1
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Ikomi C, Blatt J, Ghofrani S, Zhang R, Ross J, Law JR. Lymphedema in Turner syndrome: correlations with phenotype and karyotype. J Pediatr Endocrinol Metab 2024; 37:789-795. [PMID: 39113198 DOI: 10.1515/jpem-2024-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/21/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES Lymphedema (LD) in Turner syndrome (TS) is a commonly reported comorbidity, though its associations with karyotype and other comorbidities are poorly understood. Characteristics of patients with TS and LD, including correlation with phenotype and karyotype, are described. METHODS Medical records of patients with TS seen in two pediatric institutions from 2002 to 2020 were retrospectively reviewed. Demographic data (age, presentation onset, clinical features, genetics, LD presence, investigations, treatments) were collected. RESULTS 393 girls with TS with mean age of 12.5 years (SD: 5.7) were identified. LD was noted in 37 % of patients (n=146). Among the 112 patients with TS and documentation of onset of LD, LD was noted within the first year of life in 78.6 % (n=88). 67.6 % (n=96) of total patients with TS and LD had non-mosaic 45, X karyotype. Frequency of webbed neck was significantly greater in girls with TS and LD compared with girls without LD (58 vs. 7 %, p<0.001). Congenital heart anomalies, hypertension, and renal anomalies were also more common in girls with LD. Nail abnormalities with presence of hypoplastic or dysplastic nails were significantly associated with LD (OR: 6.784, 95 % CI 4.235-11.046). The number of girls reporting presence of LD decreased with age. CONCLUSIONS LD in TS often occurs within the first year of life, is less prevalent in older children and adolescents, and is significantly associated with 45, X karyotype, presence of webbed neck, nail changes, congenital heart anomalies, and renal anomalies.
Collapse
Affiliation(s)
- Chijioke Ikomi
- Division of Endocrinology, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Julie Blatt
- Divisions of Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Simon Ghofrani
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ran Zhang
- Department of Biostatistics, Nemours Children's Health, Wilmington, DE, USA
| | - Judith Ross
- Division of Endocrinology, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Jennifer R Law
- Divisions of Endocrinology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Hagen CP, Fischer MB, Mola G, Mikkelsen TB, Cleemann LH, Gravholt CH, Viuff MH, Juul A, Pedersen AT, Main KM. AMH and other markers of ovarian function in patients with Turner syndrome - a single center experience of transition from pediatric to gynecological follow up. Front Endocrinol (Lausanne) 2023; 14:1173600. [PMID: 37455919 PMCID: PMC10339808 DOI: 10.3389/fendo.2023.1173600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Turner syndrome (TS) is a chromosomal disorder that affects about 1 in 2500 female births and is characterized by the partial or complete absence of the second X chromosome. Depending on karyotype, TS is associated with primary ovarian insufficiency (POI). Approximately 50% of girls with a mosaic 45, X/46, XX karyotype may enter puberty spontaneously, but only 5-10% of women with TS achieve pregnancy without egg donation. In this review, we will evaluate the clinical use of markers of ovarian function in TS patients. Based on longitudinal studies of serum concentrations of reproductive hormones as well as ovarian morphology in healthy females and patients with TS, we will evaluate how they can be applied in a clinical setting. This is important when counseling patients and their families about future ovarian function essential for pubertal development and fertility. Furthermore, we will report on 20 years of experience of transition from pediatric to gynecological and adult endocrinological care in our center at Rigshospitalet, Copenhagen, Denmark.
Collapse
Affiliation(s)
- Casper P. Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Gylli Mola
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Theis Bech Mikkelsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Line Hartvig Cleemann
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Diabetes and Endocrine Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette H. Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynecology, The Fertility Clinic, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Katharina Maria Main
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Nagata K, Shimada T, Eishi C, Nishi M, Murakami T, Ohashi K, Kajimura I, Miura K. Dysgerminoma of the Left Ovary in a Patient with Balanced Translocation 46X, t(X:1) (q22;q21): A Case Report. Int Med Case Rep J 2023; 16:117-122. [PMID: 36915667 PMCID: PMC10008024 DOI: 10.2147/imcrj.s395511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 03/09/2023] Open
Abstract
We report a case of dysgerminoma in a 22-year-old woman diagnosed with chromosomal abnormality, balanced translocation 46X,t(X:1)(q22;q21). She had received hormone replacement therapy for 7 years for primary amenorrhea. She visited a primary care physician because of lower abdominal distension, and a large tumor in the pelvis was discovered. She was admitted to our hospital for further examination of the pelvic tumor. She underwent laparotomy and was diagnosed with stage IIIA1 dysgerminoma (pT3apN0pM0) of the left ovary. Young female patients without the Y chromosome who are treated for primary amenorrhea may also develop malignant germ cell tumors; therefore, gynecologists should provide hormone replacement therapy and periodic pelvic evaluation.
Collapse
Affiliation(s)
- Koh Nagata
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Takako Shimada
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Chiaki Eishi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Masaki Nishi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Toru Murakami
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Ohashi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Itsuki Kajimura
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
5
|
Besson MDR, Taiarol MDS, Fernandes EB, Ghiorzi IB, Nunes MR, Zen PRG, Rosa RFM. Chromosomal abnormalities detected by karyotyping among patients with secondary amenorrhea: a retrospective study. SAO PAULO MED J 2023; 141:e2022426. [PMID: 37042862 PMCID: PMC10085534 DOI: 10.1590/1516-3180.2022.0426.r1.14012023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/14/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Chromosomal abnormalities (CAs) have been described in patients with secondary amenorrhea (SA). However, studies on this association are scarce. OBJECTIVES To evaluate the frequency and types of CAs detected by karyotyping in patients with SA. DESIGN AND SETTING This retrospective study was performed in a reference clinical genetic service in South Brazil. METHODS Data were obtained from the medical records of patients with SA who were evaluated between 1975 and 2022. Fisher's bicaudate exact test and Student's t-test were used, and P < 0.05 was considered significant. RESULTS Among 43 patients with SA, 14 (32.6%) had CAs, namely del (Xq) (n = 3), 45,X (n = 2), 46,X,r(X)/45,X (n = 2), 46,XX/45,X (n = 1), 46,X,i(q10)/45,X (n = 1), 47,XXX (n = 1), 46,XX/47,XXX (n = 1), 46,XX/47,XX,+mar (n = 1), 45,XX,trob(13;14)(q10;q10)/46,XXX,trob(13;14)(q10;q10) (n = 1), and 46,XX,t(2;21)(q23;q11.2) (n = 1). Additional findings were observed mostly among patients with CA compared with those without CA (P = 0.0021). No difference in the mean age was observed between the patients with SA with or without CAs (P = 0.268025). CONCLUSIONS CAs are common among patients with SA, especially those with short stature and additional findings. They are predominantly structural, involve the X chromosome in a mosaic, and are compatible with the Turner syndrome. Patients with SA, even if isolated, may have CAs, particularly del (Xq) and triple X.
