1
|
Liu B, Xu C, He Q, Zhang K, Qi S, Jin Z, Cheng W, Ding Z, Chen D, Zhao X, Zhang W, Zhang K, Li K. Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants. Proc Natl Acad Sci U S A 2024; 121:e2406090121. [PMID: 38865274 PMCID: PMC11194580 DOI: 10.1073/pnas.2406090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of β-hydroxy β-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.
Collapse
Affiliation(s)
- Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Qiuxia He
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan250103, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Shoumei Qi
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Zhe Jin
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Donghua Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| |
Collapse
|
2
|
Zhi Y, Gao Q, Wang Z, Dong Y, Guan Y, Yuan J, Zhang Z. Circular RNA circSP5 promotes liver metastasis of colorectal cancer via SP5-mediated BAMBI transcription. Funct Integr Genomics 2023; 23:275. [PMID: 37596430 DOI: 10.1007/s10142-023-01142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
Liver metastasis of colorectal cancer (CRC) is a major cause of cancer morbidity and mortality. Circular RNAs (circRNAs) have been widely reported to be implicated in cancer metastasis. This study aims to investigate the effect of circSP5 (has_circ_0057010) on liver metastasis of CRC. Quantitative real-time PCR (RT-qPCR) analysis was performed to detect gene expression. The level of proteins was measured by western blot. The migration and invasion of CRC cells were assessed by wound healing assay and transwell assay. In vivo assays were performed after the construction of the CRC xenograft model and CRC model with liver metastasis. Mechanism analyses were performed via RNA-binding protein immunoprecipitation (RIP), RNA pulldown, luciferase reporter, chromatin immunoprecipitation (ChIP), and DNA pulldown assays. We found that circSP5 is significantly overexpressed in CRC with liver metastasis and its depletion suppresses the progression of CRC with liver metastasis in vitro and in vivo. Moreover, circSP5 enhances the expression of Sp5 transcription factor (SP5) via competitively sponging microRNA (miR)-1249-3p and could regulate BMP and activin membrane-bound inhibitor (BAMBI) via transcriptional activation. CircSP5 promotes the migration, invasion, and epithelial-mesenchymal transition (EMT) of CRC cells via BAMBI. In sum, circSP5 promotes liver metastasis of CRC by up-regulating SP5-mediated BAMBI transcription.
Collapse
Affiliation(s)
- Yingru Zhi
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Qingyuan Gao
- Department of Gastroenterology, Yuhua Branch of Nanjing First Hospital, Nanjing, Jiangsu, China
| | - Zhibing Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yu Dong
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yue Guan
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jie Yuan
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
3
|
Li W, Liu B, Zhao M, Zhang K, He Q, Zhao X, Cheng W, Ding Z, Zhang K, Li K. Isolation and characterization of a 295-bp strong promoter of maize high-affinity phosphate transporter gene ZmPht1; 5 in transgenic Nicotiana benthamiana and Zea mays. PLANTA 2020; 251:106. [PMID: 32424449 DOI: 10.1007/s00425-020-03400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION The small 295-bp ZmPht1; 5 promoter is sufficient to drive high-intensity expression of target genes, especially under phosphate deprivation conditions, and is therefore useful for crop improvement via transgenic techniques. Phosphate (Pi) deficiency has become a major challenge and limiting factor in world agricultural production. Manipulating the gene expression using appropriate promoters to improve the Pi absorption and utilization efficiency of crops could reduce the requirement for Pi fertilizers. In the study, a 295-bp strong promoter (M2P-7) of maize high-affinity phosphate transporter ZmPht1; 5 was isolated and functionally validated in transgenic Nicotiana benthamiana and maize by analyzing the ZmPht1; 5 promoter (M2P-1) and its 5' truncated variants (M2P-2 ~ M2P-8) in different sizes under normal and Pi-deprivation conditions. The M2P-7 displayed the highest promoter activities among 5' truncated fragments in all tested tissues of transgenic Nicotiana benthamiana at different development stages, which was 1.5 and 3 times higher than the well-used CaMV35S promoter under normal and Pi-deprivation conditions, respectively. In maize, the M2P-7 promoter activity was comparable to the maize ubiquitin1 promoter widely used in monocots under normal condition, which was about 1.3 times that of the ubiquitin1 promoter under Pi-deprivation environments. Moreover, the M2P-7 fragment is only 295 bp in length, thus reducing the construct size, and is therefore beneficial for genetic transformation. Thus, the small promoter M2P-7 of plant origin could be of great use for monocotyledonous and dicotyledonous crop improvement via transgenic techniques based on its promoter activities, expression patterns and small size.
