1
|
Ding H, Feng X, Yuan Y, Wang B, Wang Y, Zhang J. Genomic investigation of duplication, functional conservation, and divergence in the LRR-RLK Family of Saccharum. BMC Genomics 2024; 25:165. [PMID: 38336615 PMCID: PMC10854099 DOI: 10.1186/s12864-024-10073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Sugarcane (Saccharum spp.) holds exceptional global significance as a vital crop, serving as a primary source of sucrose, bioenergy, and various by-products. The optimization of sugarcane breeding by fine-tuning essential traits has become crucial for enhancing crop productivity and stress resilience. Leucine-rich repeat receptor-like kinases (LRR-RLK) genes present promising targets for this purpose, as they are involved in various aspects of plant development and defense processes. RESULTS Here, we present a detailed overview of phylogeny and expression of 288 (495 alleles) and 312 (1365 alleles) LRR-RLK genes from two founding Saccharum species, respectively. Phylogenetic analysis categorized these genes into 15 subfamilies, revealing considerable expansion or reduction in certain LRR-type subfamilies. Compared to other plant species, both Saccharum species had more significant LRR-RLK genes. Examination of cis-acting elements demonstrated that SsLRR-RLK and SoLRR-RLK genes exhibited no significant difference in the types of elements included, primarily involved in four physiological processes. This suggests a broad conservation of LRR-RLK gene function during Saccharum evolution. Synteny analysis indicated that all LRR-RLK genes in both Saccharum species underwent gene duplication, primarily through whole-genome duplication (WGD) or segmental duplication. We identified 28 LRR-RLK genes exhibiting novel expression patterns in response to different tissues, gradient development leaves, and circadian rhythm in the two Saccharum species. Additionally, SoLRR-RLK104, SoLRR-RLK7, SoLRR-RLK113, and SsLRR-RLK134 were identified as candidate genes for sugarcane disease defense response regulators through transcriptome data analysis of two disease stresses. This suggests LRR-RLK genes of sugarcane involvement in regulating various biological processes, including leaf development, plant morphology, photosynthesis, maintenance of circadian rhythm stability, and defense against sugarcane diseases. CONCLUSIONS This investigation into gene duplication, functional conservation, and divergence of LRR-RLK genes in two founding Saccharum species lays the groundwork for a comprehensive genomic analysis of the entire LRR-RLK gene family in Saccharum. The results reveal LRR-RLK gene played a critical role in Saccharum adaptation to diverse conditions, offering valuable insights for targeted breeding and precise phenotypic adjustments.
Collapse
Affiliation(s)
- Hongyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Xiaoxi Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yuhao Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Abstract
Data presented are on mass, length, SPAD and some physiological parameters of leaves and stems in a table grape vineyard of Italia variety grafted onto 1103 Paulsen, covered with a plastic sheet to advance ripening and managed with two soil systems in the Puglia region, South-eastern Italy in 2015 and 2016. The two systems differed for the soil management since in one area of the vineyard a cover crop was used (Trifolium repens L.), whereas in the other area only soil tillage was adopted. The data of the two seasons include: (a) mass of leaves of primary shoot, secondary shoot and opposite the cluster; (b) length of secondary shoots; (c) number of both secondary shoots and leaves of secondary shoots; (d) SPAD values and area of leaves opposite both first and second cluster on the primary shoot; (e) mass of stems of both primary and secondary shoots; and (f) some physiological parameters (Ψstem, temperature, Fv/Fm). The data in this article support and augment information presented in the research article 'Cover crops in the inter-row of a table grape vineyard managed with irrigation sensors: effects on yield, quality and glutamine synthetase activity in leaves' (Sci. Hortic. 281, 2021 https://doi.org/10.1016/j.scienta.2021.109963).
Collapse
Affiliation(s)
- Giuseppe Ferrara
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", via G. Amendola 165/A, 70126 - Bari, Italy
| | - Andrea Mazzeo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", via G. Amendola 165/A, 70126 - Bari, Italy
| |
Collapse
|
3
|
Li Z, Hua X, Zhong W, Yuan Y, Wang Y, Wang Z, Ming R, Zhang J. Genome-Wide Identification and Expression Profile Analysis of WRKY Family Genes in the Autopolyploid Saccharum spontaneum. PLANT & CELL PHYSIOLOGY 2020; 61:616-630. [PMID: 31830269 DOI: 10.1093/pcp/pcz227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/08/2019] [Indexed: 05/19/2023]
Abstract
WRKY is one of the largest transcription factor families in plants and plays important roles in the regulation of developmental and physiological processes. To date, the WRKY gene family has not been identified in Saccharum species because of its complex polyploid genome. In this study, a total of 294 sequences for 154 SsWRKY genes were identified in the polyploid Saccharum spontaneum genome and then named on the basis of their chromosome locations, including 13 (8.4%) genes with four alleles, 29 (18.8%) genes with three alleles and 41 (26.6%) genes with two alleles. Among them, 73.8% and 16.0% of the SsWRKY genes originated from segmental duplications and tandem duplications, respectively. The WRKY members exhibited conserved gene structures and amino acid sequences among the allelic haplotypes, which were accompanied by variations in intron sizes. Phylogenetic and collinearity analyses revealed that 27 SsWRKYs originated after the split of sorghum and Saccharum, resulting in a significantly higher number of WRKYs in sugarcane than in the proximal diploid species sorghum. The analysis of RNA-seq data revealed that SsWRKYs' expression profiles in 46 different samples including different developmental stages revealed distinct temporal and spatial patterns with 52 genes expressed in all tissues, four genes not expressed in any tissues and 21 SsWRKY genes likely to be involved in photosynthesis. The comprehensive analysis of SsWRKYs' expression will provide an important and valuable foundation for further investigation of the regulatory mechanisms of WRKYs in physiological roles in sugarcane S. spontaneum.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuting Hua
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiming Zhong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Yuan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yongjun Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ray Ming
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Shukla P, Singh NK, Gautam R, Ahmed I, Yadav D, Sharma A, Kirti PB. Molecular Approaches for Manipulating Male Sterility and Strategies for Fertility Restoration in Plants. Mol Biotechnol 2017; 59:445-457. [PMID: 28791615 DOI: 10.1007/s12033-017-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, J & K, 192 121, India.
