1
|
Crucean A, Spicer DE, Tretter JT, Mohun TJ, Anderson RH. Revisiting the anatomy of the right ventricle in the light of knowledge of its development. J Anat 2024; 244:297-311. [PMID: 37814425 PMCID: PMC10780169 DOI: 10.1111/joa.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Controversies continue regarding several aspects of the anatomy of the morphologically right ventricle. There is disagreement as to whether the ventricle should be assessed in bipartite or tripartite fashion, and the number of leaflets to be found in the tricuspid valve. In particular, there is no agreement as to whether a muscular outlet septum is present in the normally constructed heart, nor how many septal components are to be found during normal development. Resolving these issues is of potential significance to those investigating and treating children with congenitally malformed hearts. With all these issues in mind, we have revisited our own experience in investigating the development and morphology of the normal right ventricle. To assess development, we have examined a large number of datasets, prepared by both standard and episcopic microscopy, from human and murine embryos. In terms of gross anatomy, we have compared dissections of normal autopsied hearts with virtual dissections of datasets prepared using computed tomography. Our developmental and postnatal studies, taken together, confirm that the ventricle is best assessed in tripartite fashion, with the three parts representing its inlet, apical trabecular, and outlet components. The ventricular septum, however, has only muscular and membranous components. The muscular part incorporates a small component derived from the muscularised fused proximal outflow cushions, but this part cannot be distinguished from the much larger part that is incorporated within the free-standing muscular infundibular sleeve. We confirm that the tricuspid valve itself has three components, which are located inferiorly, septally, and antero-superiorly.
Collapse
Affiliation(s)
- Adrian Crucean
- Department of Paediatric Cardiac SurgeryBirmingham Women's and Children's HospitalBirminghamUK
| | - Diane E. Spicer
- Congenital Heart CenterAll Children's HospitalSt PetersbergFloridaUSA
| | - Justin T. Tretter
- Department of Pediatric Cardiology, Cleveland Clinic Children's, and the Heart, Vascular, and Thoracic InstituteCleveland ClinicClevelandOhioUSA
| | | | | |
Collapse
|
2
|
Desgrange A, Lokmer J, Marchiol C, Houyel L, Meilhac SM. Standardised imaging pipeline for phenotyping mouse laterality defects and associated heart malformations, at multiple scales and multiple stages. Dis Model Mech 2019; 12:dmm.038356. [PMID: 31208960 PMCID: PMC6679386 DOI: 10.1242/dmm.038356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects. Summary: Laterality defects, which combine anomalies in several visceral organs, are challenging to phenotype. We have developed here a standardised approach for multimodality 3D imaging in mice, generating quantifiable phenotypes.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Johanna Lokmer
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Carmen Marchiol
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France
| | - Lucile Houyel
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,Unité de Cardiologie Pédiatrique et Congénitale, Hôpital Necker Enfants Malades, Centre de référence des Malformations Cardiaques Congénitales Complexes-M3C, APHP, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
3
|
Santos A, Fernández-Friera L, Villalba M, López-Melgar B, España S, Mateo J, Mota RA, Jiménez-Borreguero J, Ruiz-Cabello J. Cardiovascular imaging: what have we learned from animal models? Front Pharmacol 2015; 6:227. [PMID: 26539113 PMCID: PMC4612690 DOI: 10.3389/fphar.2015.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.
Collapse
Affiliation(s)
- Arnoldo Santos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain ; Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - María Villalba
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain
| | - Beatriz López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain
| | - Ruben A Mota
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Charles River Barcelona, Spain
| | - Jesús Jiménez-Borreguero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Cardiac Imaging Department, Hospital de La Princesa Madrid, Spain
| | - Jesús Ruiz-Cabello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
4
|
Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, Donofrio MT, Leatherbury L, Lo CW. A detailed comparison of mouse and human cardiac development. Pediatr Res 2014; 76:500-7. [PMID: 25167202 PMCID: PMC4233008 DOI: 10.1038/pr.2014.128] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/29/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mouse mutants are used to model human congenital cardiovascular disease. Few studies exist comparing normal cardiovascular development in mice vs. humans. We carried out a systematic comparative analysis of mouse and human fetal cardiovascular development. METHODS Episcopic fluorescence image capture (EFIC) was performed on 66 wild-type mouse embryos from embryonic day (E) 9.5 to birth; 2-dimensional and 3-dimensional datasets were compared with EFIC and magnetic resonance images from a study of 52 human fetuses (Carnegie stage 13-23). RESULTS Time course of atrial, ventricular, and outflow septation were outlined and followed a similar sequence in both species. Bilateral venae cavae and prominent atrial appendages were seen in the mouse fetus; in human fetuses, atrial appendages were small, and a single right superior vena cava was present. In contrast to humans with separate pulmonary vein orifices, a pulmonary venous confluence with one orifice enters the left atrium in mice. CONCLUSION The cardiac developmental sequences observed in mouse and human fetuses are comparable, with minor differences in atrial and venous morphology. These comparisons of mouse and human cardiac development strongly support that mouse morphogenesis is a good model for human development.
