1
|
Rezania F, Mohaghegh Shalmani L, Rahimian R, Dehpour AR, Ejtemaei Mehr S. Pretreatment with clonidine caused desensitization to WIN 55,212-2 in guinea pig ileum. AUTONOMIC & AUTACOID PHARMACOLOGY 2014; 34:9-13. [PMID: 24674577 DOI: 10.1111/aap.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/10/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Considering the existence of cross-tolerance between clonidine and morphine besides the same interaction between morphine and WIN 55,212-2 persuaded us to verify this fact between WIN 55,212-2 and clonidine in guinea pig ileum, which is a well-known model to examine the mode of action of cannabinoids and α2 -adenoceptor agonists The rectangular pulses were passed to the 0.5 g stretched ileum segments that were fixed in 20-ml organ bath. PowerLab system and Graphpad Prism were applied to record twitches and analyse the data. Electrically evoked contractions were dose-dependently inhibited by WIN 55,212-2 and clonidine (pD2 = 8.56 ± 0.41 and 7.65 ± 0.15, respectively). Tolerance to this effect could be induced by 4-h incubation with WIN 55,212-2 (3 × IC50 ) (pD2 = 6.36 ± 0.26, degree of tolerance: 159.32) (P < 0.01) but not with clonidine (2 × IC50 and 4 × IC50 ) for different time courses. Dose-response curve for inhibitory action of WIN 55,212-2 was shifted to the right after 4-h incubation with clonidine (3 × 10(-10) m) comparing to the untreated tissues (pD2 = 5.26 ± 0.69, degree of tolerance: 2000) (P < 0.001). This observation provides the evidence for the cannabinoid-noradrenergic systems interaction in the enteric nervous system as a simplified representative for central nervous system.
Collapse
Affiliation(s)
- F Rezania
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | | | | | | | | |
Collapse
|
2
|
Barrett DM, Maguma HT, Taylor DA. Time course of altered sensitivity to inhibitory and excitatory agonist responses in the longitudinal muscle-myenteric plexus and analgesia in the Guinea pig after chronic morphine treatment. Front Pharmacol 2012; 2:88. [PMID: 22291645 PMCID: PMC3254177 DOI: 10.3389/fphar.2011.00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/18/2011] [Indexed: 11/25/2022] Open
Abstract
Tolerance that develops after chronic morphine exposure has been proposed to be an adaptive response that develops and decays over a defined time course. The present study examined the development of tolerance to the acute hypothermic and analgesic effects of morphine and correlated the time course for the desensitization in vivo with the reduced responsiveness to DAMGO and 2-CADO and increased responsiveness to nicotine of the longitudinal muscle/myenteric plexus (LM/MP) preparation in vitro. Assessment was performed at various times after morphine or placebo pellet implantation. Morphine produced a modest hypothermic response to which no tolerance developed. However, the development of tolerance to the analgesic effect of morphine, the inhibitory effect of DAMGO and CADO on neurogenic twitches of the LM/MP and hypersensitivity to the contractile response to nicotine was observed to occur in a time-dependent manner. The alterations in sensitivity to DAMGO, nicotine, and responsiveness to morphine analgesia occurred between days 4 and 10 and returned to normal by day 14 post-implantation. In contrast, sensitivity of LM/MP preparations to 2-CADO displayed a similar time-dependent onset but the tolerance persisted beyond 14 days after implantation. These data suggest that the heterologous tolerance that develops after chronic morphine treatment is time-dependent and persistent but, ultimately returns to normal in the absence of any intervention. Furthermore, the data suggest that the basis of the adaptive phenomenon may involve multiple cellular mechanisms including the modulation of cell excitability and normal physiology but the consequences of the adaptation extend to all effects of the agonist.
