP in Arabidopsis thaliana (At-HSP17.6A) was characterized. The At-HSP17.6A expression was induced by heat and osmotic stress, as well as during seed development. Accumulation of At-HSP17.6A proteins could be detected with heat and at a late stage of seed development, but not with osmotic stress, suggesting stress-induced post-transcriptional regulation of At-HSP17.6A expression. Overproduction of At-HSP17.6A could increase salt and drought tolerance in Arabidopsis. The chaperone activity of At-HSP17.6A was demonstrated in vitro.
Collapse
Affiliation(s)
- W Sun
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
35
|
Lund AA, Rhoads DM, Lund AL, Cerny RL, Elthon TE. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem 2001; 276:29924-9. [PMID: 11397800 DOI: 10.1074/jbc.m103373200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A maize (Zea mays L.) small heat shock protein (HSP), HSP22, was previously shown to accumulate to high levels in mitochondria during heat stress. Here we have purified native HSP22 and resolved the protein into three peaks using reverse phase high performance liquid chromatography. Mass spectrometry (MS) of the first two peaks revealed the presence of two HSP22 forms in each peak which differed in mass by 80 daltons (Da), indicative of a monophosphorylation. Phosphorylation of HSP22 by [gamma-(32)P]ATP was also observed in mitochondria labeled in vitro, but not when purified native HSP22 was similarly used, demonstrating that HSP22 does not autophosphorylate, implicating a kinase involvement in vivo. Collisionally induced dissociation tandem MS (CID MS/MS) identified Ser(59) as the phosphorylated residue. We have also observed forms of HSP22 that result from alternative intron splicing. The two HSP22 proteins in the first peak were approximately 57 Da larger than the two HSP22 proteins in the second peak. MS analysis revealed that the +57-Da forms have an additional Gly residue directly N-terminal of the expected Asp(84), which had been converted to an Asn residue. These results are the first demonstrations of phosphorylation and alternative intron splicing of a plant small HSP.
Collapse
Affiliation(s)
- A A Lund
- School of Biological Sciences and the Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | | | | | | | |
Collapse
|
36
|
Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001; 6:201-8. [PMID: 11599561 PMCID: PMC434401 DOI: 10.1379/1466-1268(2001)006<0201:gaoths>2.0.co;2] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress.
Collapse
Affiliation(s)
- B L Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. &cestflwr; Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001. [DOI: 10.1379/1466-1268(2001)006%3c0201:gaoths%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
O'Mahony P, Burke J. A ditelosomic line of 'Chinese Spring' wheat with augmented acquired thermotolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:147-154. [PMID: 10996254 DOI: 10.1016/s0168-9452(00)00315-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A study of the ditelosomic series of 'Chinese Spring' wheat has yielded a number of lines displaying either an increased or decreased ability to acquire thermotolerance. One such ditelosomic (DT) is termed DT1BS which refers to the missing short arm of chromosome 1 in the B genome. The DT1BS line has the ability to acquire thermotolerance at lower induction temperatures and provide greater protection to the plant against otherwise lethal elevated temperatures. Using a chlorophyll accumulation assay to measure plant health, we show that DT1BS accumulates chlorophyll optimally at the same temperature, and to similar levels as 'Chinese Spring'. We also show that maximum acquired thermotolerance against a 48 degrees C challenge is induced at 40 degrees C, but significant levels of protection can be obtained at temperatures as low as 34 degrees C in DT1BS or 36 degrees C in 'Chinese Spring'. Heat-shock protein accumulation is observed in DT1BS at temperatures 4 degrees C lower than the 'Chinese Spring' and is correlated with the induction of acquired thermotolerance.