Collapse
Affiliation(s)
- Anita Krishnan
- Laboratory of Developmental Biology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD; United States,Children’s National Heart Institute; Children’s National Medical Center; Washington, DC; United States
| | - Rajeev Samtani
- Laboratory of Developmental Biology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD; United States
| | - Preeta Dhanantwari
- Division of Pediatric Cardiology; Schneider Children’s Hospital; New Hyde Park, NY; United States
| | - Elaine Lee
- Laboratory of Developmental Biology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD; United States
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine; Kyoto, Japan
| | - Kohei Shiota
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine; Kyoto, Japan
| | - Mary T. Donofrio
- Children’s National Heart Institute; Children’s National Medical Center; Washington, DC; United States
| | - Linda Leatherbury
- Laboratory of Developmental Biology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD; United States,Children’s National Heart Institute; Children’s National Medical Center; Washington, DC; United States
| | - Cecilia W. Lo
- Laboratory of Developmental Biology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD; United States,Department of Developmental Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA; United States
| |
Collapse
|
5
|
de Bakker DM, Wilkinson M, Jensen B. Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona). J Anat 2014; 226:1-12. [PMID: 25400089 DOI: 10.1111/joa.12255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 11/30/2022] Open
Abstract
Caecilians (order Gymnophiona) are elongate, limbless, snake-like amphibians that are the sister-group (closest relatives) of all other recent amphibians (frogs and salamanders). Little is known of their cardiovascular anatomy and physiology, but one nearly century old study suggests that Hypogeophis (family Indotyphlidae), commonly relied upon as a representative caecilian species, has atrial septation in the frontal plane and more than one septum. In contrast, in other vertebrates there generally is one atrial septum in the sagittal plane. We studied the adult heart of Idiocranium (also Indotyphlidae) using immunohistochemistry and confirm that the interatrial septum is close to the frontal plane. Additionally, a parallel right atrial septum divides three-fourths of the right atrial cavity of this species. Idiocranium embryos in the Hill collection reveal that atrial septation initiates in the sagittal plane as in other tetrapods. Late developmental stages, however, see a left-ward shift of visceral organs and a concordant rotation of the atria that reorients the atrial septa towards the frontal plane. The gross anatomies of species from six other caecilian families reveal that (i) the right atrial septum developed early in caecilian evolution (only absent in Rhinatrematidae) and that (ii) rotation of the atria evolved later and its degree varies between families. In most vertebrates a prominent atrial trabeculation associates with the sinuatrial valve, the so-called septum spurium, and the right atrial septum seems homologous to this trabeculation but much more developed. The right atrial septum does not appear to be a consequence of body elongation because it is absent in some caecilians and in snakes. The interatrial septum of caecilians shares multiple characters with the atrial septum of lungfishes, salamanders and the embryonic septum primum of amniotes. In conclusion, atrial septation in caecilians is based on evolutionarily conserved structures but possibly exhibits greater variation than in any other vertebrate order.
