1
|
Moribayashi T, Nakao Y, Ohtubo Y. Characteristics of A-type voltage-gated K + currents expressed on sour-sensing type III taste receptor cells in mice. Cell Tissue Res 2024; 396:353-369. [PMID: 38492001 PMCID: PMC11144136 DOI: 10.1007/s00441-024-03887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K+ currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K+ currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K+ currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K+ currents which were completely inhibited by 10 mM TEA, whereas IP3R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K+ currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K+ channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K+ channel phosphorylation likely affects the signal transduction of taste.
Collapse
Affiliation(s)
- Takeru Moribayashi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshiki Nakao
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
2
|
Lee JM, Jung HS. Putative role of endothelin receptor B in the development and maintenance of taste buds within the circumvallate papillae. J Oral Biosci 2024; 66:249-252. [PMID: 38220089 DOI: 10.1016/j.job.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
This study aimed to achieve a better understanding of taste receptor cell development relative to endothelin receptor B (ETB) in circumvallate papillae (CVP). ETB localization was assessed by immunohistochemistry during tongue development of the mouse. Co-localization of ETB with taste receptor type III cell marker, Synaptosomal-Associated Protein 25 kDa (SNAP25), was evident in both the developing and adult CVP. ETB was strongly localized in the stromal core region. As development progressed, ETB became localized in the CVP mesenchyme and partially in the epithelium. ETB and SNAP25 co-localization indicates that ETB may regulate innervation from the CVP mesenchyme to taste buds.
Collapse
Affiliation(s)
- Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.
| |
Collapse
|
3
|
Hino K, Hirashima S, Tsuneyoshi R, Togo A, Hiroshige T, Kusukawa J, Nakamura KI, Ohta K. Three-dimensional ultrastructure and histomorphology of mouse circumvallate papillary taste buds before and after birth using focused ion beam-scanning electron microscope tomography. Tissue Cell 2022; 75:101714. [DOI: 10.1016/j.tice.2021.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
4
|
Molecular mechanisms of taste recognition: considerations about the role of saliva. Int J Mol Sci 2015; 16:5945-74. [PMID: 25782158 PMCID: PMC4394514 DOI: 10.3390/ijms16035945] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Collapse
|
5
|
Saito T, Ito T, Narita N, Yamada T, Manabe Y. Light and Electron Microscopic Observation of Regenerated Fungiform Taste Buds in Patients with Recovered Taste Function after Severing Chorda Tympani Nerve. Ann Otol Rhinol Laryngol 2011; 120:713-21. [DOI: 10.1177/000348941112001104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. Methods: We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. Results: The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 ± 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 ± 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. Conclusions: It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.
Collapse
|
6
|
Tateno K, Igarashi J, Ohtubo Y, Nakada K, Miki T, Yoshii K. Network model of chemical-sensing system inspired by mouse taste buds. BIOLOGICAL CYBERNETICS 2011; 105:21-27. [PMID: 21755320 DOI: 10.1007/s00422-011-0447-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 06/29/2011] [Indexed: 05/31/2023]
Abstract
Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.
Collapse
Affiliation(s)
- Katsumi Tateno
- Department of Brain Science and Engineering, Kyushu Institute of Technology, Hibikino, Wakamatsu-ku, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Seta Y, Oda M, Kataoka S, Toyono T, Toyoshima K. Mash1 is required for the differentiation of AADC-positive type III cells in mouse taste buds. Dev Dyn 2011; 240:775-84. [PMID: 21322090 DOI: 10.1002/dvdy.22576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 12/25/2022] Open
Abstract
Mash1 is expressed in subsets of neuronal precursors in both the central nervous system and the peripheral nervous system. However, involvement of Mash1 in taste cell differentiation has not previously been demonstrated. In this study, we investigated the role of Mash1 in regulating taste bud differentiation using Mash1 KO mice to begin to understand the mechanisms that regulate taste bud cell differentiation. We found that aromatic L-amino acid decarboxylase (AADC) cells were not evident in either the circumvallate papilla epithelia or in taste buds in the soft palates of Mash1 KO mice. However gustducin was expressed in taste buds in the soft palates of Mash1 KO mice. These results suggest that Mash1 plays an important role in regulating the expression of AADC in type III cells in taste buds, which supports the hypothesis that different taste bud cell types have progenitor cells that are specific to each cell type.