Collapse
Affiliation(s)
- Dane M Barrett
- The Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University Greenville, NC, USA
| | | | | |
Collapse
|
3
|
Maguma H, Thayne K, Taylor DA. Characteristics of tolerance in the guinea pig ileum produced by chronic in vivo exposure to opioid versus cannabinoid agonists. Biochem Pharmacol 2010; 80:522-32. [PMID: 20478271 DOI: 10.1016/j.bcp.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
Abstract
Few studies have compared the nature of tolerance that develops following chronic opioid treatment with that which develops after chronic cannabinoid exposure in the same tissue and species. The degree and character of tolerance induced by 7 twice daily injections of morphine or 5 daily injections of the cannabinoid receptor agonist, WIN-55,212-2, was examined by comparing the ability of DAMGO, 2-chloroadenosine (CADO) and WIN-55,212-2 to inhibit neurogenic contractions of the longitudinal muscle/myenteric plexus preparation (LM/MP) and the ability of nicotine to elicit contractions in the LM/MP. Chronic morphine treatment resulted in subsensitivity to all inhibitory agonists (rightward shift in IC(50) values of 4-5-fold) and an increased responsiveness to the excitatory effect of nicotine while chronic WIN-55,212-2 exposure resulted in subsensitivity only to WIN-55,212-2 and a reduction in maximum response to both WIN-55,212-2 and DAMGO but no change in responsiveness to CADO. Chronic WIN-55,212-2 treatment significantly reduced CB(1) but not MOR receptor protein abundance while chronic morphine treatment did not change either. Assessment of the distribution of MOR and CB(1) receptors in myenteric neurons revealed distinct individual receptor expression as well as co-localization which was unaffected by either cannabinoid or opioid treatment. Thus, in contrast to the heterologous tolerance that develops after opioid treatment, tolerance in the LM/MP following chronic in vivo WIN-55,212-2 exposure appears to be homologous in character and is accompanied by a selective decrease in CB(1) receptor protein abundance. The data suggest that the cellular basis of tolerance differs between the two systems.
Collapse
Affiliation(s)
- Hercules Maguma
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | | | | |
Collapse
|
4
|
Li P, Maguma HT, Thayne K, Davis B, Taylor DA. Correlation of the time course of development and decay of tolerance to morphine with alterations in sodium pump protein isoform abundance. Biochem Pharmacol 2009; 79:1015-24. [PMID: 19896926 DOI: 10.1016/j.bcp.2009.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Since the heterologous tolerance that develops after chronic morphine administration has been proposed to be an adaptive process, it follows that the time course of the change in the cellular components should coincide with the time course of the altered responsiveness. This study correlated the time course over which heterologous tolerance develops with changes in the abundance of selected proteins in the guinea-pig longitudinal muscle/myenteric plexus (LM/MP) preparation. Tissues were obtained at various times following a single surgical implantation procedure and heterologous tolerance confirmed by a significant reduction in the sensitivity of the LM/MP to inhibition of neurogenic twitches by morphine, DAMGO, and 2-CADO. Tolerance developed with a delayed onset (significant 2-5-fold reduction in sensitivity by day 4 after pellet implantation) that reached a maximum by 7 days (4-8-fold reduction in responsiveness) that was maintained through 14 days with normal sensitivity spontaneously returning by 21 days post-implantation. Dot blot analysis was used to examine the abundance of the alpha(1) and alpha(3) subunit isoforms of the Na(+)/K(+) ATPase and beta-actin over the same time course. The results showed significant decreases in abundance of the alpha(3) subunit at 4, 7, and 10 days following pellet implantation but no change in beta-actin or the alpha(1) subunit at any time period. These data support the idea that heterologous tolerance following chronic morphine exposure results from a cellular adaptive change that may involve a change in the abundance of the alpha(3) subunit isoform of the Na(+)/K(+) ATPase.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, The Brody Medical Sciences Building, 600 Moye Boulevard, Greenville, NC 27834, United States