Collapse
Affiliation(s)
- Wendi Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengsha Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Abstract
Promoters regulate gene expression, and are essential biotechnology tools. Since its introduction in the mid-1990s, biotechnology has greatly enhanced maize productivity primarily through the development of insect control and herbicide tolerance traits. Additional biotechnology applications include improving seed nutrient composition, industrial protein production, therapeutic production, disease resistance, abiotic stress resistance, and yield enhancement. Biotechnology has also greatly expanded basic research into important mechanisms that govern plant growth and reproduction. Many novel promoters have been developed to facilitate this work, but only a few are widely used. Transgene optimization includes a variety of strategies some of which effect promoter structure. Recent reviews examine the state of the art with respect to transgene design for biotechnology applications. This chapter examines the use of transgene technology in maize, focusing on the way promoters are selected and used. The impact of new developments in genomic technology on promoter structure is also discussed.
Collapse
|
5
|
Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. ANNALS OF BOTANY 2015; 115:1053-74. [PMID: 25878140 PMCID: PMC4648457 DOI: 10.1093/aob/mcv046] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. SCOPE Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. CONCLUSIONS The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility.
Collapse
Affiliation(s)
- Jaime Barros
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Irene Granlund
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, Gu YQ. Phylogenetic, Molecular, and Biochemical Characterization of Caffeic Acid o-Methyltransferase Gene Family in Brachypodium distachyon. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2013; 2013:423189. [PMID: 23431288 PMCID: PMC3562662 DOI: 10.1155/2013/423189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 05/02/2023]
Abstract
Caffeic acid o-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of the new grass model Brachypodium distachyon identified four COMT gene homologs, designated as BdCOMT1, BdCOMT2, BdCOMT3, and BdCOMT4. Phylogenetic analysis suggested that they belong to the COMT gene family, whereas syntenic analysis through comparisons with rice and sorghum revealed that BdCOMT4 on Chromosome 3 is the orthologous copy of the COMT genes well characterized in other grass species. The other three COMT genes are unique to Brachypodium since orthologous copies are not found in the collinear regions of rice and sorghum genomes. Expression studies indicated that all four Brachypodium COMT genes are transcribed but with distinct patterns of tissue specificity. Full-length cDNAs were cloned in frame into the pQE-T7 expression vector for the purification of recombinant Brachypodium COMT proteins. Biochemical characterization of enzyme activity and substrate specificity showed that BdCOMT4 has significant effect on a broad range of substrates with the highest preference for caffeic acid. The other three COMTs had low or no effect on these substrates, suggesting that a diversified evolution occurred on these duplicate genes that not only impacted their pattern of expression, but also altered their biochemical properties.
Collapse
Affiliation(s)
- Xianting Wu
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Avenue, Tai'an, Shandong 271018, China
| | - Yangfan Luo
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Jennifer Bragg
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Olin Anderson
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - John Vogel
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Yong Q. Gu
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- *Yong Q. Gu:
| |
Collapse
|
7
|
Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE. Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. PLANTA 2010; 231:1439-58. [PMID: 20352262 DOI: 10.1007/s00425-010-1138-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 02/26/2010] [Indexed: 05/25/2023]
Abstract
Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Omicron-Methyltransferase (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the beta-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both Pro( DIR16 ):GUS and Pro( OMT ):GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. Pro( DIR16 ) and Pro( OMT ) will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.
