1
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Burgos M, Pastor MD, González JC, Martinez-Galan JR, Vaquero CF, Fradejas N, Benavides A, Hernández-Guijo JM, Tranque P, Calvo S. PKCɛ upregulates voltage-dependent calcium channels in cultured astrocytes. Glia 2007; 55:1437-48. [PMID: 17676593 DOI: 10.1002/glia.20555] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Astrocytes express voltage-gated calcium channels (VGCCs) that are upregulated in the context of the reactive astrogliosis occurring in several CNS pathologies. Moreover, the ability of selective calcium channel blockers to inhibit reactive astrogliosis has been revealed in a variety of experimental models. However, the functions and regulation of VGCC in astrocytes are still poorly understood. Interestingly, protein kinase C epsilon (PKCepsilon), one of the known regulators of VGCC in several cell types, induces in astrocytes a stellated morphology similar to that associated to gliosis. Thereby, here we explored the possible regulation of VGCC by adenovirally expressed PKCepsilon in astrocytes. We found that PKCepsilon potently increases the mRNA levels of two different calcium channel alpha(1) subunits, Ca(V)1.2 (L-type channel) and Ca(V)2.1 (P/Q-type channel). The mRNA upregulation was followed by a robust increase in the corresponding peptides. Moreover, the new calcium channels formed as a consequence of PKCepsilon activation are functional, since overexpression of constitutively-active PKCepsilon increased significantly the calcium current density in astrocytes. PKCepsilon raised currents carried by both L- and P/Q-type channels. However, the effect on the P/Q-type channel was more prominent since an increase of the relative contribution of this channel to the whole cell calcium current was observed. Finally, we found that PKCepsilon-induced stellation was significantly reduced by the specific L-type channel blocker nifedipine, indicating that calcium influx through VGCC mediates the change in astrocyte morphology induced by PKCepsilon. Therefore, here we describe a novel regulatory pathway involving VGCC that participates in PKCepsilon-dependent astrocyte activation.
Collapse
Affiliation(s)
- M Burgos
- Unidad de Fisiología, Facultad de Medicina y Centro Regional de Investigaciones Biomedicas, Universidad de Castilla La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
4
|
Gavazzo P, Morelli E, Marchetti C. Susceptibility of insulinoma cells to cadmium and modulation by L-type calcium channels. Biometals 2005; 18:131-42. [PMID: 15954739 DOI: 10.1007/s10534-004-5789-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cadmium (Cd), a toxic metal that induces apoptosis and necrosis in a variety of cells, accumulates in pancreas and may be a cause of diabetes in humans. In the insulinoma cells line HIT-T15 (HIT), we measured internal calcium (Ca) and Cd levels by the fluorescent dye Fura-2 and confirm that L-type voltage-dependent calcium channels (VDCC) play a major role in glucose response and represent a pathway of Cd influx in these cells. Therefore we examined the role of VDCC in acute Cd poisoning by comparing its accumulation and cytotoxic effect in HIT cells and in epithelial-like VDCC-free HeLa cells. Cultures were incubated with 10-300 microM Cd for 15 min-6 h. While negligible at the end of the treatment, HIT cell death was evident after 18-24 h, and it was time-, dose- and serum-dependent. Short (< or = 60 min) Cd treatments with lower doses (< or = 100 microM in serum-free medium) induced delayed apoptotic cell death, as demonstrated by DNA fragmentation on agarose gels and segmentation of DAPI-stained nuclei. Longer incubations and/or higher concentrations caused mainly necrosis. The same treatments were largely harmless in HeLa cells, in which neither death nor DNA fragmentation was observed. The Ca antagonist nimodipine was capable to prevent HIT cell death at lower doses of Cd and to restore the apoptotic condition at higher doses, indicating that reduction of Cd flux through VDCC modulates Cd toxicity. These data demonstrate a specific sensitivity to Cd of insulinoma cells that can be significant for pancreatic beta-cell pathology.
Collapse
Affiliation(s)
- Paola Gavazzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini, 6 16149 Genova, Italy
| | | | | |
Collapse
|
5
|
Abstract
The beta-cell is equipped with at least six voltage-gated Ca2+ (CaV) channel alpha1-subunits designated CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1. These principal subunits, together with certain auxiliary subunits, assemble into different types of CaV channels conducting L-, P/Q-, N-, R-, and T-type Ca2+ currents, respectively. The beta-cell shares customary mechanisms of CaV channel regulation with other excitable cells, such as protein phosphorylation, Ca2+-dependent inactivation, and G protein modulation. However, the beta-cell displays some characteristic features to bring these mechanisms into play. In islet beta-cells, CaV channels can be highly phosphorylated under basal conditions and thus marginally respond to further phosphorylation. In beta-cell lines, CaV channels can be surrounded by tonically activated protein phosphatases dominating over protein kinases; thus their activity is dramatically enhanced by inhibition of protein phosphatases. During the last 10 years, we have revealed some novel mechanisms of beta-cell CaV channel regulation under physiological and pathophysiological conditions, including the involvement of exocytotic proteins, inositol hexakisphosphate, and type 1 diabetic serum. This minireview highlights characteristic features of customary mechanisms of CaV channel regulation in beta-cells and also reviews our studies on newly identified mechanisms of beta-cell CaV channel regulation.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Center for Diabetes Research, Karolinska Diabetes Center, Department of Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
6
|
Mears D. Regulation of Insulin Secretion in Islets of Langerhans by Ca2+Channels. J Membr Biol 2004; 200:57-66. [PMID: 15520904 DOI: 10.1007/s00232-004-0692-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/04/2004] [Indexed: 12/21/2022]
Abstract
Insulin secretion from beta-cells of the pancreatic islets of Langerhans is triggered by Ca(2+) influx through voltage-dependent Ca(2+) channels. Electrophysiological and molecular studies indicate that beta-cells express several subtypes of these channels. This review discusses their roles in regulating insulin secretion, focusing on recent studies using beta-cells, exogenous expression systems, and Ca(2+) channel knockout mice. These investigations reveal that L-type Ca(2+) channels in the beta-cell physically interact with the secretory apparatus by binding to synaptic proteins on the plasma membrane and insulin granule. As a result, Ca(2+) influx through L-type channels efficiently and rapidly stimulates release of a pool of insulin granules in close contact with the channels. Thus, L-type Ca(2+) channel activity is preferentially coupled to exocytosis in the beta-cell, and plays a critical role in regulating the dynamics of insulin secretion. Non-L-type channels carry a significant portion of the total voltage-dependent Ca(2+) current in beta-cells and cell lines from some species, but nevertheless account for only a small fraction of insulin secretion. These channels may regulate exocytosis indirectly by affecting membrane potential or second messenger signaling pathways. Finally, voltage-independent Ca(2+) entry pathways and their potential roles in beta-cell function are discussed. The emerging picture is that Ca(2+) channels regulate insulin secretion at multiple sites in the stimulus-secretion coupling pathway, with the specific role of each channel determined by its biophysical and structural properties.