| | | | | | | | | |
Collapse
|
5
|
Giaroni C, Zanetti E, Pascale A, Oldrini R, Canciani L, Giuliani D, Amadio M, Chiaravalli AM, Lecchini S, Frigo GM. Involvement of Ca2+-dependent PKCs in the adaptive changes of mu-opioid pathways to sympathetic denervation in the guinea pig colon. Biochem Pharmacol 2009; 78:1233-41. [PMID: 19591807 DOI: 10.1016/j.bcp.2009.06.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/17/2022]
Abstract
In the guinea pig colon, chronic sympathetic denervation entails supersensitivity to inhibitory mu-opioid agents modulating cholinergic neurons. The mechanism underlying such adaptive change has not yet been unravelled, although protein kinase C (PKC) may be involved. A previous study indirectly demonstrated that activation of mu-opioid receptors on myenteric neurons facilitates PKC activity. Such coupling may counteract the inhibitory action of mu-opioid agents on acetylcholine overflow, since PKC, per se, increases this parameter. After chronic sympathetic denervation such restraint abates, representing a possible mechanism for development of supersensitivity to mu-opioid agents. In the present study, this hypothesis was further investigated. After chronic sympathetic denervation, Ca(2+)-dependent PKC activity was reduced in colonic myenteric plexus synaptosomes. The mu-opioid agent, DAMGO, increased Ca(2+)-dependent PKC activity in synaptosomes obtained from normal, but not from denervated animals. In myenteric synaptosomes obtained from this experimental group, protein levels of Ca(2+)-dependent PKC isoforms betaI, betaII and gamma decreased, whereas alpha levels increased. In whole-mount preparations, the four Ca(2+)-dependent PKC isoforms co-localized with mu-opioid receptors on subpopulations of colonic myenteric neurons. The percentage of neurons staining for PKCbetaII, as well as the number of mu-opioid receptor-positive neurons staining for PKCbetaII, decreased in denervated preparations. The same parameters related to PKCalpha, betaI or gamma remained unchanged. Overall, the present data strengthen the concept that mu-opioid receptors located on myenteric neurons are coupled to Ca(2+)-dependent PKCs. After chronic sympathetic denervation, a reduced efficiency of this coupling may predominantly involve PKCbetaII, although also PKCbetaI and gamma, but not PKCalpha, may be implicated.
Collapse
Affiliation(s)
- C Giaroni
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, via O. Rossi 9, Varese, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Giaroni C, Canciani L, Zanetti E, Giuliani D, Pisani R, Oldrini R, Moro E, Trinchera M, Crema F, Lecchini S, Frigo G. Effects of chronic desipramine treatment on α2-adrenoceptors and μ-opioid receptors in the guinea pig cortex and hippocampus. Eur J Pharmacol 2008; 579:116-25. [DOI: 10.1016/j.ejphar.2007.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/02/2007] [Accepted: 10/05/2007] [Indexed: 12/30/2022]
|
7
|
Canciani L, Giaroni C, Zanetti E, Giuliani D, Pisani R, Moro E, Trinchera M, Crema F, Lecchini S, Frigo G. Functional interaction between α2-adrenoceptors, μ- and κ-opioid receptors in the guinea pig myenteric plexus: Effect of chronic desipramine treatment. Eur J Pharmacol 2006; 553:269-79. [PMID: 17055479 DOI: 10.1016/j.ejphar.2006.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
The existence of a functional interplay between alpha(2)-adrenoceptor and opioid receptor inhibitory pathways modulating neurotransmitter release has been demonstrated in the enteric nervous system by development of sensitivity changes to alpha(2)-adrenoceptor, mu- and kappa-opioid receptor agents on enteric cholinergic neurons after chronic sympathetic denervation. In the present study, to further examine this hypothesis we evaluated whether manipulation of alpha(2)-adrenoceptor pathways by chronic treatment with the antidepressant drug, desipramine (10 mg/kg i.p. daily, for 21 days), could entail changes in enteric mu- and kappa-opioid receptor pathways in the myenteric plexus of the guinea pig distal colon. In this region, subsensitivity to the inhibitory effect of both UK14,304 and U69,593, respectively alpha(2A)-adrenoceptor and kappa-opioid receptor agonist, on the peristaltic reflex developed after chronic desipramine