Collapse
Affiliation(s)
- Marina da Rocha Besson
- BSc. Master´s Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Mateus Dos Santos Taiarol
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Eliaquim Beck Fernandes
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Isadora Bueloni Ghiorzi
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Maurício Rouvel Nunes
- BSc. Doctoral Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Paulo Ricardo Gazzola Zen
- PhD. Professor, Departments of Clinical Medicine and Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Rafael Fabiano Machado Rosa
- PhD. Professor, Departments of Clinical Medicine and Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| |
Collapse
|
6
|
Fukami M. Ovarian dysfunction in women with Turner syndrome. Front Endocrinol (Lausanne) 2023; 14:1160258. [PMID: 37033245 PMCID: PMC10076527 DOI: 10.3389/fendo.2023.1160258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Ovarian dysfunction is one of the most common features of women with Turner syndrome. In these women, oocyte apoptosis is markedly accelerated from the early stage of fetal life. Reduction in the number of germ cells disturbs primordial follicle development and thereby leads to the formation of streak gonads. There are three possible causes of accelerated germ cell loss in 45,X ovaries. First, chromosomal pairing failure due to X chromosomal aneuploidy is believed to induce meiotic arrest. Indeed, it has been suggested that the dosage of the X chromosome is more critical for the survival of the oocytes than for other cells in the ovary. Second, impaired coupling between oocytes and granulosa cells may also contribute to germ cell apoptosis. Previous studies have shown that 45,X ovaries may tend to lose tight junctions which are essential for intercellular interactions. Lastly, ovarian dysfunction in women with Turner syndrome is partly attributable to the reduced dosage of several genes on the X chromosome. Specifically, BMP15, PGRMC1, and some other genes on the X chromosome have been implicated in ovarian function. Further studies on the mechanisms of ovarian dysfunction are necessary to improve the reproductive outcomes of women with Turner syndrome.
Collapse
|
7
|
Turner Syndrome. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Turner syndrome (TS) affects approximately 1 out of every 1500–2500 live female births, with clinical features including short stature, premature ovarian failure, dysmorphic features and other endocrine, skeletal, cardiovascular, renal, gastrointestinal and neurodevelopmental organ system involvement. TS, a common genetic syndrome, is caused by sex chromosome aneuploidy, mosaicism or abnormalities with complete or partial loss of function of the second X chromosome. Advances in genetic and genomic testing have further elucidated other possible mechanisms that contribute to pathogenic variability in phenotypic expression that are not necessarily explained by monosomy or haploinsufficiency of the X chromosome alone. The role of epigenetics in variations of gene expression and how this knowledge can contribute to more individualized therapy is currently being explored. TS is established as a multisystemic condition, with several endocrine manifestations of TS affecting growth, puberty and fertility having significant impact on quality of life. Treatment guidelines are in place for the management of these conditions; however, further data on optimal management is needed.
Collapse
|
8
|
Yamazaki W, Tan SL, Taketo T. Role of the X and Y Chromosomes in the Female Germ Cell Line Development in the Mouse (Mus musculus). Sex Dev 2022:1-10. [PMID: 35235936 DOI: 10.1159/000521151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes. SUMMARY The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development. Key Message: The XX chromosome complement gives the oocyte the highest competence for embryonic development.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada.,OriginElle Fertility Clinic and Women's Health Centre, Montreal, Québec, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
9
|
Yamazaki W, Badescu D, Tan SL, Ragoussis J, Taketo T. Effects of the Sex Chromosome Complement, XX, XO, or XY, on the Transcriptome and Development of Mouse Oocytes During Follicular Growth. Front Genet 2021; 12:792604. [PMID: 34987552 PMCID: PMC8721172 DOI: 10.3389/fgene.2021.792604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The sex chromosome complement, XX or XY, determines sexual differentiation of the gonadal primordium into a testis or an ovary, which in turn directs differentiation of the germ cells into sperm and oocytes, respectively, in eutherian mammals. When the X monosomy or XY sex reversal occurs, XO and XY females exhibit subfertility and infertility in the mouse on the C57BL/6J genetic background, suggesting that functional germ cell differentiation requires the proper sex chromosome complement. Using these mouse models, we asked how the sex chromosome complement affects gene transcription in the oocytes during follicular growth. An oocyte accumulates cytoplasmic components such as mRNAs and proteins during follicular growth to support subsequent meiotic progression, fertilization, and early embryonic development without de novo transcription. However, how gene transcription is regulated during oocyte growth is not well understood. Our results revealed that XY oocytes became abnormal in chromatin configuration, mitochondria distribution, and de novo transcription compared to XX or XO oocytes near the end of growth phase. Therefore, we compared transcriptomes by RNA-sequencing among the XX, XO, and XY oocytes of 50–60 µm in diameter, which were still morphologically comparable. The results showed that the X chromosome dosage limited the X-linked and autosomal gene transcript levels in XO oocytes whereas many genes were transcribed from the Y chromosome and made the transcriptome in XY oocytes closer to that in XX oocytes. We then compared the transcript levels of 3 X-linked, 3 Y-linked and 2 autosomal genes in the XX, XO, and XY oocytes during the entire growth phase as well as at the end of growth phase using quantitative RT-PCR. The results indicated that the transcript levels of most genes increased with oocyte growth while largely maintaining the X chromosome dosage dependence. Near the end of growth phase, however, transcript levels of some X-linked genes did not increase in XY oocytes as much as XX or XO oocytes, rendering their levels much lower than those in XX oocytes. Thus, XY oocytes established a distinct transcriptome at the end of growth phase, which may be associated with abnormal chromatin configuration and mitochondria distribution.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Seang Lin Tan
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- *Correspondence: Teruko Taketo,
| |
Collapse
|
10
|
Purwar N, Tiwari P, Mathur N, Sharma H, Sahlot R, Garg U, Sharma B, Saxena A, Mathur SK. Higher CNV Frequencies in Chromosome 14 of Girls With Turner Syndrome Phenotype. J Clin Endocrinol Metab 2021; 106:e4935-e4955. [PMID: 34333639 DOI: 10.1210/clinem/dgab572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Precise genotype-phenotype correlations in Turner syndrome (TS) have not yet been deciphered. The chromosomal basis of the clinical TS phenotype in the absence of X chromosome aberrations on conventional karyotyping remains more and less unexplored. OBJECTIVE To elucidate the high-resolution chromosomal picture and analyze the genotype-phenotype associations in girls with clinical phenotype of TS by chromosomal microarray. DESIGN AND PATIENTS Cross sectional observational study conducted between October 2018 and January 2020 on 47 girls presenting the clinical TS phenotype and fulfilling the criteria for chromosomal analysis. SETTING Outpatient department at Department of Endocrinology and the Molecular Research Lab at tertiary care teaching institution. RESULTS The copy number variation (CNV) polymorphs were more frequent on autosomes than X chromosomes, and they were detected in 89.3%, 61.7%, and 92.8% of patients, respectively, on chromosome 14 or X or both. A total 445 and 64 CNV polymorphs were discovered on chromosome X and 14, respectively. The latter exhibited either gain at 14q32.33, loss at 14q11.2, or both. Karyotype was available for 27 patients; 55.6% of cases displayed X chromosome abnormalities while 44.4% cases had a normal karyotype. Functional interactomes of the genes that were present in chromosome 14 CNVs and those known to be associated with TS showed an overlap of 67% and enriched various development-related cellular pathways underlying TS phenotype. CONCLUSIONS On high-resolution karyotype analysis, clinical phenotype of TS can be associated with CNV defects in autosomes, specifically chromosome 14 or X chromosome or both. The syndrome of chromosome 14 CNV defects with and without X-chromosomal defects clinically mimics TS and shares a common genomic network that deserves further investigations.