Collapse
Affiliation(s)
- P O'Mahony
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, 79415, Lubbock, TX, USA
| | | |
Collapse
|
39
|
Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. PLANT PHYSIOLOGY 2000; 122:1099-108. [PMID: 10759505 PMCID: PMC58944 DOI: 10.1104/pp.122.4.1099] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/1999] [Accepted: 12/24/1999] [Indexed: 05/18/2023]
Abstract
To learn more about the function and regulation of small heat shock proteins (sHSPs) during seed development, we studied sHSP expression in wild-type and seed maturation mutants of Arabidopsis by western analysis and using an HSP17.4 promoter-driven beta-glucuronidase (GUS) reporter gene in transgenic plants. In the absence of stress, GUS activity increases during development until the entire embryo is stained before desiccation. Heat-stressed embryos stained for GUS at all stages, including early stages that showed no detectable HSP17. 4::GUS activity without heat. Examination of HSP17.4 expression in seeds of the transcriptional activator mutants abi3-6, fus3-3 (AIMS no. CS8014/N8014), and lec1-2 (AIMS no. CS2922/N2922) showed that protein and HSP17.4::GUS activity were highly reduced in fus3-3 and lec1-2 and undetectable in abi3-6 seeds. In contrast, heat-stressed abi3-6, fus3-3, and lec1-2 seeds stained for GUS activity throughout the embryo. These data indicate that there is distinct developmental and stress regulation of HSP17.4, and imply that ABI3 activates HSP17.4 transcription during development. Quantitation of sHSP protein in desiccation-intolerant seeds of abi3-6, fus3-3, lec1-2, and line24 showed that all had <2% of wild-type HSP17.4 levels. In contrast, the desiccation-tolerant but embryo-defective mutants emb266 (AIMS no. CS3049/N3049) and lec2-1 (AIMS no. CS2728/N2728) had wild-type levels of HSP17.4. These data correlate a reduction in sHSPs with desiccation intolerance and suggest that sHSPs have a general protective role throughout the seed.
Collapse
Affiliation(s)
- N Wehmeyer
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
40
|
Yoshida K, Shinmyo A. Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng 2000; 90:353-62. [PMID: 16232872 DOI: 10.1016/s1389-1723(01)80001-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Accepted: 06/25/2000] [Indexed: 10/26/2022]
Abstract
Plants are important resources that have been providing us food from the earliest times. The rapid advances that have taken place in plant genetic engineering have made it possible to modify plants to increase food production and contribute to environmental purification. Transgenic plants are gaining increasing attention from the industry as a natural bioreactor for the production of industrial and chemical products. Useful expression systems based on promoters to optimize transgene expression in plant cells, hold the key to maximizing the potential of this concept of molecular-farming or industrial plants. This review, which is devoted to the use of plants for heterologous protein production, is divided into three parts. First, we introduce the nature of plant promoters and strategies for the isolation of novel promoters. In the second part, various promoters showing high-level constitutive, organ-specific, or inducible expression, are summarized as useful tools for realizing the efficient transcription of transgenes. Finally, problems in the expression of foreign gene in plant cells and future prospects in plant biotechnology are discussed.
Collapse
Affiliation(s)
- K Yoshida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan
| | | |
Collapse
|
41
|
|
42
|
Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:601-610. [PMID: 10652132 DOI: 10.1046/j.1365-313x.1999.00635.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transient expression analyses in sunflower embryos demonstrated that ABI3, a seed-specific transcription factor from Arabidopsis, activated chimaeric genes with the Ha hsp17.7 G4 promoter. Nucleotide substitutions at crucial positions of heat shock cis-elements established that they are required for the transcriptional activation involving ABI3. Trans-activation with Lp-HSFA1, a heat shock factor from tomato, reproduced the activation patterns of wild-type and mutant promoters observed with ABI3. In addition, ABI3 and Lp-HSFA1 synergistically activated the Ha hsp17. 7 G4 promoter, but only when it contained the intact proximal and distal heat shock cis-elements. The activation domain of Lp-HSFA1 was necessary for promoter activation. An amino terminal deletion of ABI3 had dominant negative effects on activation by Lp-HSFA1. We failed to detect a substantial transcriptional activation by ABI3 in the absence of either functional heat shock factors or heat shock elements (HSEs). Furthermore, the wild-type, but not the mutant HSEs (from - 136 to - 49 in Ha hsp17.7 G4) were sufficient, in the context of a - 46 CaMV 35S promoter, to support activation by Lp-HSFA1, or Lp-HSFA1 and ABI3. These results demonstrate, for the first time, transcriptional activation of a heat shock protein promoter by ABI3. We also suggest that ABI3 functions as a transcriptional co-activator through heat shock factors.