treatment. On opposite, in these experimental conditions, supersensitivity developed to the inhibitory effect of [D-Ala, N-Me-Phe4-Gly-ol5]-enkephalin (DAMGO), mu-opioid receptor agonist, on propulsion velocity. Immunoreactive expression levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly decreased in the myenteric plexus of the guinea pig colon after chronic desipramine treatment. In these experimental conditions, mRNA levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly increased, excluding a direct involvement of transcription mechanisms in the regulation of receptor expression. Levels of G protein-coupled receptor kinase 2/3 and of inhibitory G(i/o) proteins were significantly reduced in the myenteric plexus after chronic treatment with desipramine. Such changes might represent possible molecular mechanisms involved in the development of subsensitivity to UK14,304 and U69,593 on the efficiency of peristalsis. Alternative molecular mechanisms, including a higher efficiency in the coupling between receptor activation and downstream intracellular effector systems, possibly independent from inhibitory G(i/o) proteins, may be accounted for the development of supersensitivity to DAMGO. Increased sensitivity to the mu-opioid agonist might compensate for the development of alpha(2A)-adrenoceptor and kappa-opioid receptor subsensitivity. On the whole, the present data further strengthen the concept that, manipulation of alpha(2)-adrenergic inhibitory receptor pathways in the enteric nervous system entails changes in opioid inhibitory receptor pathways, which might be involved in maintaining homeostasis as suggested for mu-opioid, but not for kappa-opioid receptors.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Agonists
- Adrenergic alpha-Agonists/pharmacology
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Benzeneacetamides/pharmacology
- Blotting, Western
- Brimonidine Tartrate
- Desipramine/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis
- GTP-Binding Proteins/biosynthesis
- Guinea Pigs
- In Vitro Techniques
- Male
- Myenteric Plexus/drug effects
- Peristalsis/drug effects
- Pyrrolidines/pharmacology
- Quinoxalines/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Luca Canciani
- Clinical and Applied Pharmacology Centre, University of Insubria and University of Pavia, via O Rossi 9, I-21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Romanelli L, Morrone LA, Amico MC, Palmery M, Tucci P, Valeri P. Inhibitory Control of the Acute Mu-Withdrawal Response by Indirectly Activated Adenosine A1 and Kappa-Opioid Systems in the Guinea-Pig Ileum; Reversal by Cholecystokinin. Neurotoxicology 2005; 26:829-39. [PMID: 15894374 DOI: 10.1016/j.neuro.2005.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 01/18/2005] [Accepted: 02/18/2005] [Indexed: 11/24/2022]
Abstract
In the isolated guinea-pig ileum (GPI), the acute mu-opioid withdrawal response is inhibited by the kappa-opioid system, indirectly activated by the opioid agonist; yet, other inhibitory mechanisms are probably operating. On the other hand, cholecystokinin (CCK-8) strongly enhances the withdrawal response. In this study, we have shown that the adenosine A1 antagonist 8-cyclopenthyl-1,3-dimethylxantine (CPT) increased the withdrawal response in dermorphin/naloxone (NLX) tests but lacked any effect if the withdrawal tests were carried out in presence of CCK-8. In tissue preparations coming from a same animal both CPT and the kappa-opioid antagonist, nor-binaltorphimine (BNI), increased the intensity of the withdrawal responses; the effects of the two antagonists were additive. The intensity of withdrawal contractile responses in presence of CCK-8 was similar to those obtained in presence of the two antagonists. Tissue preparations tested with dermorphin/CCK-8/NLX and then washed out yielded contractile responses when subsequently challenged with CPT, BNI or BNI+CPT, with a percentage markedly higher than the percentage of the response to NLX challenge. BNI+CPT also increased the intensity of the response to NLX challenge. These data suggest that acute exposure of GPI to dermorphin induces the activation of both the adenosine A1 and kappa-opioid systems, which in turns inhibit the mu-withdrawal response. CCK-8 antagonises the inhibitory effect of the indirectly activated systems.