Collapse
Affiliation(s)
- Yuji Seta
- Division of Oral Histology and Neurobiology, Kyushu Dental College, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
8
|
Yoshida R, Ninomiya Y. New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:101-34. [DOI: 10.1016/s1937-6448(10)79004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Reception and Transmission of Taste Information in Type II and Type III Taste Bud Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sato T, Nishishita K, Okada Y, Toda K. Effect of gap junction blocker beta-glycyrrhetinic acid on taste disk cells in frog. Cell Mol Neurobiol 2009; 29:503-12. [PMID: 19145483 DOI: 10.1007/s10571-008-9342-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/19/2008] [Indexed: 11/30/2022]
Abstract
A gap junction blocker, 18beta-glycyrrhetinic acid (beta-GA), increased the membrane resistance of Ia, Ib and II/III cells of frog taste disk by 50, 160, and 300 M Omega, respectively, by blocking the gap junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk cells for 4 basic taste stimuli were reduced to 40-60% after intravenous injection of beta-GA at 1.0 mg/kg. beta-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic taste stimuli and varying numbers of 4 taste qualities did not differ between control and beta-GA-treated taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were very similar in control and beta-GA-treated taste disk cells. It is concluded that beta-GA at 1.0 mg/kg reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking depolarizing currents flowing through the gap junction channels and hemichannels, but probably weakly affected the gustatory transduction mechanisms for 4 taste stimuli.
Collapse
Affiliation(s)
- Toshihide Sato
- Division of Integrative Sensory Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | |
Collapse
|
11
|
Roper SD. Parallel processing in mammalian taste buds? Physiol Behav 2009; 97:604-8. [PMID: 19371753 DOI: 10.1016/j.physbeh.2009.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/25/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
Abstract
ROPER, S.D. Parallel processing in mammalian taste buds? Physiol Behav XXX(Y) 000-000, 2009. There is emerging evidence that two parallel lines of gustatory information are generated in taste buds. One pathway leads to higher cortical centers and is involved in discriminating basic taste qualities (sweet, bitter, sour, salty, umami) and perceiving flavors. The other pathway may conduct information involved in physiological reflexes such as swallowing, salivation, and cephalic phase digestion. If this notion is true, the existence of two populations of taste bud cells that have different functional characteristics may lie at the origins of the two pathways. This speculative concept is explored in this review of taste signal processing in mammalian taste buds.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology & Biophysics and Program in Neuroscience, Miller School of Medicine, University of Miami R430, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Ogura T, Margolskee RF, Tallini YN, Shui B, Kotlikoff MI, Lin W. Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res 2007; 330:17-28. [PMID: 17704949 DOI: 10.1007/s00441-007-0470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
Acetylcholine (ACh) is well established as a neurotransmitter and/or neuromodulator in various organs. Previously, it has been shown by Ogura (J Neurophysiol 87:2643-2649, 2002) that in both physiological and immunohistochemical studies the muscarinic acetylcholine (ACh) receptor is present in taste receptor cells. However, it has not been determined if ACh is released locally from taste receptor cells and/or surrounding nerve fibers. In this study we investigated the sites of ACh release in mouse taste tissue using the antisera against vesicular ACh transporter (VAChT), a key element of ACh-containing vesicles. Our data show that VAChT-immunoreactivity is present in many taste receptor cells, including cells expressing the transient receptor potential channel M5 (TRPM5). In taste cells, VAChT-immunoreactivity was colocalized with the immunoreactivity to choline-acetyltransferase (ChAT), which synthesizes ACh. Additionally, enhanced green fluorescent protein (eGFP) was detected in the taste cells of BAC-transgenic mice, in which eGFP was placed under the control of endogenous ChAT transcriptional regulatory elements (ChAT(BAC)-eGFP mice). Furthermore, many ChAT-immunolabeled taste cells also reacted to an antibody against the vesicle-associated membrane protein synaptobrevin-2. These data suggest that ACh-containing vesicles are present in taste receptor cells and ACh release from taste cells may play a role in autocrine and/or paracrine cell-to-cell communication. In addition, certain nerve fibers surrounding or within taste buds were immunoreactive for the VAChT antibody. Some of these fibers were also immunolabeled with antibody against calcitonin gene-related peptide (CGRP), a marker for trigeminal peptidergic fibers. Thus, functions of taste receptor cells could be modulated by trigeminal fibers via ACh release as well.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Hayato R, Ohtubo Y, Yoshii K. Functional expression of ionotropic purinergic receptors on mouse taste bud cells. J Physiol 2007; 584:473-88. [PMID: 17702819 PMCID: PMC2277161 DOI: 10.1113/jphysiol.2007.138370] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.