Collapse
Affiliation(s)
- A Rojas
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Apartado 1052, 41080 Sevilla, Spain
| | | | | |
Collapse
|
43
|
Carranco R, Almoguera C, Jordano J. An imperfect heat shock element and different upstream sequences are required for the seed-specific expression of a small heat shock protein gene. PLANT PHYSIOLOGY 1999; 121:723-30. [PMID: 10557220 PMCID: PMC59434 DOI: 10.1104/pp.121.3.723] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/1999] [Accepted: 07/08/1999] [Indexed: 05/18/2023]
Abstract
Chimeric constructs containing the promoter and upstream sequences of Ha hsp17.6 G1, a small heat shock protein gene, reproduced in transgenic tobacco (Nicotiana tabacum) its unique seed-specific expression patterns previously reported in sunflower. These constructs did not respond to heat shock, but were expressed without exogenous stress during late zygotic embryogenesis coincident with seed desiccation. Site-directed mutagenesis of its distal and imperfect heat shock element strongly impaired in vitro heat shock transcription factor binding and transgene expression in seeds. Deletion analyses of upstream sequences indicated the contribution of additional cis-acting elements with either positive or negative effects on transgene expression. These results show differences in the transcriptional activation through the heat shock element of small heat shock protein gene promoters in seeds compared with the heat shock response. In addition, they suggest that heat shock transcription factors and other distinct trans-acting factors cooperate in the regulation of Ha hsp17.6 G1 during seed desiccation.
Collapse
Affiliation(s)
- R Carranco
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Apartado 1052, 41080 Sevilla, Spain
| | | | | |
Collapse
|
44
|
Danjoh I, Fujiyama A. Ras-mediated signaling pathway regulates the expression of a low-molecular-weight heat-shock protein in fission yeast. Gene 1999; 236:347-52. [PMID: 10452954 DOI: 10.1016/s0378-1119(99)00237-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In fission yeast, Schizosaccharomyces pombe, deficiency of ras1 gene causes an abnormal cell shape and abolishes mating ability. However, target genes of this signaling pathway are largely unknown because of the lack of an appropriate analysis system. To overcome this problem, we have started a novel project to categorize entire genes based on their expression levels under different growth conditions. Using this strategy, we screened genes whose expression levels were affected in the presence or absence of the ras1 gene product. For this purpose, we utilized high-density arrays of clones covering the entire genome of the fission yeast, and probed with labelled cDNA derived from various strains and growth conditions. Here, we demonstrate the detection of a low-molecular-weight heat-shock protein gene, hsp16, whose expression is very likely to be regulated by a ras-mediated signaling pathway, but not by the heat-shock response.
Collapse
Affiliation(s)
- I Danjoh
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
45
|
Hiyama T, Nakamoto H. Heat-Shock Proteins and Temperature Stress. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Escobar C, De Meutter J, Aristizábal FA, Sanz-Alférez S, del Campo FF, Barthels N, Van der Eycken W, Seurinck J, van Montagu M, Gheysen G, Fenoll C. Isolation of the LEMMI9 gene and promoter analysis during a compatible plant-nematode interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:440-9. [PMID: 10226377 DOI: 10.1094/mpmi.1999.12.5.440] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant-endoparasitic root-knot nematodes feed on specialized giant cells that they induce in the vascular cylinder of susceptible plants. Although it has been established that a number of plant genes change their expression pattern during giant cell differentiation, virtually no data are available about the mechanisms involved in that change. One possibility is differential promoter recognition by the transcription factor(s) responsible for the expression of specific genes. We have isolated and characterized a genomic clone from tomato containing the promoter region of LEMMI9, one of the few plant genes that have been reported to be highly expressed in galls (predominantly in giant cells). The analysis of transgenic potato plants carrying a LEMMI9 promoter-beta glucuronidase (GUS) fusion has demonstrated that the tomato promoter was activated in Meloidogyne incognita-induced galls in a heterologous system. We have located putative regulatory sequences in the promoter and have found that nuclear proteins from the galls formed specific DNA-protein complexes with the proximal region of the LEMMI9 promoter. The nuclear protein-binding sequence mapped to a region of 111 bp immediately upstream from the TATA box. This region contains a 12-bp repeat possibly involved in the formation of DNA-protein complexes, which might be related to the LEMMI9 transcriptional activation in the giant cells.