Collapse
Affiliation(s)
- Luca Romanelli
- Dipartimento di Fisiologia Umana e Farmacologia Vittorio Erspamer, Università di Roma La Sapienza, P.le A. Moro, 5-00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Giaroni C, Zanetti E, Vanti A, Canciani L, Lecchini S, Frigo G. Sympathetic denervation-induced changes in G protein expression in enteric neurons of the guinea pig colon. Life Sci 2002; 71:1961-73. [PMID: 12175891 DOI: 10.1016/s0024-3205(02)01961-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic sympathetic denervation entails subsensitivity to alpha(2)-adrenoceptor agonists and supersensitivity to kappa- and mu-opioid receptor agonists modulating cholinergic neurons in the guinea pig colon. A possible role for signal transduction G proteins in contributing to development of these sensitivity changes was investigated. Pertussis toxin (PTX), a blocker of the G(i/o)-type family of G proteins significantly reduced the inhibitory effects of UK14,304 (alpha(2)-adrenoceptor agonist), U69593 (kappa-opioid receptor agonist) and DAMGO (mu-opioid receptor agonist) on acetylcholine (ACh) overflow in preparations obtained from normal animals, but not in those obtained from sympathetically denervated animals. In this experimental condition, immunoblot analysis revealed reduced levels of G(alphao), G(alphai2), G(alphai3) and G(beta) in myenteric plexus synaptosomes. On reverse, synaptosomal levels of G(alphai1) and G(alphaz), a PTX-insensitive G-protein, increased after chronic ablation of the sympathetic pathways. These data suggest that changes in the function and expression of inhibitory G proteins coupled to alpha(2)-adrenoceptors, kappa- and mu-opioid receptors occur in the myenteric plexus of the guinea pig colon after chronic sympathetic denervation. The possibility that regulation of G proteins represents one of the biochemical mechanisms at the basis of the changes in sensitivity of enteric cholinergic neurons to alpha(2)-adrenoceptor, kappa- and mu-opioid receptor agonists is discussed.
Collapse
Affiliation(s)
- Cristina Giaroni
- Clinical and Applied Pharmacology Centre, Universities of Insubria and Pavia, via O. Rossi 9, I-21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Biser PS, Thayne KA, Fleming WW, Taylor DA. Na+, K+ ATPase alpha-subunit isoform distribution and abundance in guinea-pig longitudinal muscle/myenteric plexus after exposure to morphine. Brain Res 2002; 931:186-93. [PMID: 11897105 DOI: 10.1016/s0006-8993(02)02277-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous work in the myenteric plexus has shown that the resting membrane potential of morphine-tolerant guinea-pig myenteric S neurons is significantly depolarized relative to placebo-implanted controls, and that this depolarization is associated with reduced electrogenic Na+, K+ pumping. Identification of the subunits of the sodium pump which are in the myenteric plexus was undertaken in order to facilitate direct qualitative and quantitative measurements of the abundance of sodium pump isoforms after morphine exposure, thereby confirming and extending the electrophysiological data to the molecular level. Seven days prior to the experiments, tolerance was induced by subcutaneous implantation of morphine pellets (one pellet, 75 mg/100 g body weight) while control guinea pigs received placebo pellets. Using immunohistochemistry and confocal microscopy, the distribution of the alpha subunit isoforms of the Na+/K+ -ATPase in placebo and morphine-tolerant guinea-pig ileum was determined. Only the alpha1 and alpha3 subunit isoforms were in sufficient abundance to be observed. The alpha1 subunit isoform was most highly concentrated in the mucosa and in neurons. In contrast, the alpha3 subunit isoform was uniquely localized to neurons. Western and slot blot analyses of longitudinal muscle/myenteric plexus homogenates identified a significant reduction of the alpha3 but not the alpha1 subunit isoform in tolerant preparations. It is concluded that the reduced electrogenic pumping in the S neurons after morphine exposure is associated with a reduction in the alpha3 subunit isoform.