Collapse
Affiliation(s)
- Naincy Purwar
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Himanshu Sharma
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Rahul Sahlot
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Umesh Garg
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Balram Sharma
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Aditya Saxena
- Department of Computer Engineering & Applications, Institute of Engineering & Technology, GLA University, Mathura, India
| | - Sandeep K Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| |
Collapse
|
11
|
Reproductive outcomes after preimplantation genetic testing in mosaic Turner syndrome: a retrospective cohort study of 100 cycles. J Assist Reprod Genet 2021; 38:1247-1253. [PMID: 33677746 DOI: 10.1007/s10815-021-02127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The purpose of this study is to explore the reproductive outcomes of women with Turner syndrome (TS) in preimplantation genetic testing (PGT) cycles. METHODS A retrospective study of 100 controlled ovarian stimulating cycles, 68 TS (sixty-four mosaic Turner syndrome (MTS) and four pure Turner syndrome (PTS)) women underwent PGT was conducted from 2013 to 2018. RESULTS Embryo X chromosome abnormal rates of TS women were significantly higher than women with normal karyotype (7.04 vs 1.61%, P<0.01). Cumulative live birth rates (CLBR) after PGT-NGS treatment were lower in TS than control (31.15 vs 45.59%, P<0.05). Clinical pregnancy rates per transfer (CPR), miscarriage rates (MR) and live birth rates per transfer (LBR) remained comparable between TS and control group. Reproductive outcomes (X chromosome abnormal rates, CPR, MR, LBR and CLBR) among low (<10%), medium (10-50%) and high (>50%) level 45,X mosaicism groups were not statistically different. CONCLUSIONS To avoid high risk of embryo X chromosome abnormalities, prenatal or preimplantation genetic testing should be recommended to mosaic or pure TS patients.
Collapse
|
12
|
La Marca A, Mastellari E. Fertility preservation for genetic diseases leading to premature ovarian insufficiency (POI). J Assist Reprod Genet 2021; 38:759-777. [PMID: 33495935 DOI: 10.1007/s10815-021-02067-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The current review aims to summarize the data available concerning the applicability of fertility preservation techniques to genetic conditions at risk of premature ovarian insufficiency (POI). METHODS A literature review through the PubMed Database was carried out. RESULTS About 10% of cases of POI is related to genetic diseases. The most frequent conditions associated with POI are Turner syndrome and fragile X pre-mutation; mutation of BRCA 1-2 genes and several other mutations and genetic syndromes have recently been highlighted, although they rarely occur. If a diagnosis is issued before POI onset, counseling on currently available fertility preservation techniques is advisable. In case of spontaneous menarche (this can occur variably depending on the mutation) established techniques like embryo or oocyte cryopreservation can be proposed, even if, in some cases, their effectiveness may be reduced by ovarian alterations connected to the mutation. Ovarian tissue cryopreservation has recently been defined as an established medical procedure for fertility preservation in young cancer patients and may be an option for prepubertal patients. However, it is still experimental in special populations with genetic diseases causing POI. New innovative experimental techniques, like in vitro maturation of immature oocytes (IVM) and vitro activation (IVA) of immature follicles on ovarian tissue, have shown limited but encouraging data and they will be probably available in the near future. For a correct risk-benefit evaluation, the following aspects should be considered: actual knowledge about the pathology-specific efficacy of the various techniques, the average age of onset of POI, the possible risks associated with the procedure in relation to the underlying pathology, the probability of spontaneous conception, as well as the health implications of a possible future pregnancy.. CONCLUSIONS Fertility preservation techniques represent a crucial opportunity for patients with genetic risk of POI. Early diagnosis increases the chances to apply these techniques. No specific recommendations concerning fertility preservation for each genetic pathology are available, and clinicians should first counsel the patient and her relatives about known risks and benefits of the available techniques, both those established and those considered as experimental.
Collapse
Affiliation(s)
- Antonio La Marca
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Modena, Italy. .,Clinica Eugin Modena, Modena, Italy.
| | - Elisa Mastellari
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Abstract
Fertility represents a biological and psychological requirement for women. Some genetic diseases represent a rare cause of infertility, being responsible for 10% of cases of premature ovarian insufficiency. Among these, the most frequent and also those most studied by researchers are Turner Syndrome - due to a karyotype abnormality of the X chromosome pair - and the presence of fragile X premutation (FMR1). To exclude these conditions the diagnostic workup for non-iatrogenic premature ovarian insufficiency (POI) involves the performance of a karyotype analysis and the search for the FMR1 gene mutation, as well as the search for the presence of Y-chromosomal material. However, several other mutations and genetic syndromes associated with POI development have recently been highlighted, although they occur rarely, such as the GALT gene mutation in galactosemia or the FOXL2 gene mutation in BPES and many others, and further autosomal genetic testing are indicated if clinical suspicion is present. Mutations of BRCA 1 and 2 genes, make patients at genetically determined high risk of developing early ovarian or breast cancer and of getting POIs for the treatments they must undergo to prevent it (prophylactic bilateral oophorectomy) or treat it (chemotherapy). The management of impaired fertility is not less important than that of other syndromic manifestations for the quality of life of patients. Few data are available regarding the efficiency of cryopreservation of reproductive material (oocytes, embryos or ovarian tissue) in order to preserve fertility in this particular subgroup of patients, but certainly it represents a promising chance and a hope for the future.