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, 7505101, Rishon LeZion, Israel
| | - Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanker Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Akanksha Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
5
|
Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, Liu Z, Yang H, Yang C, Wang H, Li Y, Liu G. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci Rep 2017; 7:45933. [PMID: 28378825 PMCID: PMC5380993 DOI: 10.1038/srep45933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra.
Collapse
Affiliation(s)
- Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanbo Hu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yan Sun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhongye Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Han Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongwei Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.,School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Kaminski KP, Kørup K, Andersen MN, Sønderkær M, Andersen MS, Kirk HG, Nielsen KL. Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2143-2153. [PMID: 26163769 PMCID: PMC4624824 DOI: 10.1007/s00122-015-2573-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/23/2015] [Indexed: 05/29/2023]
Abstract
WUE phenotyping and subsequent QTL analysis revealed cytosolic GS genes importance for limiting N loss due to photorespiration under well-watered and well-fertilized conditions. Potato (Solanum tuberosum L.) closes its stomata at relatively low soil water deficits frequently encountered in normal field conditions resulting in unnecessary annual yield losses and extensive use of artificial irrigation. Therefore, unraveling the genetics underpinning variation in water use efficiency (WUE) of potato is important, but has been limited by technical difficulties in assessing the trait on individual plants and thus is poorly understood. In this study, a mapping population of potatoes has been robustly phenotyped, and considerable variation in WUE under well-watered conditions was observed. Two extreme WUE bulks of clones were identified and pools of genomic DNA from them as well as the parents were sequenced and mapped to reference potato genome. Following a novel data analysis approach, two highly resolved QTLs were found on chromosome 1 and 9. Interestingly, three genes encoding isoforms of cytosolic glutamine synthase were located in the QTL at chromosome 1 suggesting a major contribution of this enzyme to photosynthetic efficiency and thus WUE in potato. Indeed, Glutamine synthetase enzyme activity of leaf extracts was measured and found to be correlated with contrasting WUE phenotypes.
Collapse
Affiliation(s)
- Kacper Piotr Kaminski
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark.
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark.
| | - Kirsten Kørup
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| | - Mads Sønderkær
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark.
| | - Mette Sondrup Andersen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark.
| | - Hanne Grethe Kirk
- Danish Potato Breeding Foundation, Grindstedvej 55, 7184, Vandel, Denmark.
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark.
| |
Collapse
|
7
|
Zhu C, Fan Q, Wang W, Shen C, Meng X, Tang Y, Mei B, Xu Z, Song R. Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. Gene 2014; 536:407-15. [PMID: 24334123 DOI: 10.1016/j.gene.2013.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 01/23/2023]
Abstract
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%-48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%-43%), total GS activity (39%-45%) and soluble protein concentration (23%-24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.
Collapse
Affiliation(s)
- Chenguang Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Qianlan Fan
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Chunlei Shen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Bing Mei
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Zhengkai Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China.
| |
Collapse
|
8
|
Zhu C, Fan Q, Wang W, Shen C, Wang P, Meng X, Tang Y, Mei B, Xu Z, Song R. Characterization of a glutamine synthetase gene DvGS1 from Dunaliella viridis and investigation of the impact on expression of DvGS1 in transgenic Arabidopsis thaliana. Mol Biol Rep 2013; 41:477-87. [PMID: 24307252 DOI: 10.1007/s11033-013-2882-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
A novel glutamine synthetase (GS) gene DvGS1 showing highest amino acid sequence identity of 78 % with the other homologous GS proteins from green algae, was isolated and characterized from Dunaliella viridis. Phylogenetic analysis revealed that DvGS1 occupied an independent phylogenetic position which was different with the GSs from higher plants, animals and microbes. Functional complement in E. coli mutant confirmed that the DvGS1 encoded functional GS enzyme. Real-time PCR analysis of DvGS1 in D. viridis cells under nitrogen starvation revealed that the mRNA level of DvGS1 was positively up-regulated in 12 h. The DvGS1 levels at the points of 12 and 24 h were separately twofold and fourfold of the level before nitrogen starvation. In order to investigate the potential application of DvGS1 in higher plants, the transgenic study of DvGS1 in Arabidopsis thaliana was carried out. Phenotype identification demonstrated that all three transgenic lines of T3 generation showed obviously enhanced root length (26 %), fresh weight (22-46 % at two concentrations of nitrate supplies), stem length (26 %), leaf size (29 %) and silique number (30 %) compared with the wild-type Arabidopsis. Biochemical analysis confirmed that all three transgenic lines had higher total nitrogen content, soluble protein concentration, total amino acid content and the leaf GS activity than the wild type plants. The free NH4 (+) and NO3 (-) concentration in fresh leaves of three transgenic lines were reduced by 17-26 % and 14-15 % separately (at two concentrations of nitrate supplies) compared with those of the wild types. All the results indicated that over-expression of DvGS1 in Arabidopsis significantly results in the improvement of growth phenotype and the host's nitrogen use efficiency.