Collapse
Affiliation(s)
- Mona B Damaj
- Department of Plant Pathology and Microbiology, Texas AgriLife Research, Texas A&M System, Weslaco, TX 78596, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tiimonen H, Häggman H, Tsai CJ, Chiang V, Aronen T. The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. PLANT CELL REPORTS 2007; 26:1205-14. [PMID: 17431633 DOI: 10.1007/s00299-007-0331-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/30/2007] [Accepted: 02/20/2007] [Indexed: 05/03/2023]
Abstract
In this study, 900-bp (signed as p including nucleotides -1 to -886) and partly deleted (signed as dp including nucleotides -1 to -414) COMT (caffeate/5-hydroxyferulate O-methyltransferase) promoters from Populus tremuloides Michx. were fused to the GUS reporter gene, and the tissue-specific expression patterns of the promoters were determined in Betula pendula Roth along the growing season, and as a response to mechanical bending and wounding. The main activity of the PtCOMTp- and PtCOMTdp-promoters, determined by the histochemical GUS assay, was found in the developing xylem of stems during the 8th-13th week and in the developing xylem of roots in the 13th week of the growing season. The GUS expression patterns did not differ among the xylem cell types. The PtCOMT promoter-induced GUS expression observed in phloem fibres suggests a need for PtCOMT expression and thus syringyl (S) lignin synthesis in fibre lignification. However, the PtCOMTdp-promoter induced GUS expression in stem trichomes, which may contribute to the biosynthesis of phenylpropanoid pathway-derived compounds other than lignin. Finally, a strong GUS expression was induced by the PtCOMT promoters in response to mechanical stem bending but not to wounding. The lack of major differences between the PtCOMTp- and PtCOMTdp-promoters suggests that the deleted promoter sequence (including nucleotides -415 to -886) did not contain a significant regulatory element contributing to the GUS expression in young B. pendula trees.
Collapse
Affiliation(s)
- Heidi Tiimonen
- Finnish Forest Research Institute, Punkaharju Research Unit, Finlandiantie 18, 58450 Punkaharju, Finland.
| | | | | | | | | |
Collapse
|
9
|
Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D. MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. PLANT PHYSIOLOGY 2007; 143:339-63. [PMID: 17098859 PMCID: PMC1761967 DOI: 10.1104/pp.106.086405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
An extensive search for maize (Zea mays) genes involved in cell wall biosynthesis and assembly has been performed and 735 sequences have been centralized in a database, MAIZEWALL (http://www.polebio.scsv.ups-tlse.fr/MAIZEWALL). MAIZEWALL contains a bioinformatic analysis for each entry and gene expression data that are accessible via a user-friendly interface. A maize cell wall macroarray composed of a gene-specific tag for each entry was also constructed to monitor global cell wall-related gene expression in different organs and during internode development. By using this macroarray, we identified sets of genes that exhibit organ and internode-stage preferential expression profiles. These data provide a comprehensive fingerprint of cell wall-related gene expression throughout the maize plant. Moreover, an in-depth examination of genes involved in lignin biosynthesis coupled to biochemical and cytological data from different organs and stages of internode development has also been undertaken. These results allow us to trace spatially and developmentally regulated, putative preferential routes of monolignol biosynthesis involving specific gene family members and suggest that, although all of the gene families of the currently accepted monolignol biosynthetic pathway are conserved in maize, there are subtle differences in family size and a high degree of complexity in spatial expression patterns. These differences are in keeping with the diversity of lignified cell types throughout the maize plant.
Collapse
Affiliation(s)
- Sabine Guillaumie
- Université Paul Sabatier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. PLANT MOLECULAR BIOLOGY 2006; 62:809-23. [PMID: 16941210 DOI: 10.1007/s11103-006-9058-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
The maize (Zea mays L.) caffeic acid O-methyl-transferase (COMT) is a key enzyme in the biosynthesis of lignin. In this work we have characterized the involvement of COMT in the lignification process through the study of the molecular mechanisms involved in its regulation. The examination of the maize COMT gene promoter revealed a putative ACIII box, typically recognized by R2R3-MYB transcription factors. We used the sequence of known R2R3-MYB factors to isolate five maize R2R3-MYB factors (ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and ZmMYB42) and study their possible roles as regulators of the maize COMT gene. The factors ZmMYB8, ZmMY31, and ZmMYB42 belong to the subgroup 4 of the R2R3-MYB family along with other factors associated with lignin biosynthesis repression. In addition, the induction pattern of ZmMYB31 and ZmMYB42 gene expression on wounding is that expected for repressors of the maize COMT gene. Arabidopsis thaliana plants over-expressing ZmMYB31 and ZmMYB42 down-regulate both the A. thaliana and the maize COMT genes. Furthermore, the over-expression of ZmMYB31 and ZmMYB42 also affect the expression of other genes of the lignin pathway and produces a decrease in lignin content of the transgenic plants.