Collapse
Affiliation(s)
- Elisa Mastellari
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio La Marca
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy -
- Clinica Eugin Modena, Modena, Italy
| |
Collapse
|
14
|
Vaz B, El Mansouri F, Liu X, Taketo T. Premature ovarian insufficiency in the XO female mouse on the C57BL/6J genetic background. Mol Hum Reprod 2020; 26:678-688. [PMID: 32634219 PMCID: PMC7473787 DOI: 10.1093/molehr/gaaa049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
In humans, all but 1% of monosomy 45.X embryos die in utero and those who reach term suffer from congenital abnormalities and infertility termed Turner's syndrome (TS). By contrast, XO female mice on various genetic backgrounds show much milder physical defects and normal fertility, diminishing their value as an animal model for studying the infertility of TS patients. In this article, we report that XO mice on the C57BL/6J (B6) genetic background showed early oocyte loss, infertility or subfertility and high embryonic lethality, suggesting that the effect of monosomy X in the female germline may be shared between mice and humans. First, we generated XO mice on either a mixed N2(C3H.B6) or B6 genetic background and compared the number of oocytes in neonatal ovaries; N2.XO females retained 45% of the number of oocytes in N2.XX females, whereas B6.XO females retained only 15% of that in B6.XX females. Second, while N2.XO females were as fertile as N2.XX females, both the frequency of delivery and the total number of pups delivered by B6.XO females were significantly lower than those by B6.XX females. Third, after mating with B6 males, both N2.XO and B6.XO females rarely produced XO pups carrying paternal X chromosomes, although a larger percentage of embryos was found to be XO before implantation. Furthermore, B6.XO females delivered 20% XO pups among female progeny after mating with C3H males. We conclude that the impact of monosomy X on female mouse fertility depends on the genetic background.
Collapse
Affiliation(s)
- B Vaz
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - F El Mansouri
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - X Liu
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - T Taketo
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
15
|
Preimplantation genetic testing for aneuploidy in patients with partial X monosomy using their own oocytes: is this a suitable indication? Fertil Steril 2020; 114:346-353. [PMID: 32680612 DOI: 10.1016/j.fertnstert.2020.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe the outcome of preimplantation genetic testing (PGT-A) using their own oocytes in patients with mosaic Turner Syndrome (MTS). The impact of the assisted reproduction technique (ART) performed (PGT-A or oocyte donation) and the type of absence of the X chromosome (total or partial) were considered. DESIGN Retrospective observational multicenter study. SETTING University-affiliated private in vitro fertilization center. PATIENT(S) Fifty-six patients with MTS with whom 65 ovarian stimulation cycles for PGT-A (fluorescence in situ hybridization/arrays-next generation sequencing) were performed. The study included 90 women with MTS and 20 women with pure Turner Syndrome (PTS) who underwent 140 and 25 oocyte donation (OD) cycles, respectively. INTERVENTION(S) In vitro fertilization for PGT-A (fluorescence in situ hybridization/arrays-next generation sequencing) or OD. MAIN OUTCOME MEASURE (S) Reproductive outcome and feto-maternal outcomes. RESULTS The live birth rate (LBR) per embryo transfer in patients with MTS tended to be higher in OD 37.7% (95% confidence interval [CI]: 29.3-46.1) than that observed for PGT-A 22.5% (95% CI 7.8-38.2), and the cumulative LBR (CLBR), with 77.6% vs. 43.3%, respectively. Likewise, the LBR per patient was significant when comparing PGT-A vs. OD, with 12.5% (95 CI 3.9-21.1) vs. 51.1% (40.7-61.4), respectively. While focusing on the X chromosome, partial MTS (PTS), we found significant differences in the CLBR per embryo transfer, with 77.6% vs. 29.2%, and also in the LBR per patient: 51.1% (40.7-61.4) in MTS vs. 15% (95 CI 0.0-30.1) in PTS. CONCLUSION(S) Oocyte donation is the best reproductive option in females with Turner Syndrome with or without mosaicisms. Nevertheless, PGT-A is a valid therapeutic option in patients with MTS using their own oocytes, and OD should not necessarily be directly recommended.
Collapse
|
16
|
Ye Y, Wang J, Quan X, Xu K, Fu H, Gu W, Mao J. Case report: a Chinese girl with dent disease 1 and turner syndrome due to a hemizygous CLCN5 gene mutation and Isochromosome (Xq). BMC Nephrol 2020; 21:171. [PMID: 32393202 PMCID: PMC7216489 DOI: 10.1186/s12882-020-01827-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Background Female Dent disease 1 patients with low-molecular-weight proteinuria (LMWP) due to CLCN5 gene mutation were rarely reported, and these cases that the people were also with Turner syndrome (TS) were even hardly documented before. Case presentation Here we report a 3-year and 11-month old Chinese girl with short stature who had a karyotype of 46,X,i(X)(q10) and a de novo pathogenic variant in the CLCN5 gene on the short arm of X chromosome. Laboratory examinations showed that the patient had LMWP, hypercalciuria, hypophosphatemia, delayed bone age, and genital dysplasia. Conclusion The combination of i(X)(q10) and CLCN5 mutation causes the deletion of the wild-type CLCN5 allele that results in Dent-1 and TS. To the best of our knowledge, this is the first case that a female CLCN5 mutation hemizygote is diagnosed with Dent-1 and Turner syndrome due to isochromosome X. Also, our case has indicated that the prevalence of the situation may be largely underestimated because of the mild signs of females with Dent-1.
Collapse
Affiliation(s)
- Yuhong Ye
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Xiaofang Quan
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Ke Xu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China.