Collapse
Affiliation(s)
- Chenguang Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Simon B, Sengupta-Gopalan C. The 3' untranslated region of the two cytosolic glutamine synthetase (GS(1)) genes in alfalfa (Medicago sativa) regulates transcript stability in response to glutamine. PLANTA 2010; 232:1151-62. [PMID: 20706735 DOI: 10.1007/s00425-010-1247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/28/2010] [Indexed: 05/20/2023]
Abstract
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia with glutamate to produce glutamine. The GS enzyme is located either in the chloroplast (GS(2)) or in the cytoplasm (GS(1)). GS(1) is encoded by a small gene family and the members exhibit differential expression pattern mostly attributed to transcriptional regulation. Based on our recent finding that a soybean GS(1) gene, Gmglnβ ( 1 ) is subject to its 3'UTR-mediated post-transcriptional regulation as a transgene in alfalfa (Medicago sativa) we have raised the question of whether the 3'UTR-mediated transcript destabilization is a more universal phenomenon. Gene constructs consisting of the CaMV35S promoter driving the reporter gene, GUS, followed by the 3'UTRs of the two alfalfa GS(1) genes, MsGSa and MsGSb, were introduced into alfalfa and tobacco. The analysis of these transformants suggests that while both the 3'UTRs promote transcript turnover, the MsGSb 3'UTR is more effective than the MsGSa 3'UTR. However, both the 3'UTRs along with Gmglnβ ( 1 ) 3'UTR respond to nitrate as a trigger in transcript turnover. More detailed analysis points to glutamine rather than nitrate as the mediator of transcript turnover. Our data suggests that the 3'UTR-mediated regulation of GS(1) genes at the level of transcript turnover is probably universal and is used for fine-tuning the expression in keeping with the availability of the substrates.
Collapse
Affiliation(s)
- Bindu Simon
- New Mexico State University, Las Cruces, NM 88003, USA
| | | |
Collapse
|
10
|
Seabra AR, Vieira CP, Cullimore JV, Carvalho HG. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds. BMC PLANT BIOLOGY 2010; 10:183. [PMID: 20723225 PMCID: PMC3095313 DOI: 10.1186/1471-2229-10-183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/19/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. RESULTS This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. CONCLUSIONS This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Julie V Cullimore
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique - Centre National de la Recherche Scientifique, Boite Postale 52627, 31326 Castanet-Tolosan Cedex, France
| | - Helena G Carvalho
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| |
Collapse
|
11
|
Labboun S, Tercé-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moshou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B. Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. PLANT & CELL PHYSIOLOGY 2009; 50:1761-73. [PMID: 19690000 PMCID: PMC2759343 DOI: 10.1093/pcp/pcp118] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/11/2009] [Indexed: 05/18/2023]
Abstract
In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time (15)N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [(15)N]Glu or (15)NH(4)(+) respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants.
Collapse
Affiliation(s)
- Soraya Labboun
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Albrecht Roscher
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Magali Bedu
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Francesco M. Restivo
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | | | | | | | | | - Akira Suzuki
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Bertrand Hirel
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| |
Collapse
|
12
|
Caputo C, Criado MV, Roberts IN, Gelso MA, Barneix AJ. Regulation of glutamine synthetase 1 and amino acids transport in the phloem of young wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:335-42. [PMID: 19230696 DOI: 10.1016/j.plaphy.2009.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 01/07/2009] [Accepted: 01/17/2009] [Indexed: 05/10/2023]
Abstract
The possible regulation of amino acid remobilization via the phloem in wheat (Triticum aestivum L.) by the primary enzyme in nitrogen (N) assimilation and re-assimilation, glutamine synthetase (GS, E.C. 6.3.1.2) was studied using two conditions known to alter N phloem transport, N deficiency and cytokinins. The plants were grown for 15 days in controlled conditions with optimum N supply and then N was depleted from and/or 6-benzylaminopurine was added to the nutrient solution. Both treatments generated an induction of GS1, monitored at the level of gene expression, protein accumulation and enzyme activity, and a decrease in the exudation of amino acids to the phloem, obtained with EDTA technique, which correlated negatively. GS inhibition by metionine sulfoximide (MSX) produced an increase of amino acids exudation and the inhibitor successfully reversed the effect of N deficiency and cytokinin addition over phloem exudation. Our results point to an important physiological role for GS1 in the modulation of amino acids export levels in wheat plants.
Collapse
Affiliation(s)
- Carla Caputo
- IBYF-CONICET, Universidad de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
13
|
Bernard SM, Møller ALB, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Tercé-Laforgue T, Foyer CH, Parry MAJ, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 67:89-105. [PMID: 18288574 DOI: 10.1007/s11103-008-9303-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 01/28/2008] [Indexed: 05/25/2023]
Abstract
We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat.
Collapse
Affiliation(s)
- Stéphanie M Bernard
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ribarits A, Mamun ANK, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A. Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:483-94. [PMID: 17470055 DOI: 10.1111/j.1467-7652.2007.00256.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.
Collapse
Affiliation(s)
- Alexandra Ribarits
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Plant Molecular Biology, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Scarpeci TE, Marro ML, Bortolotti S, Boggio SB, Valle EM. Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom). JOURNAL OF PLANT PHYSIOLOGY 2007; 164:137-45. [PMID: 16513209 DOI: 10.1016/j.jplph.2006.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 01/06/2006] [Indexed: 05/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening implies that chloroplastic proteins are degraded and new proteins are synthesized. Supplementary nutrition is frequently required when tomato plants begin to fruit and continues until the end of the plant's life cycle. Ammonium assimilation is crucial in these fruit maturation and ripening processes. Glutamine synthetase (GS; EC 6.3.1.2), the main ammonium-fixing enzyme in plants, could not be detected in red fruits of several tomato varieties when growing under standard nutrition. In this paper, we analyze the influence of the nutritional status on the ammonium assimilation capacity of ripe tomato (cv. Micro-Tom) fruit. For this purpose, GS expression and protein profiles were followed in mature green and red fruits harvested from plants grown under standard or supplemented nutrition. Under standard nutrient regime (weekly supplied with 0.5 x Hoagland solution) GS activity was found in chloroplasts (GS2) of mature green fruits, but it was not detected either in the chromoplasts or in the cytosol of red fruits. When plants were shifted to a supplemented nutritional regime (daily supplied with 0.5 x Hoagland solution), GS was found in red fruits. Also, cytosolic transcripts (gs1) preferentially accumulated in red fruits under high nutrition. These results indicate that mature green Micro-Tom fruits assimilate ammonia through GS2 under standard nutrition, while ripe red fruits accumulate GS1 under high nutrition, probably in order to assimilate the extra N-compounds made available through supplemented nutrition.
