1
|
González J, Prieto JP, Rodríguez P, Cavelli M, Benedetto L, Mondino A, Pazos M, Seoane G, Carrera I, Scorza C, Torterolo P. Ibogaine Acute Administration in Rats Promotes Wakefulness, Long-Lasting REM Sleep Suppression, and a Distinctive Motor Profile. Front Pharmacol 2018; 9:374. [PMID: 29755349 PMCID: PMC5934978 DOI: 10.3389/fphar.2018.00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Ibogaine is a potent psychedelic alkaloid that has been the focus of intense research because of its intriguing anti-addictive properties. According to anecdotic reports, ibogaine has been originally classified as an oneirogenic psychedelic; i.e., induces a dream-like cognitive activity while awake. However, the effects of ibogaine administration on wakefulness (W) and sleep have not been thoroughly assessed. The main aim of our study was to characterize the acute effects of ibogaine administration on W and sleep. For this purpose, polysomnographic recordings on chronically prepared rats were performed in the light phase during 6 h. Animals were treated with ibogaine (20 and 40 mg/kg) or vehicle, immediately before the beginning of the recordings. Furthermore, in order to evaluate associated motor behaviors during the W period, a different group of animals was tested for 2 h after ibogaine treatment on an open field with video-tracking software. Compared to control, animals treated with ibogaine showed an increase in time spent in W. This effect was accompanied by a decrease in slow wave sleep (SWS) and rapid-eye movements (REM) sleep time. REM sleep latency was significantly increased in animals treated with the higher ibogaine dose. While the effects on W and SWS were observed during the first 2 h of recordings, the decrement in REM sleep time was observed throughout the recording time. Accordingly, ibogaine treatment with the lower dose promoted an increase on locomotion, while tremor and flat body posture were observed only with the higher dose in a time-dependent manner. In contrast, head shake response, a behavior which has been associated in rats with the 5HT2A receptor activation by hallucinogens, was not modified. We conclude that ibogaine promotes a waking state that is accompanied by a robust and long-lasting REM sleep suppression. In addition, it produces a dose-dependent unusual motor profile along with other serotonin-related behaviors. Since ibogaine is metabolized to produce noribogaine, further experiments are needed to elucidate if the metabolite and/or the parent drug produced these effects.
Collapse
Affiliation(s)
- Joaquín González
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - José P Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Rodríguez
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Matías Cavelli
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alejandra Mondino
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Abstract
Because of the ethical and regulatory hurdles associated with human studies, much of what is known about the psychopharmacology of hallucinogens has been derived from animal models. However, developing reliable animal models has proven to be a challenging task due to the complexity and variability of hallucinogen effects in humans. This chapter focuses on three animal models that are frequently used to test the effects of hallucinogens on unconditioned behavior: head twitch response (HTR), prepulse inhibition of startle (PPI), and exploratory behavior. The HTR has demonstrated considerable utility in the neurochemical actions of hallucinogens. However, the latter two models have clearer conceptual bridges to human phenomenology. Consistent with the known mechanism of action of hallucinogens in humans, the behavioral effects of hallucinogens in rodents are mediated primarily by activation of 5-HT2A receptors. There is evidence, however, that other receptors may play secondary roles. The structure-activity relationships (SAR) of hallucinogens are reviewed in relation to each model, with a focus on the HTR in rats and mice.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Marder M, Viola H, Wasowski C, Fernández S, Medina JH, Paladini AC. 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 2003; 75:537-45. [PMID: 12895671 DOI: 10.1016/s0091-3057(03)00121-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Valerian is an ancient tranquillizing drug obtained from the underground organs of several Valeriana species. Its active principles were assumed to be terpenoids in the form of valepotriates and/or as components of the essential oil. However, unknown active compounds were not discarded and synergic effects were suspected. We have recently isolated 6-methylapigenin (MA) from Valeriana wallichii and proved that it is a benzodiazepine binding site (BDZ-bs) ligand [Planta Med. 68 (2002) 934]. The present paper is the first report of the presence of 2S(-)-hesperidin in valeriana and describes that it has sedative and sleep-enhancing properties. MA, in turn, was found to have anxiolytic properties and was able to potentiate the sleep-enhancing properties of hesperidin (HN).MA and HN are new members of the growing family of natural flavonoids with activity on the CNS, and their properties suggest that they are promising drug leads in the field.