Collapse
Affiliation(s)
- Desiderius M de Bakker
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | |
Collapse
|
6
|
|
7
|
Anderson RH, Spicer DE, Brown NA, Mohun TJ. The development of septation in the four-chambered heart. Anat Rec (Hoboken) 2014; 297:1414-29. [PMID: 24863187 DOI: 10.1002/ar.22949] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/13/2013] [Accepted: 08/30/2013] [Indexed: 11/09/2022]
Abstract
The past decades have seen immense progress in the understanding of cardiac development. Appreciation of precise details of cardiac anatomy, however, has yet to be fully translated into the more general understanding of the changing structure of the developing heart, particularly with regard to formation of the septal structures. In this review, using images obtained with episcopic microscopy together with scanning electron microscopy, we show that the newly acquired information concerning the anatomic changes occurring during separation of the cardiac chambers in the mouse is able to provide a basis for understanding the morphogenesis of septal defects in the human heart. It is now established that as part of the changes seen when the heart tube changes from a short linear structure to the looped arrangement presaging formation of the ventricles, new material is added at both its venous and arterial poles. The details of these early changes, however, are beyond the scope of our current review. It is during E10.5 in the mouse that the first anatomic features of septation are seen, with formation of the primary atrial septum. This muscular structure grows toward the cushions formed within the atrioventricular canal, carrying on its leading edge a mesenchymal cap. Its cranial attachment breaks down to form the secondary foramen by the time the mesenchymal cap has used with the atrioventricular endocardial cushions, the latter fusion obliterating the primary foramen. Then the cap, along with a mesenchymal protrusion that grows from the mediastinal mesenchyme, muscularizes to form the base of the definitive atrial septum, the primary septum itself forming the floor of the oval foramen. The cranial margin of the foramen is a fold between the attachments of the pulmonary veins to the left atrium and the roof of the right atrium. The apical muscular ventricular septum develops concomitant with the ballooning of the apical components from the inlet and outlet of the ventricular loop. Its apical part is initially trabeculated. The membranous part of the septum is derived from the rightward margins of the atrioventricular cushions, with the muscularizing proximal outflow cushions fusing with the muscular septum and becoming the subpulmonary infundibulum as the aorta is committed to the left ventricle. Perturbations of these processes explain well the phenotypic variants of deficient atrial and ventricular septation.
Collapse
Affiliation(s)
- Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | | | | | | |
Collapse
|
8
|
Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol 2014; 52:R125-35. [PMID: 24299741 DOI: 10.1530/jme-13-0204] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones, essential in mammals to prepare for life after birth. Blood levels of glucocorticoids (cortisol in most mammals including humans; corticosterone in rats and mice) rise dramatically shortly before birth. This is mimicked clinically in the routine administration of synthetic glucocorticoids to pregnant women threatened by a preterm birth or to preterm infants to improve neonatal survival. Whilst effects on lung are well documented and essential for postnatal survival, those on heart are less well known. In this study, we review recent evidence for a crucial role of glucocorticoids in late gestational heart maturation. Either insufficient or excessive glucocorticoid exposure before birth may alter the normal glucocorticoid-regulated trajectory of heart maturation with potential life-long consequences.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
9
|
Organogenesis of the vertebrate heart. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:17-29. [DOI: 10.1002/wdev.68] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Bolon B, Couto S, Fiette L, Perle KL. Internet and Print Resources to Facilitate Pathology Analysis When Phenotyping Genetically Engineered Rodents. Vet Pathol 2011; 49:224-35. [DOI: 10.1177/0300985811415709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetically engineered mice and rats are increasingly used as models for exploring disease progression and mechanisms. The full spectrum of anatomic, biochemical, and functional changes that develop in novel, genetically engineered mouse and rat lines must be cataloged before predictions regarding the significance of the mutation may be extrapolated to diseases in other vertebrate species, including humans. A growing list of reference materials, including books, journal articles, and websites, has been produced in the last 2 decades to assist researchers in phenotyping newly engineered rodent lines. This compilation provides an extensive register of materials related to the pathology component of rodent phenotypic analysis. In this article, the authors annotate the resources they use most often, to allow for quick determination of their relevance to research projects.
Collapse
Affiliation(s)
- B. Bolon
- The Ohio State University, Columbus, Ohio
| | - S. Couto
- Genentech, Inc., South San Francisco, California
| | | | | |
Collapse
|
11
|
An evaluation of transmitral and pulmonary venous Doppler indices for assessing murine left ventricular diastolic function. J Am Soc Echocardiogr 2010; 23:887-97. [PMID: 20591622 DOI: 10.1016/j.echo.2010.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Indexed: 12/18/2022]
Abstract
With the continued development of genetically engineered mouse models of cardiac disease, further advancement of noninvasive techniques for evaluating cardiac diastolic dysfunction in these models would be valuable. Therefore, we performed comprehensive transmitral and pulmonary venous Doppler echocardiographic studies to devise novel indices of diastolic function in a mouse model with cardiac hypertrophy, which were validated against invasively measured hemodynamic parameters. We examined 10 HopX(Tg) transgenic mice with diastolic dysfunction and 10 age-matched controls sedated with 1% to 2% isoflurane (male, age 14-18 weeks). These studies revealed that the acceleration time of the transmitral Doppler E-wave was the best Doppler parameter for unmasking LV diastolic dysfunction in HopX(Tg) mice. This is the first study to assess the utility of the acceleration time of the E-wave and pulmonary venous Doppler echocardiography as a primary diagnostic modality for assessing murine diastolic function.