Collapse
Affiliation(s)
- Telma E Scarpeci
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002-LRK Rosario, Argentina
| | | | | | | | | |
Collapse
|
16
|
Tavernier V, Cadiou S, Pageau K, Laugé R, Reisdorf-Cren M, Langin T, Masclaux-Daubresse C. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3351-60. [PMID: 17977849 DOI: 10.1093/jxb/erm182] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen plays an essential role in the nutrient relationship between plants and pathogens. Some studies report that the nitrogen-mobilizing plant metabolism that occurs during abiotic and biotic stress could be a 'slash-and-burn' defence strategy. In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the Colletotrichum lindemuthianum/Phaseolus vulgaris interaction was used as a model. C. lindemuthianum is a hemibiotroph that causes anthracnose disease on P. vulgaris. Non-pathogenic mutants and the pathogenic wild-type strain were used to compare their effects on plant metabolism. The deleterious effects of infection were monitored by measuring changes in chlorophyll, protein, and amino acid concentrations. It was shown that amino acid composition changed depending on the plant-fungus interaction and that glutamine accumulated mainly in the leaves infected by the pathogenic strain. Glutamine accumulation correlated with the accumulation of cytosolic glutamine synthetase (GS1 alpha) mRNA. The most striking result was that the GS1 alpha gene was induced in all the fungus-infected leaves, independent of the strain used for inoculation, and that GS1 alpha expression paralleled the PAL3 and CHS defence gene expression. It is concluded that a role of GS1 alpha in plant defence has to be considered.
Collapse
Affiliation(s)
- Virginie Tavernier
- Unité de Nutrition Azotée des Plantes, UR 511, INRA, Route de Saint Cyr F-78000 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Chaffei C, Suzuki A, Masclaux-Daubresse C, Ghorbel MH, Gouia H. Implication du glutamate, de l'isocitrate et de la malate déshydrogénases dans l'assimilation de l'azote chez la tomate stressée par le cadmium. C R Biol 2006; 329:790-803. [PMID: 17027640 DOI: 10.1016/j.crvi.2006.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/22/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
Tomato seedlings grown on nitric medium and treated with various cadmium concentrations (0 to 50 microM) were used. Results obtained show that cadmium remains predominantly located in the roots, which then seem to play the role of trap-organs. Increasing cadmium concentration in the medium leads particularly to a decrease in NO3- accumulation, together with a decrease in the activity of glutamine synthetase and in the quantity of plastidic isoform ARNm (GS2), and, on the contrary, to an increase of the cytosolic isoform ARNm (GS1). On the other hand, stimulations were observed for NADH-dependent glutamate synthase, NADH-dependent glutamate dehydrogenase, ARNm quantity of this enzyme, ammonium accumulation, and protease activity. In parallel, stimulations were observed for NAD+ and NADP+-dependent malate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. These results were discussed in relation to the hypothesis attributing to the dehydrogenase enzymes (GDH, MDH, ICDH) an important role in the plant defence processes against cadmium-induced stresses.
Collapse
Affiliation(s)
- Chiraz Chaffei
- Unité de recherche Nutrition et métabolisme azotés et protéines de stress (99UR/09-20), département de biologie, faculté des sciences de Tunis, campus universitaire El Manar I, 1060 Tunis, Tunisie.
| | | | | | | | | |
Collapse
|
18
|
Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C. The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. JOURNAL OF EXPERIMENTAL BOTANY 2005; 57:547-57. [PMID: 16377736 DOI: 10.1093/jxb/erj035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To investigate the role of stress in nitrogen management in plants, the effect of pathogen attack, elicitors, and phytohormone application on the expression of the two senescence-related markers GS1 (cytosolic glutamine synthetase EC 6.3.1.2) and GDH (glutamate dehydrogenase, EC 1.4.1.2) involved in nitrogen mobilization in senescing leaves of tobacco (Nicotiana tabacum L.) plants, was studied. The expression of genes involved in primary nitrogen assimilation such as GS2 (chloroplastic glutamine synthetase) and Nia (nitrate reductase, EC 1.6.1.1) was also analysed. The Glubas gene, coding a beta-1,3-glucanase, was used as a plant-defence gene control. As during natural senescence, the expression of GS2 and Nia was repressed under almost all stress conditions. By contrast, GS1 and GDH mRNA accumulation was increased. However, GS1 and GDH showed differential patterns of expression depending on the stress applied. The expression of GS1 appeared more selective than GDH. Results indicate that the GDH and GS1 genes involved in leaf senescence are also a component of the plant defence response during plant-pathogen interaction. The links between natural plant senescence and stress-induced senescence are discussed, as well as the potential role of GS1 and GDH in a metabolic safeguard process.
Collapse
Affiliation(s)
- Karine Pageau
- INRA Unité de Nutrition Azotée des Plantes, Route de Saint Cyr, F-78 026 Versailles Cedex, France
| | | | | | | |
Collapse
|
19
|
Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier MH, Pommel B, Andrieu B, Donnison I, Hirel B. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects. THE NEW PHYTOLOGIST 2005; 167:483-92. [PMID: 15998400 DOI: 10.1111/j.1469-8137.2005.01430.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here, nitrogen management within the plant was compared in an early-senescing maize hybrid and in a late-senescing maize hybrid, both grown under field conditions with a high fertilisation input involving large quantities of fertiliser. We monitored, in representative leaf stages, the changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of N primary assimilation, N recycling and leaf senescence. The hybrids differed in terms of persistence of leaf greenness, the expression of marker genes and the concentration of enzymes used to describe the transition from N assimilation to N recycling. The transcription of leaf-senescence marker genes did not differ. Agronomic studies confirmed the ability of the late-senescing hybrid to absorb and store more N in shoots. Despite the differences in the mode of N management adopted by the two hybrids, we conclude that leaf senescence occurs independently of the source-to-sink transition at the high level of fertilisation used involving large quantities of fertiliser. The possibility of improving N metabolic efficiency in the latest maize hybrids is discussed.