Collapse
Affiliation(s)
- Ryotaro Hayato
- Kyushu Institute of Technology, Hibikino 2-4, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | | | | |
Collapse
|
14
|
Yoshida R, Yasumatsu K, Shigemura N, Ninomiya Y. Coding channels for taste perception: information transmission from taste cells to gustatory nerve fibers. ACTA ACUST UNITED AC 2007; 69:233-42. [PMID: 17287578 DOI: 10.1679/aohc.69.233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taste signals are first detected by the taste receptor cells, which are located in taste buds existing in the tongue, soft palate, larynx and epiglottis. Taste receptor cells contact with the chemical compounds in oral cavity through the apical processes which protrude into the taste pore. Interaction between chemical compounds and the taste receptor produces activation of taste receptor cells directly or indirectly. Then the signals are transmitted to gustatory nerve fibers and higher order neurons. A recent study demonstrated many similarities between response properties of taste receptor cells with action potentials and those of the gustatory nerve fibers innervating them, suggesting information derived from receptor cells generating action potentials may form a major component of taste information that is transmitted to gustatory nerve fibers. These findings may also indicate that there is no major modification of taste information sampled by taste receptor cells in synaptic transmission from taste cells to nerve fibers although there is indirect evidence. In the peripheral taste system, gustatory nerve fibers may selectively contact with taste receptor cells that have similar response properties and convey constant taste information to the higher order neurons.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Japan
| | | | | | | |
Collapse
|
15
|
Seta Y, Kataoka S, Toyono T, Toyoshima K. Immunohistochemical localization of aromatic l-amino acid decarboxylase in mouse taste buds and developing taste papillae. Histochem Cell Biol 2007; 127:415-22. [PMID: 17211625 DOI: 10.1007/s00418-006-0257-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 12/27/2022]
Abstract
Aromatic L-amino acid decarboxylase (AADC) catalyses the decarboxylation of all aromatic L-amino acids. In mammals, AADC is expressed in many tissues besides the nervous system, and is associated with additional regulatory roles of dopamine and serotonin in a wide range of tissues. We examined the expression of AADC by using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that mRNA of AADC was detected in the taste bud-containing epithelium of the circumvallate papilla of mice. By immunohistochemical analyses, AADC was detected in a subset of taste bud cells of fungiform, foliate, and circumvallate papillae. Double-label studies showed that AADC colocalized with serotonin, NCAM, PLCbeta2, and PGP9.5. On the other hand, AADC never colocalized with alpha-gustducin. Our results of double staining with AADC and taste cell markers indicate that only the type III cells could convert 5-hydroxytryptophan (5-HTP) to serotonin within taste buds. Taken together with previous studies, the properties of the type III cell of taste buds exactly fit into the APUD (amine and amine precursor uptake and decarboxylation) cell scheme. Furthermore, in the developing circumvallate papilla, AADC are first detected in a small number of papillary epithelial cells at E14.5. By E18.5, AADC-positive epithelial cells also express PGP9.5, which is one of marker of taste cells, and these cells have been contacted by developing nerve fibers. These results suggest that AADC expression begins at early stages of taste bud cell differentiation, and biogenic amines may act on taste bud differentiation of tongue epithelial cells, and further may regulate innervation of taste bud progenitor cells.