Collapse
Affiliation(s)
- Silvia Fornalé
- Departament de Genética Molecular, Laboratori de Genètica Molecular Vegetal, CSIC-IRTA, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barrière Y. Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 110:126-35. [PMID: 15536523 DOI: 10.1007/s00122-004-1808-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 08/24/2004] [Indexed: 05/12/2023]
Abstract
Polymorphisms within three candidate genes for lignin biosynthesis were investigated to identify alleles useful for the improvement of maize digestibility. The allelic diversity of two caffeoyl-CoA 3-O-methyltransferase genes, CCoAOMT2 and CCoAOMT1, as well as that of the aldehyde O-methyltransferase gene, AldOMT, was evaluated for 34 maize lines chosen for their varying degrees of cell wall digestibility. Frequency of nucleotide changes averaged one SNP every 35 bp. Ninety-one indels were identified in non-coding regions and only four in coding regions. Numerous distinct and highly diverse haplotypes were identified at each locus. Numerous sites were in linkage disequilibrium that declined rapidly within a few hundred bases. For F4, an early flint French line with high cell wall digestibility, the CCoAOMT2 first exon presented many non-synonymous polymorphisms. Notably we found an 18-bp indel, which resembled a microsatellite and was associated with cell wall digestibility variation. Additionally, the CCoAOMT2 gene co-localized with a QTL for cell wall digestibility and lignin content. Together, these results suggest that genetic diversity investigated on a broader genetic basis could contribute to the identification of favourable alleles to be used in the molecular breeding of elite maize germplasm.
Collapse
Affiliation(s)
- C Guillet-Claude
- Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, Route de Saintes, 86600 Lusignan, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gómez-Maldonado J, Avila C, Torre F, Cañas R, Cánovas FM, Campbell MM. Functional interactions between a glutamine synthetase promoter and MYB proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:513-26. [PMID: 15272871 DOI: 10.1111/j.1365-313x.2004.02153.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.
Collapse
Affiliation(s)
- Josefa Gómez-Maldonado
- Biología Molecular y Bioquímica, Instituto Andaluz de Biotencología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitairo de Teatinos, E-29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
13
|
de Obeso M, Caparrós-Ruiz D, Vignols F, Puigdomènech P, Rigau J. Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 2003; 309:23-33. [PMID: 12727355 DOI: 10.1016/s0378-1119(03)00462-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among other enzymes, peroxidases have been proposed to participate in the latest steps of lignin biosynthesis. In order to identify new proteins involved in such mechanism of lignification in maize, we have isolated three cDNAs coding for three different peroxidases, named ZmPox1, ZmPox2, and ZmPox3, respectively. Computational analyses of these three proteins correlate with features typically attributed to heme-containing plant peroxidases of approximately 300 amino acid residues. Although with different expression levels, ZmPox2 and ZmPox3 mRNAs are accumulated in the elongating region of young roots but not in the root tips. In addition, the ZmPox2 mRNA levels are up-regulated by wounding and ethylene treatments. However, ZmPox1 is also expressed in the root tip meristems, where lignification does not occur. Finally, in situ hybridisations indicate that ZmPox2 mRNA localises in vascular tissues and epidermis. Although ZmPox1 mRNA localises in the same regions as ZmPox2 mRNA in root tips, its mRNA is only detected in the epidermis but not in the vascular tissues of young roots, suggesting that the function of ZmPox1 is not correlated to lignification. In addition, although ZmPox3 mRNA is also detected in the regions where lignification occurs, the involvement of this peroxidase in such a mechanism remains to be further investigated due to its very low expression level. Therefore, based on its amino acid sequence and mRNA accumulation and localisation patterns, the involvement of ZmPox2 in the latest steps of lignification is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Ethylenes/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- In Situ Hybridization
- Isoenzymes/genetics
- Lignin/metabolism
- Molecular Sequence Data
- Peroxidases/genetics
- Plant Roots/genetics
- Plant Roots/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Mechanical
- Zea mays/enzymology
- Zea mays/genetics
Collapse
Affiliation(s)
- Mónica de Obeso
- Institut de Biologia Molecular de Barcelona, CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, Goffner D, Pichon M. Down-regulation of caffeic acid o-methyltransferase in maize revisited using a transgenic approach. PLANT PHYSIOLOGY 2002; 130:1675-85. [PMID: 12481050 PMCID: PMC166682 DOI: 10.1104/pp.012237] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 08/22/2002] [Accepted: 10/02/2002] [Indexed: 05/18/2023]
Abstract
Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acid O-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1 (alcohol dehydrogenase) promoter. Adh1-driven beta-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%-30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lower p-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3 (brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.