Collapse
Affiliation(s)
- Antoine Martin
- Unité de Nutrition Azotée des plantes, INRA, R.D. 10, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Masclaux-Daubresse C, Carrayol E, Valadier MH. The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. PLANTA 2005; 221:580-8. [PMID: 15654637 DOI: 10.1007/s00425-004-1468-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 11/19/2004] [Indexed: 05/22/2023]
Abstract
In tobacco, the two enzymes of nitrogen metabolism, cytosolic glutamine synthetase (GS1; E.C.6.3.1.2) and glutamate dehydrogenase (GDH; E.C.1.4.1.2), are induced during leaf senescence, whereas the chloroplastic glutamine synthetase (GS2; E.C.6.3.1.2) and nitrate reductase (NR; E.C.1.6.1.1) are repressed in the course of ageing. In this report, we showed in discs of fully expanded Nicotiana tabacum L. cv. Xanthi leaves that sucrose (Suc) and amino acids were involved in the regulation of the expression of GS1 and GDH genes. Suc induced the expression of GS1 and repressed that of GDH. Therefore, we concluded that in response to Suc, GS1 behaved as an "early" Senescence Associated Gene (SAG), whereas GDH behaved as a "late" SAG. Moreover, amino acids induced the expression of both genes. Among the amino acids tested as signal molecules, proline (Pro) and glutamate (Glu) were major inducers of GDH and GS1 expression, respectively. Interestingly, an opposite regulation of GS1 and GS2 by Pro and Glu was shown. The contrary effect of Suc on NIA (NR encoding gene) and GDH mRNA accumulation was also emphasized.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de St-Cyr, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
21
|
Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F. Changes in the Cellular and Subcellular Localization of Glutamine Synthetase and Glutamate Dehydrogenase During Flag Leaf Senescence in Wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2005; 46:964-74. [PMID: 15840646 DOI: 10.1093/pcp/pci105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to improve our understanding of the regulation of nitrogen assimilation and recycling in wheat (Triticum aestivum L.), we studied the localization of plastidic (GS2) and cytosolic (GS1) glutamine synthetase isoenzymes and of glutamate dehydrogenase (GDH) during natural senescence of the flag leaf and in the stem. In mature flag leaves, large amounts of GS1 were detected in the connections between the mestome sheath cells and the vascular cells, suggesting an active transfer of nitrogen organic molecules within the vascular system in the mature flag leaf. Parallel to leaf senescence, an increase of a GS1 polypeptide (GS1b) was detected in the mesophyll cytosol of senescing leaves, while the GS protein content represented by another polypetide (GS1a) in the phloem companion cells remained practically constant in both leaves and stems. Both GDH aminating activity and protein content were strongly induced in senescing flag leaves. The induction occurred both in the mitochondria and in the cytosol of phloem companion cells, suggesting that the shift in GDH cellular compartmentation is important during leaf nitrogen remobilization although the metabolic or sensing role of the enzyme remains to be elucidated. Taken together, our results suggest that in wheat, nitrogen assimilation and recycling are compartmentalized between the mesophyll and the vasculature, and are shifted in different cellular compartments within these two tissues during the transition of sink leaves to source leaves.
Collapse
Affiliation(s)
- Thomas Kichey
- Laboratoire d'Androgenèse et Biotechnologie Végétale, Université de Picardie Jules Verne, 33, Rue saint-Leu, 80039 Amiens Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. PLANT & CELL PHYSIOLOGY 2004; 45:1681-93. [PMID: 15574844 DOI: 10.1093/pcp/pch192] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato (Lycopersicon esculentum) seedlings were grown in the presence of cadmium. After 1 week of Cd treatment, a sharp decline in biomass accumulation in the leaves and roots was observed, together with a decrease in the rate of photosynthetic activity due to both Rubisco and chlorophyll degradation and stomata closure. Cadmium induced a significant decrease in nitrate content and inhibition of the activities of nitrate reductase, nitrite reductase, glutamine synthetase (GS) and ferredoxin-glutamate synthase. An increase in NADH-glutamate synthase and NADH-glutamate dehydrogenase activity was observed in parallel. The accumulation of ammonium into the tissues of treated plants was accompanied by a loss of total protein and the accumulation of amino acids. Gln represented the major amino acid transported through xylem sap of Cd-treated and control plants. Cadmium treatment increased the total amino acid content in the phloem, maintaining Gln/Glu ratios. Western and Northern blot analysis of Cd-treated plants showed a decrease in chloroplastic GS protein and mRNA and an increase in cytosolic GS and glutamate dehydrogenase transcripts and proteins. An increase in asparagine synthetase mRNA was observed in roots, in parallel with a strong increase in asparagine. Taken together, these results suggest that the plant response to Cd stress involved newly induced enzymes dedicated to coordinated leaf nitrogen remobilization and root nitrogen storage.
Collapse
Affiliation(s)
- Chiraz Chaffei
- Unité de Nutrition Azotée des Plantes, INRA, route de Saint Cyr, 78026 Versailles, France
| | | | | | | | | | | |
Collapse
|
23
|
Berry AM, Murphy TM, Okubara PA, Jacobsen KR, Swensen SM, Pawlowski K. Novel expression pattern of cytosolic Gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. PLANT PHYSIOLOGY 2004; 135:1849-62. [PMID: 15247391 PMCID: PMC519095 DOI: 10.1104/pp.103.031534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 04/14/2004] [Accepted: 05/02/2004] [Indexed: 05/24/2023]
Abstract
Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform, DgGS1-1, are abundant in uninfected nodule cortical tissue, but expression was not detectable in the infected zone or in the nodule meristem. Similarly, the GS holoprotein is immunolocalized exclusively to the uninfected nodule tissue. Phylogenetic analysis of the full-length cDNA of DgGS1-1 indicates affinities with cytosolic GS genes from legumes, the actinorhizal species Alnus glutinosa, and nonnodulating species, Vitis vinifera and Hevea brasilensis. The D. glomerata nodule GS expression pattern is a new variant among reported root nodule symbioses and may reflect an unusual nitrogen transfer pathway from the Frankia nodule microsymbiont to the plant infected tissue, coupled to a distinctive nitrogen cycle in the uninfected cortical tissue. Arg, Gln, and Glu are the major amino acids present in D. glomerata nodules, but Arg was not detected at high levels in leaves or roots. Arg as a major nodule nitrogen storage form is not found in other root nodule types except in the phylogenetically related Coriaria. Catabolism of Arg through the urea cycle could generate free ammonium in the uninfected tissue where GS is expressed.