Collapse
Affiliation(s)
- C Escobar
- Departamento de Biología, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Almoguera C, Prieto-Dapena P, Jordano J. Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:437-46. [PMID: 9680992 DOI: 10.1046/j.1365-313x.1998.00044.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transgenic tobacco expression was analysed of chimeric genes with point mutations in the heat shock element (HSE) arrays of a small heat shock protein (sHSP) gene from sunflower: Ha hsp17.7 G4. The promoter was developmentally regulated during zygotic embryogenesis and responded to heat stress in vegetative tissues. Mutations in the HSE affected nucleotides crucial for human heat shock transcription factor 1 (HSF1) binding. They abolished the heat shock response of Ha hsp17.7 G4 and produced expression changes that demonstrated dual regulation of this promoter during embryogenesis. Thus, whereas activation of the chimeric genes during early maturation stages did not require intact HSE, expression at later desiccation stages was reduced by mutations in both the proximal (-57 to -89) and distal (-99 to -121) HSE. In contrast, two point mutations in the proximal HSE that did not severely affect gene expression during zygotic embryogenesis, eliminated the heat shock response of the same chimeric gene in vegetative organs. Therefore, by site-directed mutagenesis, it was possible to separate the heat shock response of Ha hsp17.7 G4 from its developmental regulation. The results indicate the co-existence, in a single promoter, of HSF-dependent and -independent regulation mechanisms that would control sHSP gene expression at different stages during plant embryogenesis.
Collapse
Affiliation(s)
- C Almoguera
- Instituto de Recursos Naturales y Agrobiología, CSIC, Sevilla, Spain
| | | | | |
Collapse
|
48
|
Carranco R, Almoguera C, Jordano J. A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 1997; 272:27470-5. [PMID: 9341201 DOI: 10.1074/jbc.272.43.27470] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A small heat shock protein (sHSP) gene from sunflower, Ha hsp17.6 G1, showed expression patterns that differ from what is known for members of this gene family. The mRNAs of this gene accumulated in seeds during late desiccation stages of zygotic embryogenesis but not in response to heat shock in vegetative tissues. The failure to respond to heat shock was independent of the developmental stage after germination and shock temperature. Nuclear run-on analyses demonstrated that transcription from the Ha hsp17.6 G1 promoter is not induced by heat shock. This agrees with the presence, in this promoter, of sequences with little similarity to heat shock elements. Our results show an evolutionary divergence, in the regulation of plant sHSP genes, which has originated stress-responsive genes and nonresponsive members within this gene family. We discuss implications for mechanisms controlling the developmental regulation of sHSP genes in plants.
Collapse
Affiliation(s)
- R Carranco
- Instituto de Recursos Naturales y Agrobiología, CSIC, Apartado 1052, 41080 Sevilla, Spain
| | | | | |
Collapse
|
49
|
Liang P, Amons R, Clegg JS, MacRae TH. Molecular characterization of a small heat shock/alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 1997; 272:19051-8. [PMID: 9228089 DOI: 10.1074/jbc.272.30.19051] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Molecular chaperones protect cells during stress by limiting the denaturation/aggregation of proteins and facilitating their renaturation. In this context, brine shrimp embryos can endure a wide variety of stressful conditions, including temperature extremes, prolonged anoxia, and desiccation, thus encountering shortages of both energy (ATP) and water. How the embryos survive these stresses is the subject of continuing study, a situation true for other organisms facing similar physiological challenges. To approach this question we cloned and sequenced a cDNA for p26, a molecular chaperone specific to oviparous Artemia embryos. p26 is the first representative of the small heat shock/alpha-crystallin family from crustaceans to be sequenced, and it possesses the conserved alpha-crystallin domain characteristic of these proteins. The secondary structure of this domain was predicted to consist predominantly of beta-pleated sheet, and it appeared to lack regions of alpha-helix. Unique properties of the nonconserved amino terminus, which showed weak similarity to nucleolins and fibrillarins, are enrichments in both glycine and arginine. The carboxyl-terminal tail is the longest yet reported for a small heat shock/alpha-crystallin protein, and it is hydrophilic, a common attribute of this region. Site-specific differences between amino acids from p26 and other small heat shock/alpha-crystallin proteins bring into question the functions proposed for some of these residues. Probing of Southern blots disclosed a multi-gene family for p26, whereas two size classes of p26 mRNA at 0.7 and 1.9 kilobase pairs were seen on Northern blots, the larger probably representing nonprocessed transcripts. Examination of immunofluorescently stained samples with the confocal microscope revealed that a limited portion of intracellular p26 is found in the nuclei of encysted embryos and that it resides within discrete compartments of this organelle. The results in this paper demonstrate clearly that p26 is a novel member of the small heat shock/alpha-crystallin family of proteins. These data, in concert with its restriction to embryos undergoing oviparous development, suggest that p26 functions as a molecular chaperone during exposure to stress, perhaps able to limit protein degradation and thus ensure a ready supply of functional proteins when growth is reinitiated.
Collapse
Affiliation(s)
- P Liang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | | | | | | |
Collapse
|