Collapse
Affiliation(s)
- Mariel Marder
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Junín 956 (1113), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
5
|
Harms A, Gündisch D, Müller CE, Kovar KA. Development of a 5-hydroxytryptamine(2A) receptor binding assay for high throughput screening using 96-well microfilter plates. JOURNAL OF BIOMOLECULAR SCREENING 2000; 5:269-78. [PMID: 10992048 DOI: 10.1177/108705710000500410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A high throughput screening method for the analysis of 5-hydroxytryptamine(2A) (5-HT(2A)) receptor binding parameters has been developed, using 96-well filter plates of the Millipore MultiScreen system in combination with a MicroBeta PLUS microplate scintillation counter. MAFB filter plates (GF/B filter over a Durapore membrane) were used because of the lower nonspecific binding of the radioligand to GF/B filter material than to GF/C filters. Comparing different scintillation cocktails, highest counting efficiency and shortest equilibration time were detected with Betaplatescint, after drying the plates at 50 degrees C for 2 h. Measuring the plates without the plastic underdrain increased the counting efficiency by about 39% as compared with counting the plate with the underdrain intact. Presoaking the wells with 0.5% polyethyleneimine for 2 h reduced the nonspecific binding to the filter material by about 50%. A linear relationship of protein concentration and radioligand binding was established up to a protein concentration of 165 microg of protein/well. In the assays, 70 microg of protein/well was generally used, which has turned out to be favorable with respect to the number of counts obtained. When a higher concentration of protein was used, the period of time needed to aspirate the plate was too long because of obstruction of the filter material. Receptor-radioligand equilibration was reached after about 20 min at concentrations less than 0.05 nM [(3)H]ketanserin-HCl; at higher concentrations it was reached after about 10 min. Saturation analysis of [(3)H]ketanserin-HCl resulted in a mean B(max) of 393 fmol/mg protein and a K(D) of 2.0 nM using rat frontal cortex as a receptor source. Competition experiments with known 5-HT(2A) receptor ligands-DOB-HCl (K(i) = 59 nM), DOET-HCl (K(i) = 137 nM), DOM-HCl (K(i) = 533 nM), DMT (K(i) = 1,985 nM), and TMA-HCl (K(i) = 22,340 nM)-were in accordance with literature values.
Collapse
Affiliation(s)
- A Harms
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
6
|
Scorza MC, Carrau C, Silveira R, Zapata-Torres G, Cassels BK, Reyes-Parada M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives: structure-activity relationships. Biochem Pharmacol 1997; 54:1361-9. [PMID: 9393679 DOI: 10.1016/s0006-2952(97)00405-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The monoamine oxidase (MAO) inhibitory properties of a series of amphetamine derivatives with different substituents at or around the para position of the aromatic ring were evaluated. In in vitro studies in which a crude rat brain mitochondrial suspension was used as the source of MAO, several compounds showed a strong (IC50 in the submicromolar range), selective, reversible, time-independent, and concentration-related inhibition of MAO-A. After i.p. injection, the compounds induced an increase of serotonin and a decrease of 5-hydroxyindoleacetic acid in the raphe nuclei and hippocampus, confirming the in vitro results. The analysis of structure-activity relationships indicates that: molecules with amphetamine-like structure and different substitutions on the aromatic ring are potentially MAO-A inhibitors; substituents at different positions of the aromatic ring modify the potency but have little influence on the selectivity; substituents at the para position such as amino, alkoxyl, halogens, or alkylthio produce a significant increase in the activity; the para-substituent must be an electron donor; bulky groups next to the para substituent lead to a decrease in the activity; substituents located at positions more distant on the aromatic ring have less influence and, even when the substituent is a halogen (Cl, Br), an increase in the activity of the compound is obtained. Finally, the MAO-A inhibitory properties of some of the compounds evaluated are discussed in relation to: (a) potential antidepressant activity, and (b) their reported hallucinogenic, neurotoxic, or anxiolytic effects.
Collapse
Affiliation(s)
- M C Scorza
- División Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|