Collapse
Affiliation(s)
- Alison M Berry
- Department of Environmental Horticulture, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Tercé-Laforgue T, Mäck G, Hirel B. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. PHYSIOLOGIA PLANTARUM 2004; 120:220-228. [PMID: 15032856 DOI: 10.1111/j.0031-9317.2004.0241.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The metabolic, biochemical and molecular events occurring in the different leaf stages along the main axis of tobacco (Nicotiana tabacum) plants grown either on a nitrogen-rich medium, on a medium containing ammonium as sole nitrogen source or on a nitrogen-depleted medium, are presented. This study shows that the highest induction of cytosolic glutamine synthetase (GS1) protein and transcript occurs when nitrogen remobilization is maximal as the result of nitrogen starvation, whereas both glutamate dehydrogenase (GDH) transcript and activity remain at a very low level. In contrast, GDH is highly induced when plants are grown on ammonium as sole nitrogen source, a physiological situation during which leaf protein nitrogen remobilization is limited. It is therefore concluded that GDH does not play a direct role during the process of nitrogen remobilization but is rather induced following a built up of ammonium provided externally or released as the result of protein hydrolysis during natural leaf senescence.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, INRA, Centre de Versailles, Route de Saint Cyr, F-78026 Versailles Cedex, France
| | | | | |
Collapse
|
25
|
Harrison J, Hirel B, Limami AM. Variation in nitrate uptake and assimilation between two ecotypes of Lotus japonicus and their recombinant inbred lines. PHYSIOLOGIA PLANTARUM 2004; 120:124-131. [PMID: 15032884 DOI: 10.1111/j.0031-9317.2004.0221.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A large genetic variability was observed in the shoot NO(3) (-) content of recombinant inbred lines (RILs) of Lotus japonicus. To determine the cause of this variability, we have studied some aspects of nitrate uptake and assimilation in the two parental ecotypes (Gifu and Funakura) and four representatives of the RILs population differing both in their shoot biomass and shoot NO(3) (-) content. Higher shoot NO(3) (-)content was mainly due to an increase in the uptake of the ion regardless of the plant biomass production. The positive correlation observed between the shoot NO(3) (-) content and the steady state level of mRNA encoding high affinity NO(3) (-) transporters suggests that the higher NO(3) (-) influx is due to enhanced expression of the transporters. In contrast, neither the level of nitrate reductase mRNA, nor the potential enzyme activity in vivo in the different lines was correlated with the shoot NO(3) (-) content. This indicates that NO(3) (-) transport in Lotus is one of the main checkpoints controlling shoot NO(3) (-) accumulation. In addition, this study shows that at least in Lotus, it is possible, through breeding strategies, to lower the NO(3) (-) content without affecting biomass production.
Collapse
Affiliation(s)
- Judith Harrison
- Unité de Nutrition Azotée des Plantes, INRA, Route de St Cyr, 78280 Versailles, Cedex, France UMR 1191 Physiologie Moléculaire des Semences, University of Angers, 2 Bd. Lavoisier, 49045 Angers cedex 01, France Present address Laboratoire de Microbiologie et Biologie Végétales, Université de Nice-Sophia-Antipolis, 06100 Nice, France
| | | | | |
Collapse
|
26
|
Harrison J, Pou de Crescenzo MA, Sené O, Hirel B. Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus? PLANT PHYSIOLOGY 2003; 133:253-62. [PMID: 12970491 PMCID: PMC196602 DOI: 10.1104/pp.102.016766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 02/17/2003] [Accepted: 05/29/2003] [Indexed: 05/18/2023]
Abstract
A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T(1) progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated.
Collapse
Affiliation(s)
- Judith Harrison
- Laboratoire Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de St. Cyr, 78280 Versailles cedex, France
| | | | | | | |
Collapse
|
27
|
The Biochemistry, Molecular Biology, and Genetic Manipulation of Primary Ammonia Assimilation. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2002. [DOI: 10.1007/0-306-48138-3_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Stöhr C, Mäck G. Diurnal changes in nitrogen assimilation of tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1283-9. [PMID: 11432947 DOI: 10.1093/jexbot/52.359.1283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To gain an insight into the diurnal changes of nitrogen assimilation in roots the in vitro activities of cytosolic and plasma membrane-bound nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.7.7.1) and cytosolic and plastidic glutamine synthetase (EC 6.3.1.2) were studied. Simultaneously, changes in the contents of total protein, nitrate, nitrite, and ammonium were followed. Roots of intact tobacco plants (Nicotiana tabacum cv. Samsun) were extracted every 3 h during a diurnal cycle. Nitrate reductase, nitrite reductase and glutamine synthetase were active throughout the day-night cycle. Two temporarily distinct peaks of nitrate reductase were detected: during the day a peak of soluble nitrate reductase in the cytosol, in the dark phase a peak of plasma membrane-bound nitrate reductase in the apoplast. The total activities of nitrate reduction were similar by day and night. High activities of nitrite reductase prevented the accumulation of toxic amounts of nitrite throughout the entire diurnal cycle. The resulting ammonium was assimilated by cytosolic glutamine synthetase whose two activity peaks, one in the light period and one in the dark, closely followed those of nitrate reductase. The contribution of plastidic glutamine synthetase was negligible. These results strongly indicate that nitrate assimilation in roots takes place at similar rates day and night and is thus differently regulated from that in leaves.