Collapse
Affiliation(s)
- David Mears
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA.
| |
Collapse
|
7
|
Abstract
T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.
Collapse
Affiliation(s)
- Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
8
|
Satin LS. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 2000; 13:251-62. [PMID: 11216635 DOI: 10.1385/endo:13:3:251] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 06/08/2000] [Indexed: 12/18/2022]
Abstract
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0524, USA.
| |
Collapse
|
9
|
Abstract
The effects of raising temperature on the Ca2+ currents of insulin-secreting HIT and mouse pancreatic beta-cells were studied. Currents were measured in 3 mM Ca2+ containing solutions using standard whole-cell techniques. Increasing temperature from 22 degrees C to 35 degrees C increased peak Ca2+ current amplitude, percent (fast) inactivation and decreased the time-to-peak of the current. Ca2+ currents in HIT and mouse beta-cells responded in the same manner to an imposed physiological burstwave with test-pulses: (i) application of the burstwave inactivated the test-pulse Ca2+ current at both high and low temperatures; (ii) Ca2+ current inactivation leveled off during the plateau phase at 20-22 degrees C whereas there was an apparent continual decay at 33-35 degrees C; and (iii) recovery from inactivation occurred during the interburst period at both temperatures. Application of a physiological burstwave without test-pulses to mouse beta-cells before and after addition of 0.2 mM Cd2+ resulted in a Ca2+ difference current. This current activated during the hyperpolarized interburst phase, activated, inactivated and deactivated rapidly and continually during the plateau phase, and recovered from inactivation during the interburst. Although raising temperature strongly modified HIT and mouse beta-cells Ca2+ current, our work suggests that other channels, in addition to Ca2+ channels, are likely to be involved in the control of islet bursts, particularly at different temperatures. In addition, the effect of temperature on islet cell Ca2+ current may be partly responsible for the well-known temperature dependence of glucose-dependent secretion.
Collapse
Affiliation(s)
- T A Kinard
- Department of Pharmacology, Medical College of Virginia, School of Medicine, Virginia Commonwealth University, Richmond 23298-0524, USA
| | | |
Collapse
|
10
|
Magnelli V, Pollo A, Sher E, Carbone E. Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC. Pflugers Arch 1995; 429:762-71. [PMID: 7603830 DOI: 10.1007/bf00374799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The high-voltage-activated (HVA) Ba2+ currents of rat insulinoma RINm5F cells insensitive to dihydropyridines (DHP) and omega-conotoxin GVIA (omega-CTx-GVIA) have been studied for their sensitivity to omega-agatoxin-IVA (omega-Aga-IVA) and omega-CTx-MVIIC. Blockade of HVA currents by omega-Aga-IVA was partial (mean 24%), reversible and saturated around 350 nM (half block approximately 60 nM). Blockade by omega-CTx-MVIIC was more potent (mean 45%), partly irreversible and saturated above 3 microM. The effects of both toxins were additive with that of nifedipine (5 microM) and were more pronounced at positive potentials. omega-Aga-IVA action was additive with that of omega-CTx-GVIA (3 microM) but was largely prevented by cell pre-treatment with omega-CTx-MVIIC (3 microM). In contrast, omega-CTx-MVIIC block was attenuated by omega-CTx-GVIA treatment (approximately 15%), suggesting that omega-CTx-MVIIC blocks the N-type (approximately 15%) and the non-L-, non-N-type channel sensitive to omega-Aga-IVA (approximately 30%). Consistent with this, cells deprived of most non-L-type channels by pre-incubation with omega-CTx-GVIA and omega-CTx-MVIIC exhibited predominant L-type currents that activated at more negative potentials than in normal cells (-30 mV in 5 mM Ba2+) and were effectively depressed by nifedipine (maximal block of 95% from -30 mV to +40 mV). Our results suggest that, besides L- and N-type channels, insulin-secreting RINm5F cells possess also a non-L-, non-N-type channel that contributes significantly to the total current (approximately 30%). Although the pharmacology of this channel is similar to Q-type and alpha 1 class A channels, its range of activation (> -20 mV) and its slow inactivation time course resemble more that of N- and P-type channels. The channel is therefore referred to as "Q-like".
Collapse
Affiliation(s)
- V Magnelli
- Dip. Anatomia e Fisiologia Umana, Turin, Italy
| | | | | | | |
Collapse
|