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China.
| |
Collapse
|
17
|
A hypothesis: Could telomere length and/or epigenetic alterations contribute to infertility in females with Turner syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:108-116. [DOI: 10.1002/ajmg.c.31684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/07/2022]
|
18
|
Abstract
Background Monosomy of the X chromosome is the most frequent genetic abnormality in human as it is present in approximately 2% of all conceptions, although 99% of these embryos are spontaneously miscarried. In postnatal life, clinical features of Turner syndrome may include typical dysmorphic stigmata, short stature, sexual infantilism, and renal, cardiac, skeletal, endocrine and metabolic abnormalities. Main text Turner syndrome is due to a partial or total loss of the second sexual chromosome, resulting in the development of highly variable clinical features. This phenotype may not merely be due to genomic imbalance from deleted genes but may also result from additive influences on associated genes within a given gene network, with an altered regulation of gene expression triggered by the absence of the second sex chromosome. Current studies in human and mouse models have demonstrated that this chromosomal abnormality leads to epigenetic changes, including differential DNA methylation in specific groups of downstream target genes in pathways associated with several clinical and metabolic features, mostly on autosomal chromosomes. In this article, we begin exploring the potential involvement of both genetic and epigenetic factors in the origin of X chromosome monosomy. We review the dispute between the meiotic and post-zygotic origins of 45,X monosomy, by mainly analyzing the findings from several studies that compare gene expression of the 45,X monosomy to their euploid and/or 47,XXX trisomic cell counterparts on peripheral blood mononuclear cells, amniotic fluid, human fibroblast cells, and induced pluripotent human cell lines. From these studies, a profile of epigenetic changes seems to emerge in response to chromosomal imbalance. An interesting finding of all these studies is that methylation-based and expression-based pathway analyses are complementary, rather than overlapping, and are correlated with the clinical picture displayed by TS subjects. Conclusions The clarification of these possible causal pathways may have future implications in increasing the life expectancy of these patients and may provide informative targets for early pharmaceutical intervention.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito, Ecuador
| | - Roberto Lanes
- Pediatric Endocrine Unit, Hospital de Clínicas Caracas, Caracas, Venezuela
| |
Collapse
|
19
|
Noordman I, Duijnhouwer A, Kapusta L, Kempers M, Roeleveld N, Schokking M, Smeets D, Freriks K, Timmers H, van Alfen-van der Velden J. Phenotype in girls and women with Turner syndrome: Association between dysmorphic features, karyotype and cardio-aortic malformations. Eur J Med Genet 2018; 61:301-306. [PMID: 29339108 DOI: 10.1016/j.ejmg.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Turner syndrome (TS) is a genetic disorder characterized by the (partial) absence or a structural aberration of the second sex chromosome and is associated with a variety of phenotypes with specific physical features and cardio-aortic malformations. The objective of this study was to gain a better insight into the differences in dysmorphic features between girls and women with TS and to explore the association between these features, karyotype and cardio-aortic malformations. METHODS This prospective study investigated 14 dysmorphic features of TS girls and women using a checklist. Three major phenotypic patterns were recognized (severe phenotype, lymphatic phenotype and skeletal phenotype). Patient data including karyotype and cardio-aortic malformations (bicuspid aortic valve (BAV) and aortic coarctation (COA)) were collected. Associations between the prevalence of dysmorphic features, karyotype and cardio-aortic malformations were analysed using chi2-test and odds ratios. RESULTS A total of 202 patients (84 girls and 118 women) were analysed prospectively. Differences in prevalence of dysmorphic features were found between girls and women. A strong association was found between monosomy 45,X and the phenotypic patterns. Furthermore, an association was found between COA and lymphatic phenotype, but no association was found between karyotype and cardio-aortic malformations. CONCLUSION This study uncovered a difference in dysmorphic features between girls and women. Monosomy 45,X is associated with a more severe phenotype, lymphatic phenotype and skeletal phenotype. All patients with TS should be screened for cardio-aortic malformations, because in contrast to previous reports, karyotype and cardio-aortic malformations showed no significant association.
Collapse
Affiliation(s)
- Iris Noordman
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anthonie Duijnhouwer
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Livia Kapusta
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands; Pediatric Cardiology Unit, Tel-Aviv Sourasky Medical Centre, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michiel Schokking
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dominique Smeets
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim Freriks
- Department of Internal Medicine, Tjongerschans Hospital, Heerenveen, The Netherlands
| | - Henri Timmers
- Department of Internal Medicine, Section of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
20
|
Li N, Zhao L, Li J, Ding Y, Shen Y, Huang X, Wang X, Wang J. Turner syndrome caused by rare complex structural abnormalities involving chromosome X. Exp Ther Med 2017; 14:2265-2270. [PMID: 28962153 PMCID: PMC5609171 DOI: 10.3892/etm.2017.4756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Turner syndrome (TS) is a phenotypic heterogeneous genetic disorder caused by the loss of an X-chromosome or X-structural abnormalities in the X-chromosome, and affects approximately 1 in every 2,500 females. The affected individuals may develop diverse clinical features, including short stature, ovarian dysgenesis, skeletal dysplasia, facial abnormalities and other disorders. A constitutional karyotype of 45, X accounts for nearly 50% of TS patients, while X-mosaicism and other X-chromosomal structural abnormalities, including deletions, duplications, ring, isodicentric chromosomes, inversions and translocations, have been reported in other cases. The present study reports the results of chromosome microarray analysis (CMA) in two Chinese female TS patients with idiosyncratic karyotypes. The first patient had a karyotype of 46, X, der(X), and the CMA results demonstrated that the derivative chromosome was an abnormal X-chromosome that consisted of three deletions (Xp21.3-p11.23, Xp11.1-q13.1 and Xq21.31-q28), as well as three duplications (Xp22.33-p21.3, Xp11.23-p11.1 and Xq13.1-q21.31). The karyotype of the second patient was 46, X, der(X) t(X;?)(q 22.1;?),inv(11)(q13.5q21), while CMA revealed an Xq21.2-q27.1 duplication and an Xq27.2-q28 deletion. In conclusion, the current study performed genotype-phenotype correlation analysis in two patients and provided novel insight of the genotype of TS.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Li Zhao
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Juan Li
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Yu Ding
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongnian Shen
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiaodong Huang
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiumin Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Jian Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
21
|
Maruotti GM, Saccone G, Ciardulli A, Mazzarelli LL, Berghella V, Martinelli P. Absent ductus venosus: case series from two tertiary centres. J Matern Fetal Neonatal Med 2017. [DOI: 10.1080/14767058.2017.1344637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Ciardulli
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Letizia Mazzarelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Berghella
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Pasquale Martinelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
22
|
Kawashima I, Kawamura K. Disorganization of the germ cell pool leads to primary ovarian insufficiency. Reproduction 2017; 153:R205-R213. [PMID: 28289071 DOI: 10.1530/rep-17-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/10/2017] [Accepted: 03/13/2017] [Indexed: 01/26/2023]
Abstract
The mammalian ovary is an organ that controls female germ cell development, storing them and releasing mature oocytes for transporting to the oviduct. During the fetal stage, female germ cells change from a proliferative state to meiosis before forming follicles with the potential for the growth of surrounding somatic cells. Understanding of molecular and physiological bases of germ cell development in the fetal ovary contributed not only to the elucidation of genetic disorders in primary ovarian insufficiency (POI), but also to the advancement of novel treatments for patients with POI. Accumulating evidence indicates that mutations in NOBOX, DAZL and FIGLAgenes are associated with POI. In addition, cell biology studies revealed the important roles of these genes as essential translational factors for germ cell development. Recent insights into the role of the PI3K (phosphatidylinositol 3-kinase)-Akt signaling pathway in primordial follicle activation allowed the development of a new infertility treatment, IVA (in vitro activation), leading to successful pregnancy/delivery in POI patients. Furthermore, elucidation of genetic dynamics underlying female germ cell development could allow regeneration of oocytes from ES (embryonic stem)/iPS (induced pluripotent stem) cells in mammals. The purpose of this review is to summarize basic findings related to female germ cell development and potential clinical implications, especially focusing on POI etiologies. We also summarize evolving new POI therapies based on IVA as well as oocyte regeneration.