Collapse
Affiliation(s)
- C Stöhr
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
29
|
Stöhr C, Mäck G. Diurnal changes in nitrogen assimilation of tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11432947 DOI: 10.1093/jxb/52.359.1283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To gain an insight into the diurnal changes of nitrogen assimilation in roots the in vitro activities of cytosolic and plasma membrane-bound nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.7.7.1) and cytosolic and plastidic glutamine synthetase (EC 6.3.1.2) were studied. Simultaneously, changes in the contents of total protein, nitrate, nitrite, and ammonium were followed. Roots of intact tobacco plants (Nicotiana tabacum cv. Samsun) were extracted every 3 h during a diurnal cycle. Nitrate reductase, nitrite reductase and glutamine synthetase were active throughout the day-night cycle. Two temporarily distinct peaks of nitrate reductase were detected: during the day a peak of soluble nitrate reductase in the cytosol, in the dark phase a peak of plasma membrane-bound nitrate reductase in the apoplast. The total activities of nitrate reduction were similar by day and night. High activities of nitrite reductase prevented the accumulation of toxic amounts of nitrite throughout the entire diurnal cycle. The resulting ammonium was assimilated by cytosolic glutamine synthetase whose two activity peaks, one in the light period and one in the dark, closely followed those of nitrate reductase. The contribution of plastidic glutamine synthetase was negligible. These results strongly indicate that nitrate assimilation in roots takes place at similar rates day and night and is thus differently regulated from that in leaves.
Collapse
Affiliation(s)
- C Stöhr
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
30
|
Denby KJ, Last RL. Diverse regulatory mechanisms of amino acid biosynthesis in plants. GENETIC ENGINEERING 2000; 21:173-89. [PMID: 10822497 DOI: 10.1007/978-1-4615-4707-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- K J Denby
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
31
|
Migge A, Becker TW. Greenhouse-grown conditionally lethal tobacco plants obtained by expression of plastidic glutamine synthetase antisense RNA may contribute to biological safety. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 153:107-112. [PMID: 10717316 DOI: 10.1016/s0168-9452(99)00232-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA corresponding to plastidic glutamine synthetase (GS-2), an enzyme involved in photorespiration, was expressed in antisense orientation under the control of a leaf-specific soybean ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promotor in transgenic tobacco to yield conditionally lethal plants. Three transgenic tobacco lines with decreased (at most 64%) foliar GS-2 activity were obtained. These plants grew normally when maintained in an atmosphere with a CO(2) partial pressure sufficiently high (300 Pa CO(2)) to suppress photorespiration. However, when photorespiration was initiated by the transfer of the plants to air (35 Pa CO(2)), ammonium accumulated in the leaves. With time, the transgenic plants exhibited severe chlorotic lesions and, eventually, the plants died. A stable atmosphere containing at least 300 Pa CO(2) can be established easily in the greenhouse but is unlikely to occur in a natural environment. Therefore, the transgenic tobacco plants with decreased leaf GS-2 activity may contribute to biological safety for production of desired proteins.
Collapse
Affiliation(s)
- A Migge
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 10 01 31, D-33501, Bielefeld, Germany
| | | |
Collapse
|
32
|
Datura stramonium hairy roots tropane alkaloid content as a response to changes in Gamborg’s B5 medium. Appl Biochem Biotechnol 1997. [DOI: 10.1007/bf02787805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Loulakakis KA, Roubelakis-Angelakis KA. Characterization of Vitis vinifera L. glutamine synthetase and molecular cloning of cDNAs for the cytosolic enzyme. PLANT MOLECULAR BIOLOGY 1996; 31:983-992. [PMID: 8843941 DOI: 10.1007/bf00040717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Grapevine (Vitis vinifera L.) glutamine synthetase (GS) was analysed into two distinct classes of isoforms; one of them was present in both leaf and root tissues while the other one showed leaf specificity. Western blot analysis revealed that grapevine GS consists of three types of polypeptides of distinct size and differential tissue specificity. Two structurally distinct cDNA clones, pGS1;1 and pGS1;2, encoding grapevine GS were isolated from a cell suspension library and characterized. Both clones contained open reading frames encoding for polypeptides of 356 amino acids with a predicted molecular mass of about 39 kDa. Although the coding sequences of pGS1;1 and pGS1;2 were 84% similar, their 5'- and 3'-untranslated sequences showed only 40% similarity. The coding sequences of the two clones and the derived amino acid sequences showed higher homology to cytosolic than to chloroplastic GSs of other higher plants indicating that the cDNAs isolated encode for cytosolic isoforms of grapevine GS. Southern blot analysis suggested the existence of more than two GS genes in the grapevine genome. In northern blots both clones were hybridized to mRNAs of about 1.4 kb that are differentially expressed in the various tissues. Supply of nitrate or ammonium in the cell suspension culture medium, as a sole nitrogen source, resulted in differential response of the pGS1;1- and pGS1;2-related genes.
Collapse
|
34
|
Dubois F, Brugière N, Sangwan RS, Hirel B. Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression. PLANT MOLECULAR BIOLOGY 1996; 31:803-17. [PMID: 8806411 DOI: 10.1007/bf00019468] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The subcellular localization of glutamine synthetase in tobacco and the differential expression of two genes encoding cytosolic enzyme was investigated using both immunocytochemistry and in situ hybridization. Two full length cDNA clones each encoding cytosolic GS (Gln 1-3 and Gln 1-5) were isolated from a tobacco seeding cDNA library. A strong homology was found in the coding region of the two clones whereas the 3'- and 5'-untranslated sequences were dissimilar. In order to determine the levels of transcription, specific sequences from Gln1-3 and Gln1-5 were used in an RNAse protection assay. This experiment clearly showed that the gene encoding Gln1-3 is expressed in roots and flowers whereas the gene encoding Gln1-5 is transcribed at a high level in stems and at a lower level in roots and flowers. Immunogold labelling was used to examine the subcellular and cellular distribution of glutamine synthetase in vegetative and reproductive organs of tobacco plants. In mature leaf tissue or petals and sepals, plastidic GS was visualised only in the stroma matrix of chloroplasts and plastids. Cytosolic GS was detected in a number of vegetative or reproductive organs including leaves and flowers. In leaves cytosolic GS was preferentially located in the vascular tissue. In situ hybridization was performed using sections of tobacco organs and specific antisense RNA probes to the genes encoding Gln1-3 and Gln1-5. Gln1-5 transcripts were localised in the vascular tissues of stems and roots whereas Gln1-3 transcripts were detected in all root cells and floral organs including petals, sepals and anthers.