Collapse
Affiliation(s)
- P S Biser
- Department of Pharmacology and Toxicology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506-9223, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Enteric ganglia can maintain integrated functions, such as the peristaltic reflex, in the absence of input from the central nervous system, which has a modulatory role. Several clinical and experimental observations suggest that homeostatic control of gut function in a changing environment may be achieved through adaptive changes occurring in the enteric ganglia. A distinctive feature of enteric ganglia, which may be crucial during the development of adaptive responses, is the vicinity of the final effector cells, which are an important source of mediators regulating cell growth. The aim of this review is to focus on the possible mechanisms underlying neuronal plasticity in the enteric nervous system and to consider approaches to the study of plasticity in this model. These include investigations of neuronal connectivity during development, adaptive mechanisms that maintain function after suppression of a specific neural input, and the possible occurrence of activity-dependent modifications of synaptic efficacy, which are thought to be important in storage of information in the brain. One of the applied aspects of the study of plasticity in the enteric nervous system is that knowledge of the underlying mechanisms may eventually enable us to develop strategies to correct neuronal alterations described in several diseases.
Collapse
Affiliation(s)
- C Giaroni
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
12
|
c-Fos expression in the myenteric plexus, spinal cord and brainstem following injection of formalin in the rat colonic wall. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0165-1838(99)00048-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Giaroni C, Somaini L, Marino F, Cosentino M, Senaldi A, De Ponti F, Lecchini S, Frigo G. Modulation of enteric cholinergic neurons by hetero- and autoreceptors: cooperation among inhibitory inputs. Life Sci 1999; 65:813-21. [PMID: 10466747 DOI: 10.1016/s0024-3205(99)00308-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the guinea-pig colon, acetylcholine (ACh) release from intrinsic cholinergic motor neurons is inhibited by adrenoceptors, opioid and muscarinic receptors. Chronic sympathetic denervation resulted in supersensitivity to the inhibitory effect of DAMGO (mu-opioid agonist) on ACh release and on the peristaltic reflex. After chronic treatment with naltrexone (NTX) supersensitivity to DAMGO and subsensitivity to UK14,304 (alpha2-adrenoceptor agonist) developed for both functional parameters. The facilitatory effect of scopolamine on ACh release remained unchanged after chronic NTX treatment, whereas it was potentiated after chronic sympathetic denervation. These data suggest the existence of a functional interaction between different inhibitory pathways modulating cholinergic motor neurons in the guinea-pig colon. Namely, chronic manipulation of an inhibitory pathway may entail adaptive sensitivity changes in another inhibitory pathway so that homeostasis can be maintained.