Collapse
Affiliation(s)
- Yuji Seta
- Division of Oral Histology and Neurobiology, Department of Bioscience, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan.
| | | | | | | |
Collapse
|
16
|
Toyoshima K, Seta Y, Toyono T, Kataoka S. Immunohistochemical identification of cells expressing steroidogenic enzymes cytochrome P450scc and P450 aromatase in taste buds of rat circumvallate papillae. ACTA ACUST UNITED AC 2007; 70:215-24. [DOI: 10.1679/aohc.70.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuniaki Toyoshima
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Yuji Seta
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Takashi Toyono
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Shinji Kataoka
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| |
Collapse
|
17
|
Seta Y, Kataoka S, Toyono T, Toyoshima K. Expression of galanin and the galanin receptor in rat taste buds. ACTA ACUST UNITED AC 2006; 69:273-80. [PMID: 17287581 DOI: 10.1679/aohc.69.273] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Galanin, a 29-amino-acid neuropeptide, was initially isolated from porcine intestine. It has a wide spread distribution in the central nervous system and is also present in the primary sensory neuron. Galanin has been suggested to be involved in numerous neuronal and endocrine functions as a neurotransmitter and neuromodulator. We examined the expression of galanin and galanin receptors by using a reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and in situ hybridization. RT-PCR analysis showed that mRNA of galanin and GalR2 were detected in the taste bud-containing epithelium of the circumvallate papilla of rats. Immunohistochemical analyses detected galanin was detected in a subset of taste bud cells of the circumvallate papillae. Double-label studies showed that galanin colocalized with alpha-gustducin, NCAM, and PLCbeta2. Our results of double staining with galanin and taste cell markers indicate that galanin-expressing taste cells are type II and type III cells. Taken together with previous studies, these findings show that galanin may function as a taste bud neurotransmitter. Furthermore, GalR2 mRNA was expressed in some taste bud cells. This suggests that, galanin release may not only excite the peripheral afferent nerve fiber but also may act on neighboring taste receptor cells via the activation of GalR2.
Collapse
Affiliation(s)
- Yuji Seta
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College, Japan.
| | | | | | | |
Collapse
|
18
|
Noguchi T, Ikeda Y, Miyajima M, Yoshii K. Voltage-gated channels involved in taste responses and characterizing taste bud cells in mouse soft palates. Brain Res 2003; 982:241-59. [PMID: 12915259 DOI: 10.1016/s0006-8993(03)03013-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Taste bud cells (TBCs) on soft palates differ from those on tongues in innervation and chemosensitivity. We investigated voltage-gated channels involved in the taste responses of TBCs on mouse soft palates under in-situ tight-seal voltage/current-clamp conditions. Under the cell-attached mode, TBCs spontaneously fired action currents, which were blocked by application of 1 microM TTX to TBC basolateral membranes. Firing frequencies increased in response to taste substances applied to TBC receptor membranes. Under the whole-cell clamp mode, as expected, TBCs produced various voltage-gated currents such as TTX-sensitive Na+ currents (INa), outward currents (Iout) including TEA-sensitive and insensitive currents, inward rectifier K+ currents (Iir), and Ca2+ currents including T-type, P/Q-type, and L-type Ca2+ currents. We classified TBCs into three types based on the magnitude of their voltage-gated Na+ currents and membrane capacitance. HEX type (60% of TBCs examined) was significantly larger in Na+ current magnitude and smaller in membrane capacitance than LEX type (23%). NEX type (17%) had no Na+ currents. HEX type was equally distributed within single taste buds, while LEX type was centrally distributed, and NEX type was peripherally distributed. There were correlations between these electrophysiological cell types and morphological cell types determined by three-dimensional reconstruction. The present results show that soft palate taste buds contain TBCs with different electrophysiological properties, and suggest that their co-operation is required in taste transduction.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
| | | | | | | |
Collapse
|
19
|