Collapse
|
12
|
Savolainen SM, Foley JF, Elmore SA. Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol Pathol 2009; 37:395-414. [PMID: 19359541 DOI: 10.1177/0192623309335060] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In humans, congenital heart diseases are common. Since the rapid progression of transgenic technologies, the mouse has become the major animal model of defective cardiovascular development. Moreover, genetically modified mice frequently die in utero, commonly due to abnormal cardiovascular development. A variety of publications address specific developmental stages or structures of the mouse heart, but a single reference reviewing and describing the anatomy and histology of cardiac developmental events, stage by stage, has not been available. The aim of this color atlas, which demonstrates embryonic/fetal heart development, is to provide a tool for pathologists and biomedical scientists to use for detailed histological evaluation of hematoxylin and eosin (H&E)-stained sections of the developing mouse heart with emphasis on embryonic days (E) 11.5-18.5. The selected images illustrate the main structures and developmental events at each stage and serve as reference material for the confirmation of the chronological age of the embryo/early fetus and assist in the identification of any abnormalities. An extensive review of the literature covering cardiac development pre-E11.5 is summarized in the introduction. Although the focus of this atlas is on the descriptive anatomic and histological development of the normal mouse heart from E11.5 to E18.5, potential embryonic cardiac lesions are discussed with a list of the most common transgenic pre- and perinatal heart defects. Representative images of hearts at E11.5-15.5 and E18.5 are provided in Figures 2-4, 6, 8, and 9. A complete set of labeled images (Figures E11.5-18.5) is available on the CD enclosed in this issue of Toxicologic Pathology. All digital images can be viewed online at https://niehsimages.epl-inc.com with the username "ToxPath" and the password "embryohearts."
Collapse
Affiliation(s)
- Saija M Savolainen
- NIEHS, Cellular and Molecular Pathology Branch, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
13
|
Schleich JM, Dillenseger JL, Houyel L, Almange C, Anderson RH. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart. ANATOMICAL SCIENCES EDUCATION 2009; 2:69-77. [PMID: 19363807 PMCID: PMC2702359 DOI: 10.1002/ase.74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning.
Collapse
Affiliation(s)
- Jean-Marc Schleich
- Département de Cardiologie et Maladies Vasculaires, Hôpital de Pontchaillou, Rennes, France.
| | | | | | | | | |
Collapse
|
14
|
Chen G, Zhu J, Lv T, Wu G, Sun H, Huang X, Tian J. Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts. J Biomed Sci 2009; 16:24. [PMID: 19272189 PMCID: PMC2653528 DOI: 10.1186/1423-0127-16-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/23/2009] [Indexed: 01/24/2023] Open
Abstract
Histone acetyltransferases (HATs), p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes involved in cellular growth and signaling, muscle differentiation and embryogenesis. However, whether these proteins play important and different roles in mouse cardiogenesis is not clear. Here, we investigate the protein distributions and mRNA expression of the two HATs in embryonic and adult mouse heart during normal heart development by using immunohistochemical and RT-PCR techniques. The data from immunohistochemical experiments revealed that p300 was extensively present in nearly every region of the hearts from embryonic stages to the adulthood. However, no CBP expression was detected in embryonic hearts at day E7.5. CBP expression appeared at the later stages, and the distribution of CBP was less than that of p300. In the developmental hearts after E10.5, both for p300 and CBP, the mRNA expression levels reached a peak on day E10.5, and then were gradually decreased afterwards. These results reveal that both p300 and CBP are related to embryonic heart development. The dynamic expression patterns of these two enzymes during mouse heart development indicate that they may play an important role on heart development. However, there is a difference in spatiotemporal expression patterns between these two enzymes during heart development. The expression of p300 is earlier and more predominate, suggesting that p300 may play a more important role in embryonic heart development especially during cardiac precursor cell induction and interventricular septum formation.