Collapse
Affiliation(s)
- C Giaroni
- Department of Internal Medicine and Therapeutics, University of Pavia, Varese VA, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Basilico L, Parolaro D, Colleoni M, Costa B, Giagnoni G. Cross-tolerance and convergent dependence between morphine and cannabimimetic agent WIN 55,212-2 in the guinea-pig ileum myenteric plexus. Eur J Pharmacol 1999; 376:265-71. [PMID: 10448886 DOI: 10.1016/s0014-2999(99)00389-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cross-tolerance and convergent dependence between morphine and the cannabimimetic agent R(+)-[2,3-dihydro-5-methyl-3[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-+ ++benzoxazin-yl]-(1-naphthalenyl) methanone mesylate (WIN 55,212-2) were assessed in vitro on guinea-pig ileum. To induce tolerance and dependence the myenteric plexus-longitudinal muscle was incubated at 37 degrees C for 5 h with a fixed concentration representing the IC50 for each compound. Myenteric plexus-longitudinal muscle exposed to WIN 55,212-2 (5 x 10(-8) M) was less sensitive to its inhibitory effect on electrically evoked contractions than naive myenteric plexus-longitudinal muscle. The exposure to cannabinoid induced a parallel rightward shift in the lower part of the concentration-response curve of WIN 55,212-2 and a marked reduction in the maximal inhibitory effect of the drug. Myenteric plexus-longitudinal muscle tolerant to WIN 55,212-2 was subsensitive to the inhibitory effect of morphine on the twitch response. The cross-tolerance between WIN 55,212-2 and morphine was bidirectional. In fact, after 5 h the morphine (10(-7) M)-incubated myenteric plexus-longitudinal muscle was less sensitive to the inhibitory effect of WIN 55,212-2. The tissue tolerant to morphine or WIN 55,212-2 was tested for the presence of physical dependence. Naloxone (10(-5) M) produced a typical withdrawal contracture in morphine-tolerant myenteric plexus-longitudinal muscle which could be reduced by a 15-min pretreatment with WIN 55,212-2 (5 X 10(-8) M). In contrast, SR141716 (10(-6) M) [N-(piperidino)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyr azole-carboxamide], a concentration which fully antagonized the inhibitory effect of WIN 55,212-2 (10(-7) M) in control preparations, did not produce significant contracture in WIN 55,212-2-tolerant myenteric plexus-longitudinal muscle. The mechanisms underlying the cross-tolerance and convergent dependence remain to be ascertained.
Collapse
Affiliation(s)
- L Basilico
- Department of Biotechnology and Bioscience, Faculty of Sciences, University of Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Cosentino M, Marino F, De Ponti F, Giaroni C, Somaini L, Leoni O, Lecchini S, Frigo G. Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of mu and kappa opioid receptor blockade and of chronic sympathetic denervation. Neurosci Lett 1995; 194:185-8. [PMID: 7478234 DOI: 10.1016/0304-3940(95)11757-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the effects of mu- and kappa-opioid receptor blockade on endogenous acetylcholine and noradrenaline overflow from the myenteric plexus of the guinea-pig isolated colon. Cyprodime (putative mu-selective antagonist) and nor-binaltorphimine (kappa-selective antagonist) had a concentration-dependent facilitatory effect on both acetylcholine and noradrenaline overflow. Moreover, in colonic specimens obtained from sympathetically denervated animals, the effect of opioid antagonists on acetylcholine overflow was significantly higher with respect to normal preparations. Evidence is thus given in favour of an involvement of mu- and kappa-opioid receptor pathways in the tonic modulation of neurotransmitter release at the colonic level. Enhanced sensitivity to the effect of mu and kappa antagonists after chronic sympathetic denervation is strongly suggestive for the existence of a functional link between opioid and adrenergic pathways in this model.