Collapse
Affiliation(s)
- Ikko Kawashima
- Department of Advanced Reproductive MedicineSt. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| | - Kazuhiro Kawamura
- Department of Advanced Reproductive MedicineSt. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| |
Collapse
|
23
|
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2016; 91:183-198. [PMID: 27861765 DOI: 10.1111/cge.12921] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Primary ovarian insufficiency (POI) is characterized by a loss of ovarian function before the age of 40 and account for one major cause of female infertility. POI relevance is continuously growing because of the increasing number of women desiring conception beyond 30 years of age, when POI prevalence is >1%. POI is highly heterogeneous and can present with ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea, and it can be associated with other congenital or acquired abnormalities. In most cases POI remains classified as idiopathic. However, the age of menopause is an inheritable trait and POI has a strong genetic component. This is confirmed by the existence of several candidate genes, experimental and natural models. The variable expressivity of POI defect may indicate that, this disease may frequently be considered as a multifactorial or oligogenic defect. The most common genetic contributors to POI are the X chromosome-linked defects. Here, we review the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI with the expectation that this list will soon be upgraded, thus allowing the possibility to predict the risk of an early age at menopause in families with POI.
Collapse
Affiliation(s)
- R Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - I Ferrari
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Chauhan P, Jaiswal SK, Lakhotia AR, Rai AK. Molecular cytogenetic characterization of two Turner syndrome patients with mosaic ring X chromosome. J Assist Reprod Genet 2016; 33:1161-8. [PMID: 27387888 DOI: 10.1007/s10815-016-0761-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE In the present study, we reported two cases of TS with mosaic ring X chromosome showing common clinical characteristics of TS like growth retardation and ovarian dysfunction. The purpose of the present study was to cytogenetically characterize both cases. METHODS Whole blood culture and G-banding were performed for karyotyping the cases following standard protocol. Origin of the ring chromosome and degree of mosaicism were further determined by fluorescence in situ hybridization (FISH). Breakpoints and loss of genetic material in formation of different ring X chromosomes r (X) in cases were determined with the help of cytogenetic microarray. RESULTS Cases 1 and 2 with ring chromosome were cytogenetically characterized as 45, X [114]/46Xr (X) (p22.11q21.32) [116] and 45, X [170]/46, Xr (X) (p22.2q21.33) [92], respectively. Sizes of these ring X chromosomes were found to be ~75 and ~95 Mb in cases 1 and 2, respectively, using visual estimation as part of cytogenetic observation. In both cases, we observed breakpoints on Xq chromosome were within relatively narrow region between Xq21.33 and Xq22.1 compared to regions in previously reported cases associated with ovarian dysgenesis. CONCLUSIONS Our observation agrees with the fact that despite of large heterogeneity, severity of the cases with intact X-inactive specific transcript (XIST) is dependent on degree of mosaicism and extent of Xq deletion having crucial genes involved directly or indirectly in various physiological involving ovarian cyclicity.
Collapse
Affiliation(s)
- Pooja Chauhan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sushil Kumar Jaiswal
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Amit Kumar Rai
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
26
|
Larizza D, Albanesi M, De Silvestri A, Accordino G, Brazzelli V, Maffè GC, Calcaterra V. Neoplasia in Turner syndrome. The importance of clinical and screening practices during follow-up. Eur J Med Genet 2016; 59:269-73. [PMID: 27058262 DOI: 10.1016/j.ejmg.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022]
Abstract
AIM OF THE STUDY Turmer syndrome (TS) patients show increased morbidity due to metabolic, autoimmune and cardiovascular disorders. A risk of neoplasia is also reported. Here, we review the prevalence of neoplasia in a cohort of Turner patients. METHODS We retrospectively evaluated 87 TS women. Follow-up included periodic ultrasound of the neck, abdominal and pelvic organs, dermatologic evaluation and fecal occult blood test. Karyotype was 45,X in 46 patients. During follow-up, 63 girls were treated with growth hormone, 65 with estro-progestin replacement therapy and 20 with L-thyroxine. Autoimmune diseases were present in 29 TS. RESULTS A total of 17 neoplasms in 14 out of 87 patients were found. Six skin neoplasia, 3 central nervous system tumors, 3 gonadal neoplasia, 2 breast tumors, 1 hepatocarcinoma, 1 carcinoma of the pancreas and 1 follicular thyroid cancer were detected. Age at tumor diagnosis was higher in 45,X pts than in those with other karyotypes (p = 0.003). Adenomioma gallbladdder (AG) was detected in 15.3% of the patients, with a lower age in girls at diagnosis with an associated neoplasia in comparison with TS without tumors (p = 0.017). No correlation between genetic make up, treatment, associated autoimmune diseases and neoplastia was found. CONCLUSION In our TS population an increased neoplasia prevalence was reported. A high prevalence of AG was also noted and it might be indicative of a predisposition to neoplasia. Further studies are needed to define the overall risk for neoplasia, and to determine the role of the loss of the X-chromosome and hormonal therapies.