Collapse
Affiliation(s)
- Guozhen Chen
- Department of Cardiology, The Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Papadimitriou D, Xanthos T, Dontas I, Lelovas P, Perrea D. The use of mice and rats as animal models for cardiopulmonary resuscitation research. Lab Anim 2008; 42:265-76. [PMID: 18625581 DOI: 10.1258/la.2007.006035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiopulmonary resuscitation (CPR) after the induction of cardiac arrest (CA) has been studied in mice and rats. The anatomical and physiological parameters of the cardiopulmonary system of these two species have been defined during experimental studies and are comparable with those of humans. Moreover, these animal models are more ethical to establish and are easier to manipulate, when compared with larger experimental animals. Accordingly, the effects of successful CPR on the function of vital organs, such as the brain, have been investigated because damage to these vital organs is of concern in CA survivors. Furthermore, the efficacy of several drugs, such as adrenaline (epinephrine), vasopressin and nitroglycerin, has been evaluated for use in CA in these small animal models. The purpose of these studies is not only to increase the rate of survival of CA victims, but also to improve their quality of life by reducing damage to their vital organs after CA and during CPR.
Collapse
Affiliation(s)
- D Papadimitriou
- Department of Experimental Surgery and Surgical Research, University of Athens Medical School, 15B Agiou Thoma Street, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
16
|
Abstract
Although the cardiac coronary system in mice has been the studied in detail by many research laboratories, knowledge of the cardiac veins remains poor. This is because of the difficulty in marking the venous system with a technique that would allow visualization of these large vessels with thin walls. Here we present the visualization of the coronary venous system by perfusion of latex dye through the right caudal vein. Latex injected intravenously does not penetrate into the capillary system. Murine cardiac veins consist of several principal branches (with large diameters), the distal parts of which are located in the subepicardium. We have described the major branches of the left atrial veins, the vein of the left ventricle, the caudal veins, the vein of the right ventricle and the conal veins forming the conal venous circle or the prepulmonary conal venous arch running around the conus of the right ventricle. The venous system of the heart drains the blood to the coronary sinus (the left cranial caval vein) to the right atrium or to the right cranial caval vein. Systemic veins such as the left cranial caval, the right cranial caval and the caudal vein open to the right atrium. Knowledge of cardiac vein location may help to elucidate abnormal vein patterns in certain genetic malformations.
Collapse
Affiliation(s)
- Bogdan Ciszek
- Department of Anatomy, The Medical University of WarsawPoland
| | - Daria Skubiszewska
- Department of Histology and Embryology, Veterinary Medicine, School of AgricultureWarsaw, Poland
| | - Anna Ratajska
- Department of Pathological Anatomy, The Medical University of WarsawPoland
| |
Collapse
|
17
|
Franco D, Meilhac SM, Christoffels VM, Kispert A, Buckingham M, Kelly RG. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol 2006; 294:366-75. [PMID: 16677630 DOI: 10.1016/j.ydbio.2006.02.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 11/23/2022]
Abstract
Mammalian heart development involves complex morphogenetic events which lead to the formation of fully separated left and right atrial and ventricular chambers from a tubular heart. Separation of left and right ventricular chambers is dependent on a single structure, the interventricular septum (IVS), which has both muscular and mesenchymal components. Little is known about the morphogenetic events that lead to the formation of the muscular component of the IVS. We have analyzed two transgenic mouse lines that display complementary nlacZ reporter gene expression patterns in the embryonic ventricles: the Mlc1v-nlacZ-24 transgene is expressed in right ventricular myocardium and the Mlc3f-nlacZ-2 transgene in left ventricular myocardium. Detailed analysis of these transgene expression patterns during IVS formation reveals a symmetric left and right myocardial identity within the developing IVS between embryonic days 9.5 and 11.5. From embryonic day 12.5 onwards, myocytes with a left ventricular identity dominate the IVS, particularly in its dorsal aspect. The T-box transcription factor encoding gene, Tbx18, is expressed in the left ventricle and left side of the developing IVS, providing additional support for the presence of left and right ventricular identities within the IVS. Analysis of clonally related cardiomyocyte clusters confirms that both left and right ventricular myocardial cell populations contribute to the forming IVS, in similar domains to those defined by the Mlc-nlacZ transgenes. Examination of the orientation as well as the distribution of labeled cells in clusters provides new insights into the morphogenesis of the septum.
Collapse
Affiliation(s)
- Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Blom NA, Ottenkamp J, Jongeneel TH, DeRuiter MC, Gittenberger-de Groot AC. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol 2005; 26:338-43. [PMID: 16374682 DOI: 10.1007/s00246-004-0711-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is generally considered that the development of secundum atrial septal defect (ASDII) or oval fossa defect is the result of excessive resorption of the embryological atrial septum primum, but this does not seem to explain all defects. We investigated 58 postmortem hearts with an ASDII and 22 normal hearts from patients ranging in age from 1 day to 49 years. The different structures of the oval fossa were examined. In 86% of the specimens, the defects were the result of a malformation of the valvula foraminis ovalis or embryological atrial septum primum, and in 14% an absent superior limbus (septum secundum) was the cause of the interatrial communication. The "septum primum" ASDs were divided into four subgroups based on the degree of deficiency of the septum primum and position of the ostium secundum within the septum primum. We conclude that the morphogenesis of ASDII is variable and both septum primum and septum secundum defects occur, which may be relevant in view of genetic studies that may lead to further differentiation of patients with and without genetically determined ASDIIs.