Ohtubo Y, Suemitsu T, Shiobara S, Matsumoto T, Kumazawa T, Yoshii KY. Optical recordings of taste responses from fungiform papillae of mouse in situ. J Physiol 2001; 530:287-93. [PMID: 11208976 PMCID: PMC2278412 DOI: 10.1111/j.1469-7793.2001.0287l.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Single taste buds in mouse fungiform papillae consist of approximately 50 elongated cells (TBCs), where fewer than three TBCs have synaptic contacts with taste nerves. We investigated whether the non-innervated TBCs were chemosensitive using a voltage-sensitive dye, tetramethylrhodamine methyl ester (TMRM), under in situ optical recording conditions. Prior to the optical recordings, we investigated the magnitude and polarity of receptor potentials under in situ whole-cell clamp conditions. In response to 10 mM HCl, several TBCs were depolarized by approximately 25 mV and elicited action potentials, while other TBCs were hyperpolarized by approximately 12 mV. The TBCs eliciting hyperpolarizing receptor potentials also generated action potentials on electrical stimulation. A mixture of 100 mM NaCl, 10 mM HCl and 500 mM sucrose depolarized six TBCs and hyperpolarized another three TBCs out of 13 identified TBCs in a taste bud viewed by optical section. In an optical section of another taste bud, 1 M NaCl depolarized five TBCs and hyperpolarized another two TBCs out of 11 identified TBCs. The number of chemosensitive TBCs was much larger than the number of innervated TBCs in a taste bud, indicating the existence of chemosensitivity in non-innervated TBCs. There was a tendency for TBCs eliciting the same polarity of receptor potential to occur together in taste buds. We discuss the role of non-innervated TBCs in taste information processing.
Collapse
Affiliation(s)
- Y Ohtubo
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Acid and salt responses of taste cells induced by natural stimulation have not been investigated with exception of early studies with conventional microelectrode method, due to the toxicity of high concentration of salt or low pH of acid stimuli applied to isolated taste cells. This indicates that the application of rapid and localized stimulation to the apical membrane of taste cells is necessary for recording of natural responses to salt or acid stimuli using patch clamp technique. Recently we have developed a procedure to accomplish the quasi-natural condition including rapid, localized stimuli to the apical receptive membrane and the maintenance of taste bud polarity. In this review, we present our recent results obtained under quasi-natural condition using patch clamp techniques, comparing with the previously proposed hypothesis. One of our major finding is the fact that the acid-induced responses of taste cells in the mouse fungiform papillae are never suppressed by amiloride but an apical proton-gated conductance and a basolateral Cl(-) conductance possibly contribute to sour transduction. On the other hand, salt-induced responses are suppressed by amiloride, although the salt-induced responses recorded from a single cell involve both amiloride-sensitive and -insensitive components. Furthermore, the amiloride-insensitive component of salt responses possibly consists of multiple subcomponents including an apical sodium-gated nonselective cation conductance and a basolateral Cl(-) conductance. Recent reports also support the hypothesis that both acid and salt responses require specific receptor mechanisms of inorganic cations such as H(+) and Na(+) at the apical receptive membrane.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Physiology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, 852-8588, Nagasaki, Japan.
| | | | | | | |
Collapse
|
21
|
Seta Y, Toyono T, Takeda S, Toyoshima K. Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. FEBS Lett 1999; 444:43-6. [PMID: 10037145 DOI: 10.1016/s0014-5793(99)00023-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mash1, a mammalian homologue of the Drosophila achaete-scute proneural gene complex, plays an essential role in differentiation of subsets of peripheral neurons. In this study, using RT-PCR and in situ RT-PCR, we investigated if Mash1 gene expression occurs in rat taste buds. Further, we examined dynamics of Mash1 expression in the process of degeneration and regeneration in denervated rat taste buds. In rat tongue epithelium, Mash1 gene expression is confined to circumvallate, foliate, and fungiform papilla epithelia that include taste buds. In taste buds, Mash1-expressing cells are round cells in the basal compartment. In contrast, the mature taste bud cells do not express the Mash1 gene. Denervation and regeneration experiments show that the expression of Mash1 requires gustatory innervation. We conclude that Mash1 is expressed in cells of the taste bud lineage, and that the expression of Mash1 in rat taste buds is dependent upon gustatory innervation.