Collapse
MESH Headings
- Antisense Elements (Genetics)
- Base Sequence
- Cloning, Molecular
- Cytosol/enzymology
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant/physiology
- Glutamate-Ammonia Ligase/analysis
- Glutamate-Ammonia Ligase/biosynthesis
- Glutamate-Ammonia Ligase/genetics
- Molecular Sequence Data
- Plant Leaves/chemistry
- Plant Roots/chemistry
- Plant Stems/chemistry
- Plants, Toxic
- RNA, Messenger/analysis
- RNA, Plant/analysis
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Nicotiana/enzymology
- Nicotiana/genetics
Collapse
Affiliation(s)
- F Dubois
- Laboratoire d'Androgenèse et Biotechnologie, Université de Picardie Jules Verne, Amiens, France
| | | | | | | |
Collapse
|
35
|
Marsolier MC, Debrosses G, Hirel B. Identification of several soybean cytosolic glutamine synthetase transcripts highly or specifically expressed in nodules: expression studies using one of the corresponding genes in transgenic Lotus corniculatus. PLANT MOLECULAR BIOLOGY 1995; 27:1-15. [PMID: 7865779 DOI: 10.1007/bf00019174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A DNA fragment containing sequences hybridizing to the 5' region of GS15, a gene encoding soybean cytosolic glutamine synthetase, was isolated from a soybean genomic library. Mapping and partial sequence analysis of the genomic clone revealed that it encodes a cytosolic GS gene, GS21, which is different from GS15. In parallel, a number of cDNA clones encoding cytosolic GS were isolated using the coding region of pGS20 as a probe (pGS20 is a cDNA clone which corresponds to a transcript of the GS15 gene). Two new full-length cDNAs designated pGS34 and pGS38 were isolated and sequenced. In the 5' non-coding region a strong homology was found between the two clones and the GS21 gene. However, none of these sequences were identical, which suggests that there are at least three members in this group of genes. In order to determine their relative levels of transcription, specific sequences from pGS34, pGS38 and GS21 were used in an RNAse protection assay. This experiment clearly showed that GS21 and the gene encoding pGS38 are specifically expressed in young or mature nodules, whereas the gene encoding pGS34 is highly transcribed in nodules and constitutively expressed at a lower level in other soybean organs. In order to further analyse the molecular mechanisms controlling GS21 transcription, different fragments of the promoter region were fused to the Escherichia coli reporter gene encoding beta-glucuronidase (GUS) and the constructs were introduced into Lotus corniculatus via Agrobacterium rhizogenes-mediated transformation. Analysis of GUS activity showed that the GS21 promoter-GUS constructs were expressed in the vasculature of all vegetative organs. This result is discussed in relation to species-specific metabolic and developmental characteristics of soybean and Lotus.
Collapse
Affiliation(s)
- M C Marsolier
- Laboratoire du Métabolisme et de la Nutrition des Plantes, INRA, Centre de Versailles, France
| | | | | |
Collapse
|
36
|
Sukanya R, Li MG, Snustad DP. Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. PLANT MOLECULAR BIOLOGY 1994; 26:1935-1946. [PMID: 7858228 DOI: 10.1007/bf00019504] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The responses of the five cytosolic-type glutamine synthetase (GS1) genes of maize to treatment of hydroponically grown seedlings with 10 mM KNO3 or 10 mM NH4Cl were analyzed. Non-coding 3' gene-specific hybridization probes and radioanalytic imaging were used to quantitate individual gene transcript levels in excised roots and shoots before treatment and at selected times after treatment. Genes GS1-1 and GS1-2 exhibited distinct organ-specific responses to treatment with either nitrogen source. The GS1-1 transcript level increased over three-fold in roots, but changed little if any in shoots. In contrast, the GS1-2 transcript level increased over two-fold in shoots, but decreased in roots after treatment. Increased transcript levels were evident at 4 h after treatment with either nitrogen source, with maximum accumulations present at 8 h after treatment with ammonium and at 10-12 h after treatment with nitrate. The GS1-3 gene transcript level showed little or no change after treatment with either nitrogen source. The GS1-4 gene transcript level remained constant in shoots of treated seedlings, whereas in roots, it exhibited relatively minor, but complex responses to these two nitrogen sources. The GS1-5 gene transcript is present in very small amounts in seedlings, making it difficult to analyze its response to metabolites in young plants. These results provide support for the possibility that different cytosolic GS genes of maize play distinct roles in nitrogen metabolism during plant growth and differentiation.
Collapse
Affiliation(s)
- R Sukanya
- Department of Genetics & Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
37
|
Molecular regulation of amino acid biosynthesis in plants. Amino Acids 1994; 7:165-74. [DOI: 10.1007/bf00814158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1993] [Accepted: 12/12/1993] [Indexed: 10/26/2022]
|
38
|
Piechulla B. 'Circadian clock' directs the expression of plant genes. PLANT MOLECULAR BIOLOGY 1993; 22:533-542. [PMID: 8329689 DOI: 10.1007/bf00015982] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- B Piechulla
- Institut für Biochemie der Pflanze, Göttingen, Germany
| |
Collapse
|
39
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:6119-40. [PMID: 1461752 PMCID: PMC334492 DOI: 10.1093/nar/20.22.6119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|