Collapse
Affiliation(s)
- M Cosentino
- Department of Internal Medicine and Therapeutics, University of Pavia, II Faculty of Medicine, Varese, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
David C, Davis N, Mason R, Wilson VG. Evidence for functional dissociation of dependence and tolerance in guinea-pig isolated ileal segments following 20 hour exposure to morphine in vitro. Br J Pharmacol 1993; 110:1522-6. [PMID: 8306096 PMCID: PMC2175859 DOI: 10.1111/j.1476-5381.1993.tb13995.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. In the present study we have examined the relationship between tolerance and dependence in isolated ileal segments from the guinea-pig under three different conditions: fresh preparations not previously exposed to morphine (fresh/morphine naive); preparations stored overnight at 4 degrees C in modified Krebs-Henseleit saline (overnight-stored/morphine-naive); preparations stored overnight at 4 degrees C in Krebs-Henseleit saline containing 10 microM morphine and extensively washed with modified Krebs-Henseleit saline to remove residual morphine (overnight-stored/morphine-exposed). 2. Morphine produced a concentration-dependent inhibition of the response of ileal segment to 0.1 Hz, 1 ms and 10 V transmural field stimulation in fresh/morphine-naive, overnight-stored/morphine-naive and overnight-stored/morphine-exposed preparations. The maximum effect observed was similar in all three preparations-approximately 80% inhibition. Although, morphine was significantly more potent in the fresh/morphine-naive preparations (pD2 6.72 +/- 0.05, n = 8) than either the overnight-stored/morphine-native (pD2 6.42 +/- 0.11, n = 8) or the overnight-stored/morphine-exposed (pD2 6.44 +/- 0.14, n = 8), there was no significant difference between the overnight exposure to ileal segments to 10 microM morphine at 4 degrees C failed to induce tolerance to morphine. 3. The mu opiate receptor antagonist, naloxone (10 microM), produced contractions in both fresh/morphine-naive and overnight-stored/morphine-naive ileal segments following acute exposure to 10 microM morphine. Naloxone (10 microM) also produced contractions in 2/9 fresh/morphine-naive, 1/9 overnight-stored/morphine-naive and 7/9 overnight-stored/morphine-exposed preparations in the absence of morphine. The greater incidence of naloxone-induced contractions in overnight-stored/morphine-exposed preparations,suggests that dependence in this model is the product of adaptive changes that outlive the presence of morphine.4. The selective alpha2-adrenoceptor agonists, clonidine (0.3 microM) and 5-bromo-6-[2-imidazolin-2-ylamino]-quinoxaline bitartrate (UK-14304, 1 microM), inhibited naloxone-induced contractions in overnight-stored/morphine-exposed preparations of ileal segments (n = 4 preparations for each agonist), suggesting that the response is due to transmitter release from the myenteric plexus.5. The findings in the present study indicate that tolerance and dependence to morphine in ileal segments of the guinea-pig can be functionally dissociated by overnight exposure to morphine at 4 degrees C.The development of tolerance to morphine, unlike dependence, appears to be a temperature-dependent process. This also raises the possibility that naloxone possesses intrinsic negative agonism at morphine sensitive receptors, which is manifested as a functional response only after adaptive changes in the myenteric plexus following exposure to morphine.
Collapse
Affiliation(s)
- C David
- Department of Physiology and Pharmacology, University of Nottingham Medical School, Queen's Medical Centre
| | | | | | | |
Collapse
|
17
|
Leedham JA, Doak N, Taylor DA, Fleming WW. The development and reversal of the tolerance to morphine in the longitudinal smooth muscle-myenteric plexus preparation of the guinea pig. Life Sci 1989; 45:1483-9. [PMID: 2811605 DOI: 10.1016/0024-3205(89)90039-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic treatment with morphine results in a reduction in the potency of morphine in the longitudinal smooth muscle-myenteric plexus of the guinea-pig ileum. Implantation of morphine pellets leads to the development of tolerance to the inhibitory effects of morphine upon neurogenic contractions of this preparation. Tolerance develops within 24 hours, peaks between days 4 and 7 and disappears by day 14. A similar time course for the development of tolerance to the inhibitory effects of 2-chloroadenosine is also seen in these same morphine-tolerant preparations. The rate of reversal of morphine tolerance was assessed after the removal of the morphine pellets four days after implantation. In this situation, tolerance to the effects of morphine were maintained for at least 24 hours, were partially reversed at day 2 and were totally reversed by day 4. The delay in the development and reversal of the effect are consistent with the fact that chronic treatment with morphine evokes an adaptive sensitivity change.
Collapse
Affiliation(s)
- J A Leedham
- Department of Pharmacology and Toxicology, West Virginia University, Morgantown 26506
| | | | | | | |
Collapse
|