Collapse
Affiliation(s)
- Daniela Larizza
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, Italy.
| | - Michela Albanesi
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, Italy
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Accordino
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, Italy
| | - Valeria Brazzelli
- Institute of Dermatology, Department of Clinical-Surgical, Diagnostic and Pediatric Science, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriella Carnevale Maffè
- 1st Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, Italy
| |
Collapse
|
27
|
Analysis of FMR1 gene premutation and X chromosome cytogenetic abnormalities in 100 Tunisian patients presenting premature ovarian failure. ANNALES D'ENDOCRINOLOGIE 2015; 76:671-8. [PMID: 26593861 DOI: 10.1016/j.ando.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the prevalence of FMR1 premutations and X chromosome cytogenetic abnormalities in a large cohort of Tunisian women with premature ovarian failure (POF). PATIENTS AND METHODS The cohort consisted of 127 Tunisian women with POF referred by endocrinologists and gynecologists for genetic investigation in the context of idiopathic POF and altered hormonal profiles. Clinical information concerning the reproductive function in the family, previous hormonal measurements and/or possible fertility treatment were collected. Karyotype, FISH analyses, FMR1 and FMR2 testing were performed for all patients. RESULTS Fifteen patients (11.81%) presented structural or numerical X chromosomal abnormalities. Moreover, we detected in 12 patients (10.71%) a high level of X mosaicism. Analysis of FMR1 gene in the 100 patients without X chromosomal abnormalities showed that five percent of the patients carried a FMR1 premutation allele. On the other hand, the FMR2 screening did not reveal any deletion. CONCLUSION Our study confirms the major role of X chromosome abnormalities in POF and highlights the importance of karyotype analyses and FMR1 screening. These investigations provide valuable information for diagnosis and genetic counseling for these women who still have a 5% chance of spontaneous conception.
Collapse
|
28
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 5. Gonadal Dysgenesis. Pediatr Dev Pathol 2015; 18:259-78. [PMID: 25105336 DOI: 10.2350/14-04-1471-pb.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One of the most challenging areas in pediatric testicular pathology is the appropriate understanding and pathological diagnosis of disorders of sexual development (DSD), and in particular, the issue of gonadal dysgenesis. Here we present the main concepts necessary for their understanding and appropriate classification, with extensive genetic correlations.
Collapse
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
29
|
Doğer E, Çakıroğlu Y, Ceylan Y, Ulak E, Özdamar Ö, Çalışkan E. Reproductive and obstetric outcomes in mosaic Turner's Syndrome: a cross-sectional study and review of the literature. Reprod Biol Endocrinol 2015; 13:59. [PMID: 26060131 PMCID: PMC4462000 DOI: 10.1186/s12958-015-0055-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/28/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Turner's syndrome (TS) is depicted as a total or partial absence of one X chromosome that results in ovarian dysgenesis. Chances of spontaneous pregnancy in TS are rare and the outcome of the pregnancies is known to be poor with an increased risk of miscarriage and stillbirths. Our aim is to evaluate reproductive and obstetric outcomes of natural conception and in-vitro fertilization (IVF) cycles in mosaic TS patients. METHODS A total of 22 mosaic TS cases (seventeen 45,X/46,XX and five 45,X/46,XX/47,XXX karyotypes) were evaluated. RESULTS Live birth and abortion rates were found as 32.7 % and 67.3 %, respectively in 52 pregnancies. Implantation, clinical pregnancy and take home baby rates were detected as 3.7 %, 8.6 % and 5.7 %, respectively per IVF cycle as a result of 35 cycles. Fecundability analysis revealed that 5 % of the cases experienced first pregnancy within 6 months and 8 % within the first 2 years. Mosaicism ratio did not have an effect on the time to the first pregnancy (p = .149). CONCLUSION Only a small proportion of the mosaic TS patients conceive in the first 2 years of the marriage. Age of menarche and age of marriage appear not to have any impact on the chance of conceiving. Mosaic TS cases should counseled about the low odds of pregnancy and high miscarriage rates.
Collapse
Affiliation(s)
- Emek Doğer
- Department of Obstetrics & Gynecology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | - Yiğit Çakıroğlu
- Department of Obstetrics & Gynecology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | - Yasin Ceylan
- Department of Obstetrics & Gynecology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | - Esen Ulak
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | - Özkan Özdamar
- Department of Obstetrics & Gynecology, Golcuk Military Hospital, Kocaeli, Turkey.
| | - Eray Çalışkan
- Department of Obstetrics & Gynecology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| |
Collapse
|
30
|
An isodicentric X chromosome with gonadal dysgenesis in a lady without prominent somatic features of Turner's syndrome. A case report. J Formos Med Assoc 2015; 114:77-80. [PMID: 25618587 DOI: 10.1016/j.jfma.2011.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/09/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022] Open
Abstract
Isodicentric X chromosomes in general have phenotypes characteristic of the resultant X deletions. Gonadotropin levels in Turner's syndrome (TS) girls are high, but have a normal biphasic pattern. Here, we report a 21-year-old lady with primary amenorrhea. Clinical examination revealed a short neck but no other typical stigmata of Turner's syndrome. The levels of gonadotropin were not raised to post-menopausal levels. A chromosome study showed a 45,X/46,X,idic(X)(q22) karyotype. She was diagnosed as having Turner's syndrome.
Collapse
|
31
|
Simpson JL. Genetics of female infertility due to anomalies of the ovary and mullerian ducts. Methods Mol Biol 2014; 1154:39-73. [PMID: 24782005 DOI: 10.1007/978-1-4939-0659-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genetic factors are pivotal in reproductive development and subsequent reproductive processes. If disturbed, infertility can occur. In the female, genetic factors affecting the ovary and the uterus are not uncommon causes of infertility. Terminal deletions on the X long arm and X short arm and X chromosomal mosaicism have long been accepted as causes of premature ovarian failure (POF). Responsible genes on the X have not yet elucidated. Attractive candidate genes for POF also exist on autosomes, and in over a dozen genes molecular perturbations are documented in non-syndromic POF. The most common single-gene cause of POF is premutation carriers for FMR1 (fragile X syndrome). As other candidate genes and additional ethnic groups are interrogated, the proportion of POF cases due to single-gene mutation will increase. Among uterine anomalies, incomplete mullerian fusion is most common. Increased recurrence risks for first-degree relatives confirm a role for genetic factors; interrogation of candidate genes is under way.
Collapse
Affiliation(s)
- Joe Leigh Simpson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, AHC2 693, Miami, FL, 33199, USA,
| |
Collapse
|
32
|
Hong YH, Shin YL. Turner syndrome masquerading as normal early puberty. Ann Pediatr Endocrinol Metab 2014; 19:225-8. [PMID: 25654070 PMCID: PMC4316414 DOI: 10.6065/apem.2014.19.4.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/13/2014] [Accepted: 09/07/2014] [Indexed: 11/20/2022] Open
Abstract
Approximately 50% of patients with Turner syndrome (TS) have complete loss of one X chromosome, whereas the rest of the patients with TS display mosaicism or structural abnormalities of the X chromosome. Most well-known common features are short stature and gonadal failure. Approximately one third of girls with TS may enter spontaneous puberty, but only half those completed with menarche. However, some atypical features of TS have been described. Many studies have been conducted to verify and delineate proposed loci for genes pertaining to the TS phenotype, and correlations between karyotype and phenotype. A few rare cases of precocious puberty with TS have been described. Here we describe a case of TS with the Xp22.1 deletion presenting with short final stature, early normal onset of spontaneous puberty, and Graves' disease, without short stature during puberty.