Collapse
Affiliation(s)
- N A Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, P.O. Box 9602, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Chuck ET, Meyers K, France D, Creazzo TL, Morley GE. Transitions in ventricular activation revealed by two-dimensional optical mapping. ACTA ACUST UNITED AC 2004; 280:990-1000. [PMID: 15372433 DOI: 10.1002/ar.a.20083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While cardiac function in the mature heart is dependent on a properly functioning His-Purkinje system, the early embryonic tubular heart efficiently pumps blood without a distinct specialized conduction system. Although His-Purkinje system precursors have been identified using immunohistological techniques in the looped heart, little is known whether these precursors function electrically. To address this question, we used high-resolution optical mapping and fluorescent dyes with two CCD cameras to describe the motion-corrected activation patterns of 76 embryonic chick hearts from tubular stages (stage 10) to mature septated hearts (stage 35). Ventricular activation in the tubular looped heart (stages 10-17) using both calcium-sensitive fluo-4 and voltage-sensitive di-4-ANEPPS shows sequentially uniform propagation. In late looped hearts (stages 18-22), domains of the dorsal and lateral ventricle are preferentially activated before spreading to the remaining myocardium and show alternating regions of fast and slow propagation. During stages 22-26, action potentials arise from the dorsal ventricle. By stages 27-29, action potential breakthrough is also observed at the right ventricle apex. By stage 31, activation of the heart proceeds from foci at the apex and dorsal surface of the heart. The breakthrough foci correspond to regions where putative conduction system precursors have been identified immunohistologically. To date, our study represents the most detailed electrophysiological characterization of the embryonic heart between the looped and preseptated stages and suggests that ventricular activation undergoes a gradual transformation from sequential to a mature pattern with right and left epicardial breakthroughs. Our investigation suggests that cardiac conduction system precursors may be electrophysiologically distinct and mature gradually throughout cardiac morphogenesis in the chick.
Collapse
Affiliation(s)
- Emil Thomas Chuck
- Neonatal-Perinatal Research Institute, Division of Neonatology, Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Because of the increasing availability of tools for genetic manipulation, the mouse has become the most popular animal model for studying normal and abnormal cardiac development. However, despite the enormous advances in mouse genetics, which have led to the production of numerous mutants with cardiac abnormalities resembling those seen in human congenital heart disease, relatively little comparative work has been published to demonstrate the similarities and differences in the developmental cardiac anatomy in both species. In this review we discuss some aspects of the comparative anatomy, with emphasis on the atrial anatomy, the valvuloseptal complex, and ventricular myocardial development. From the data presented it can be concluded that, apart from the obvious differences in size, the mouse and human heart are anatomically remarkably similar throughout development. The partitioning of the cardiac chambers (septation) follows the same sequence of events, while also the maturation of the cardiac valves and myocardium is quite similar in both species. The major anatomical differences are seen in the venous pole of the heart. We conclude that, taking note of the few anatomical “variations,” the use of the mouse as a model system for the human heart is warranted. Thus the analysis of mouse mutants with impaired septation will provide valuable information on cellular mechanisms involved in valvuloseptal morphogenesis (a process often disrupted in congenital heart disease), while the study of embryonic lethal mouse mutants that present with lack of compaction of ventricular trabeculae will ultimately provide clues on the etiology of this abnormality in humans.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
21
|
Zhao Z, Rivkees SA. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 2003; 226:24-32. [PMID: 12508221 DOI: 10.1002/dvdy.10212] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rho-associated coiled-coil kinases (ROCKs), initially identified as effectors for Rho GTPases, play a role in cardiac cell physiology and are also expressed in the developing heart. However, their role in cardiac development is not known. To investigate the role of these kinases in cardiac development, we examined cardiac development in cultured murine embryos treated with the ROCK inhibitor Y27632. After inhibition of ROCK activity, we found disturbed cardiac chamber formation and trabeculation. To further examine the mechanisms by which ROCK blockade causes cardiac hypoplasia, we assessed programmed cell death and cell proliferation in the hearts. We found decreased cell proliferation in the Y27632-treated hearts, but no changes in programmed cell death. We further observed that ROCK inhibition decreased cardiac myocyte proliferation, suggesting that ROCK kinases regulate cardiomyocyte division. To identify factors involved in ROCK action in regulation of cardiac cell division, we examined expression of cell cycle proteins by using Western blot analysis. We found that ROCK blockade decreased expression of cell cycle proteins, cyclin D3, CDK6, and p27(KIP1) in the hearts and cardiomyocytes, which are required for initiation of cell cycle and G1/S phase transition. These observations show that ROCK kinases play a role in cardiac development and that ROCK kinases regulate cardiac cell proliferation and cell cycle protein expression.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