Collapse
Affiliation(s)
- Joel Piquemal
- Signaux et Messages Cellulaires chez les Végétaux, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Université Paul Sabatier, Pôle de Biotechnologie Végétale, Castanet Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhong R, Ripperger A, Ye ZH. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. PLANT PHYSIOLOGY 2000; 123:59-70. [PMID: 10806225 PMCID: PMC58982 DOI: 10.1104/pp.123.1.59] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 01/07/2000] [Indexed: 05/18/2023]
Abstract
The biosynthesis of lignin in vascular plants is regulated both developmentally and environmentally. In the inflorescence stems of Arabidopsis, lignin is mainly deposited in the walls of xylem cells and interfascicular fiber cells during normal plant growth and development. The mechanisms controlling the spatial deposition of lignin remain unknown. By screening ethyl methanesulfonate-mutagenized populations of Arabidopsis, we have isolated two allelic elp1 (ectopic deposition of lignin in pith) mutants with altered lignin deposition patterns. In elp1 stems, lignin was ectopically deposited in the walls of pith parenchyma cells in addition to its normal deposition in the walls of xylem and fiber cells. Lignin appeared to be deposited in patches of parenchyma cells in the pith of both young and mature elp1 stems. The ectopic deposition of lignin in the pith of elp1 stems was accompanied by an increase in the activities of enzymes in the lignin biosynthetic pathway and with the ectopic expression of caffeoyl coenzyme A O-methyltransferase in pith cells. These results indicate that the ELP1 locus is involved in the repression of the lignin biosynthetic pathway in the pith. Isolation of the elp1 mutants provides a novel means with which to study the molecular mechanisms underlying the spatial control of lignification.
Collapse
Affiliation(s)
- R Zhong
- Department of Botany, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
16
|
Bate NJ, Rothstein SJ. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:561-9. [PMID: 10036774 DOI: 10.1046/j.1365-313x.1998.00324.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Six-Carbon (C6-) volatiles, including the aldehydes trans-2-hexenal, hexanal and cis-3-hexenal, as well as their corresponding alcohols, are produced from damaged or wounded plant tissue as a product of the enzymatic activity of hydroperoxide lyase (HPL), a component of the lipoxygenase (LOX) pathway. Aerial treatment of Arabidopsis seedlings with 10 microM concentrations of trans-2-hexenal induces several genes known to be involved in the plant's defense response, including phenylpropanoid-related genes as well as genes of the LOX pathway. Genes encoding the pathogenesis-related proteins PR-1 or PR-2, however, were not induced. Trans-2-hexenal induction thus closely mimics the group of genes induced by methyl jasmonate (MeJA), also a LOX-derived volatile. However, unlike MeJA, trans-2-hexenal did not induce hydroxymethylglutaryl-coenzyme A reductase (HMGR) or thionin2-1. The inductive effect seemed to be limited to C6-related volatiles, as C8-, C9- and other related volatiles did not induce LOX mRNA levels. As has been demonstrated for MeJA, trans-2-hexenal quantitatively reduced wild-type seed germination. Trans-2-hexenal also reduced the germination frequency of the MeJA resistant Arabidopsis mutant, jar1-1, supporting the notion that trans-2-hexenal and MeJA are recognized via different mechanisms. In addition, trans-2-hexenal had a moderate inhibitory effect on root length relative to similar concentrations of MeJA and was approximately 10-fold less effective than MeJA at inducing anthocyanin accumulation in Arabidopsis seedlings. These results suggest that C6-volatiles of the LOX pathway act as a wound signal in plants, but result in a moderate plant response relative to MeJA at both the physiological and molecular level.
Collapse
Affiliation(s)
- N J Bate
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada.
| | | |
Collapse
|