Collapse
Affiliation(s)
- Y Seta
- Department of Oral Anatomy II, Kyushu Dental College, Kitakyushu, Japan.
| | | | | | | |
Collapse
|
22
|
Abstract
Chemosensory cells in vertebrate taste organs have two obvious specializations: an apical membrane with access to the tastants occurring in food, and synapses with sensory axons. In many species, however, certain differentiated taste cells have access to the tastants but lack any synaptic contacts with axons, and a supportive rather than chemosensory function has been attributed to them. Until now, no functional data are available for these taste cells. To begin to understand their role in taste organ physiology, we have characterized with patch-clamp recording techniques the electrophysiological properties of a putative supporting cell-the so-called wing cell-isolated from frog taste disks. Wing cells were distinguished from chemosensory elements by the presence of a typical, sheet-like apical process. Their resting potential was approximately -52 mV, and the average input resistance was 4.8 GOmega. Wing cells possessed voltage-gated Na+ currents sensitive to TTX, and an inactivating, voltage-gated K+ current sensitive to TEA. Current injections elicited single action potentials but not repetitive firing. We found no evidence for voltage-gated Ca2+ currents under various experimental conditions. Amiloride-sensitive Na+ channels, thought to be involved in Na+ chemotransduction, were present in wing cells. Many of the membrane properties of wing cells have been also reported for chemosensory taste cells. The presence of ion channels in wing cells might be suggestive of a role in controlling the microenvironment inside the taste organs or the functioning of chemosensory cells or both. In addition, they might participate directly in the sensory transduction events by allowing loop currents to flow inside the taste organs during chemostimulation.
Collapse
|
23
|
Furue H, Yoshii K. In situ tight-seal recordings of taste substance-elicited action currents and voltage-gated Ba currents from single taste bud cells in the peeled epithelium of mouse tongue. Brain Res 1997; 776:133-9. [PMID: 9439805 DOI: 10.1016/s0006-8993(97)00974-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the taste responses of single taste-bud cells (TBCs) in mice by applying stimuli only on receptor membranes acclimated to deionized water under tight-seal cell-attached voltage-clamp conditions, while their basolateral membranes were irrigated with a physiological saline solution. For this irrigation, we developed a new method: a peeled-tongue epithelium with TBCs mounted on a recording chamber where the peeled epithelium separated the irrigating solutions for each membrane as it separated in situ. Although no quinine-elicited action potentials had been reported, TBCs elicited a long-lasting train of biphasic currents derived from the action potentials in response to 10 mM quinine, in addition to responses to 10 mM HCl, or 200 mM NaCl dissolved in deionized water. These results indicate that quinine as well as HCl and NaCl depolarizes TBCs and generate action potentials. Under whole-cell recording conditions, TBCs generated action potentials, and voltage-gated currents such as LVA and HVA Ca currents, TTX-sensitive Na currents, and TEA/4-AP-sensitive K currents on depolarization. These voltage-gated channels were shown to exist predominantly on the basolateral membranes. We discussed the receptor mechanisms and the role of taste substance-elicited action potentials.
Collapse
Affiliation(s)
- H Furue
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Japan
| | | |
Collapse
|
24
|
Witt M. Carbohydrate histochemistry of vertebrate taste organs. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1996; 30:1-168. [PMID: 8724455 DOI: 10.1016/s0079-6336(96)80006-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Witt
- Department of Anatomy, Technical University Dresden, Germany
| |
Collapse
|