22
|
Janssen BJA, Smits JFM. Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1545-64. [PMID: 12010736 DOI: 10.1152/ajpregu.00714.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Control of blood pressure and of blood flow is essential for maintenance of homeostasis. The hemodynamic state is adjusted by intrinsic, neural, and hormonal mechanisms to optimize adaptation to internal and environmental challenges. In the last decade, many studies showed that modification of the mouse genome may alter the capacity of cardiovascular control systems to respond to homeostatic challenges or even bring about a permanent pathophysiological state. This review discusses the progress that has been made in understanding of autonomic cardiovascular control mechanisms from studies in genetically modified mice. First, from a physiological perspective, we describe how basic hemodynamic function can be measured in conscious conditions in mice. Second, we focus on the integrative role of autonomic nerves in control of blood pressure in the mouse, and finally, we depict the opportunities and insights provided by genetic modification in this area.
Collapse
Affiliation(s)
- Ben J A Janssen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Universiteit Maastricht, Maastricht, 6200 MD, The Netherlands.
| | | |
Collapse
|
23
|
Franco D, Domínguez J, de Castro Md MDP, Aránega A. [Regulation of myocardial gene expression during heart development]. Rev Esp Cardiol 2002; 55:167-84. [PMID: 11852007 DOI: 10.1016/s0300-8932(02)76576-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heart is an organ with special significance in medicine and developmental biology. The development of the heart and its vessels during embryogenesis is the result of numerous and complex processes. At present, our understanding is based on decades of meticulous anatomical studies. However, the spectacular progress of modern molecular biology and developmental biology has marked the beginning of a new era in embryology. The molecular bases for cardiogenesis are just emerging. Several families of genes with restricted expression to the heart have been identified in the last years, including genes encoding for contractile proteins, ion channels as well as transcription factors involved in tissue specific gene expression. Likewise, the analyses of regulatory elements have increased our understanding of the molecular mechanisms directing gene expression. In this review, we illustrate the different patterns of gene and transgene expression in the developing myocardium. These data demonstrate that the wide molecular heterogeneity observed in the developing myocardium is not restricted to embryogenesis but it also remains in the adulthood. Therefore, such molecular diversity should be taken into account on the design of future gene therapy approaches, having thus direct clinical implications.
Collapse
Affiliation(s)
- Diego Franco
- Departamento de Biología Experimental, Area de Biología Celular, Facultad de Ciencias Experimentales, Universidad de Jaén, Spain.
| | | | | | | |
Collapse
|
24
|
Abstract
This paper reports on the origin and distribution of the coronary arteries in normal mice and in mice of the iv/iv strain, which show situs inversus and heterotaxia. The coronary arteries were studied by direct observation of the aortic sinuses with the scanning electron microscope, and by examination of vascular corrosion casts. In the normal mouse, the left and right coronaries (LC, RC) arise from the respective Valsalva sinus and course along the ventricular borders to reach the heart apex. Along this course the coronary arteries give off small branches at perpendicular or acute angles to supply the ventricles. The ventricular septum is supplied by the septal artery, which arises as a main branch from the right coronary. Conus arteries arise from the main coronary trunks, from the septal artery and/or directly from the Valsalva sinus. The vascular casts demonstrate the presence of intercoronary anastomoses. The origin of the coronary arteries was found to be abnormal in 84% of the iv/iv mice. These anomalies included double origin, high take-off, slit-like openings and the presence of a single coronary orifice. These anomalies occurred singly or in any combination, and were independent of heart situs. The septal artery originated from RC in most cases of situs solitus but originated predominantly from LC in situs inversus hearts. Except for this anomalous origin no statistical correlation was found between the coronary anomalies and heart situs or a particular mode of heterotaxia. The coronary anomalies observed in the iv/iv mice are similar to those found in human hearts. Most coronary anomalies appear to be due to defective connections between the aortic root and the developing coronaries. iv/iv mice may therefore constitute a good model to study the development of similar anomalies in the human heart.
Collapse
Affiliation(s)
- J M Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.
| | | |
Collapse
|
25
|
Franco D, Kelly R, Moorman AF, Lamers WH, Buckingham M, Brown NA. MLC3F transgene expression iniv mutant mice reveals the importance of left-right signalling pathways for the acquisition of left and right atrial but not ventricular compartment identity. Dev Dyn 2001; 221:206-15. [PMID: 11376488 DOI: 10.1002/dvdy.1135] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract Transcriptional differences between left and right cardiac chambers are revealed by an nlacZ reporter transgene controlled by regulatory sequences of the MLC3F gene, which is expressed in the left ventricle (LV), atrioventricular canal (AVC), and right atrium (RA). To examine the role of left-right signalling in the acquisition of left and right chamber identity, we have investigated MLC3F transgene expression in iv mutant mice. iv/iv mice exhibit randomised direction of heart looping and an elevated frequency of associated laterality defects, including atrial isomerism. At fetal stages, 3F-nlacZ-2E transgene expression remains confined to the morphological LV, AVC, and RA in L-loop hearts, although these appear on the opposite side of the body. In cases of morphologically distinguishable right atrial appendage isomerism, both atrial appendages show strong transgene expression. Conversely, specimens with morphological left atrial appendage isomerism show only weak expression in both atrial appendages. The earliest left-right atrial differences in the expression of the 3F-nlacZ-2E transgene are observed at E8.5. DiI labelling experiments confirmed that transcriptional regionalisation of the 3F-nlacZ-2E transgene at this stage reflects future atrial chamber identity. In some iv/iv embryos at E8.5, the asymmetry of 3F-nlacZ-2E expression was lost, suggesting atrial isomerism at the transcriptional level prior to chamber formation. These data suggest that molecular specification of left and right atrial but not ventricular chambers is dependent on left-right axial cues.
Collapse
Affiliation(s)
- D Franco
- Experimental and Molecular Cardiology Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Webb S, Brown NA, Wessels A, Anderson RH. Development of the murine pulmonary vein and its relationship to the embryonic venous sinus. Anat Rec (Hoboken) 1998; 250:325-34. [PMID: 9517849 DOI: 10.1002/(sici)1097-0185(199803)250:3<325::aid-ar7>3.0.co;2-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Arguments concerning the development of the pulmonary vein, and its relationship to the embryonic venous sinus (sinus venosus) have continued for well over a century. Recently, attention has again been focused on the origin of the pulmonary vein. It has been suggested that, whereas the pulmonary vein originates from the left atrium in humans, in all other vertebrates it originates from the venous sinus, with subsequent transfer to the left atrium. The nature of this transfer has not, however, been elucidated, although there is speculation that the pulmonary vein is "pinched off" from the left side of the embryonic venous sinus. METHODS We studied closely staged hearts of normal mouse embryos from a C57BL/6 x CBAcross days 10 and 11 of gestation (plug day = day 1). Two series of embryos were collected and fixed in 2% glutaraldehyde, 1% formaldehyde, buffered with 0.05 M sodium cacodylate pH 7.4 (adjusted to 330 mOsm with NaCl). One series was wax embedded, serially sectioned, and stained with Masson's trichrome. The second series was subject to microdissection and scanning electron microscopy. RESULTS The atrial component of the heart tube is attached to the body of the embryo by reflections of the atrial myocardial wall. The attachment can be considered, from the outset, as the heart stalk, with the myocardial-mesodermal connections forming a horseshoe of tissue that projects ventrally into the lumen of the atrium, surrounding a single evagination in the midline of the embryo. This heart stalk is cranial to the connections of the tributaries of the embryonic venous sinus and ventral to the foregut. When traced through its developmental stages, the evagination in the centre of the stalk, which we describe as the pulmonary pit, is seen to become the portal of entry for the developing pulmonary vein. CONCLUSIONS The heart stalk, representing the area used by the pulmonary vein to gain access to the heart, and analogous to the dorsal mesocardium, is, from the outset, discrete from the area occupied by the orifices of the horns of the embryonic venous sinus. The pulmonary vein does not, in the mouse, develop from the tissues that form the walls of the tributaries of the systemic venous sinus. Comparisons with other studies suggest that early events in the development of the pulmonary vein are likely to be the same in all mammals, including humans.
Collapse
Affiliation(s)
- S Webb
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|