Collapse
Affiliation(s)
- Yong Hee Hong
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Lim Shin
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
33
|
Kim MK, Seok HH, Kim YS, Chin MU, Sung SR, Lee WS, Shim SH, Yoon TK. Molecular genetic and cytogenetic characterization of a partial Xp duplication and Xq deletion in a patient with premature ovarian failure. Gene 2014; 534:54-9. [DOI: 10.1016/j.gene.2013.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022]
|
34
|
Maciel-Guerra AT, Paulo JD, Santos AP, Guaragna-Filho G, Andrade JGR, Siviero-Miachon AA, Spinola-Castro AM, Guerra-Júnior G. The use of fluorescence in situ hybridization in the diagnosis of hidden mosaicism: apropos of three cases of sex chromosome anomalies. ACTA ACUST UNITED AC 2013; 56:545-51. [PMID: 23295296 DOI: 10.1590/s0004-27302012000800014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022]
Abstract
FISH has been used as a complement to classical cytogenetics in the detection of mosaicism in sex chromosome anomalies. The aim of this study is to describe three cases in which the final diagnosis could only be achieved by FISH. Case 1 was an 8-year-old 46,XY girl with normal female genitalia referred to our service because of short stature. FISH analysis of lymphocytes with probes for the X and Y centromeres identified a 45,X/46,X,idic(Y) constitution, and established the diagnosis of Turner syndrome. Case 2 was a 21-month-old 46,XY boy with genital ambiguity (penile hypospadias, right testis, and left streak gonad). FISH analysis of lymphocytes and buccal smear identified a 45,X/46,XY karyotype, leading to diagnosis of mixed gonadal dysgenesis. Case 3 was a 47,XYY 19-year-old boy with delayed neuromotor development, learning disabilities, psychological problems, tall stature, small testes, elevated gonadotropins, and azoospermia. FISH analysis of lymphocytes and buccal smear identified a 47,XYY/48,XXYY constitution. Cases 1 and 2 illustrate the phenotypic variability of the 45,X/46,XY mosaicism, and the importance of detection of the 45,X cell line for proper management and follow-up. In case 3, abnormal gonadal function could be explained by the 48,XXYY cell line. The use of FISH in clinical practice is particularly relevant when classical cytogenetic analysis yields normal or uncertain results in patients with features of sex chromosome aneuploidy.
Collapse
Affiliation(s)
- Andréa Trevas Maciel-Guerra
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Castronovo C, Rossetti R, Rusconi D, Recalcati MP, Cacciatore C, Beccaria E, Calcaterra V, Invernizzi P, Larizza D, Finelli P, Persani L. Gene dosage as a relevant mechanism contributing to the determination of ovarian function in Turner syndrome. Hum Reprod 2013; 29:368-79. [PMID: 24324027 PMCID: PMC3896225 DOI: 10.1093/humrep/det436] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION What is the burden of X chromosome mosaicism in the occurrence of spontaneous menarche (SM) in Turner syndrome (TS)? SUMMARY ANSWER SM was significantly associated with X chromosome mosaicism in the TS patients; a mosaicism with around 10% euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques on uncultivated tissues. WHAT IS KNOWN ALREADY Spontaneous puberty can be observed in a minority of patients with TS, more frequently, but not exclusively, in those with a high level of 46,XX/45,X mosaicism at standard karyotype. The genetic mechanisms contributing to ovarian function in TS patients are still not determined. However, submicroscopic X-linked and autosomal copy number variations (CNVs) have recently emerged as an important genetic risk category for premature ovarian insufficiency and may be involved in modulating the TS ovarian phenotype. STUDY DESIGN, SIZE, DURATION A group of 40 patients with a diagnosis of TS at conventional karyotyping participated in the study; 6 patients had SM and 34 patients had primary amenorrhoea (PA). All clinical data and the patients’ DNA samples were collected over the years at a single paediatric clinic. PARTICIPANTS/MATERIALS, SETTING, METHODS The patients' samples were used to perform both genetic (Copy Number Assay) and molecular-cytogenetic (array-CGH and iFISH, interphase-FISH) analyses in order to evaluate the X chromosome mosaicism rate and to detect possible rare CNVs of genes with a known or predicted role in female fertility. MAIN RESULTS AND THE ROLE OF CHANCE All TS patients showed variable percentages of the 46,XX lineage, but these percentages were higher in the SM group (P < 0.01). A mosaicism around 10% for the euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques performed in uncultivated tissues. A few CNVs involving autosomal and X-linked ovary-related loci were identified by array-CGH analysis and confirmed by real-time quantitative PCR, including a BMP15 gene duplication at Xp11.22, a deletion interrupting the PAPPA gene at 9q33.1, and an intragenic duplication involving the PDE8A gene at 15q25.3. LIMITATIONS, REASONS FOR CAUTION This is a pilot study on a relatively small sample size and confirmation in larger TS cohorts may be required. The ovarian tissue could not be studied in any patients and in a subgroup of patients, the mosaicism was estimated in tissues of different embryonic origin. WIDER IMPLICATIONS OF THE FINDINGS The combined determination of X chromosome mosaicism by molecular and molecular-cytogenetic techniques may become useful for the prediction of SM in TS. The detection of CNVs in both X-linked and autosomal ovary-related genes further suggests gene dosage as a relevant mechanism contributing to the ovarian phenotype of TS patients. These CNVs may pinpoint novel candidates relevant to female fertility and generate further insights into the mechanisms contributing to ovarian function. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Telethon Foundation (grant no: GGP09126 to L.P.), the Italian Ministry of the University and Research (grant number: 2006065999 to P.F.) and a Ministry of Health grant ‘Ricerca Corrente’ to IRCCS Istituto Auxologico Italiano (grant number: 08C704-2006). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Chiara Castronovo
- Medical Cytogenetics and Molecular Genetics Lab, IRCSS Istituto Auxologico Italiano, 20145 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Daggag H, Srour W, El-Khateeb M, Ajlouni K. Analysis of Turner syndrome patients within the Jordanian population, with a focus on four patients with Y chromosome abnormalities. Sex Dev 2013; 7:295-302. [PMID: 23988405 DOI: 10.1159/000354279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
This study presents findings in Turner syndrome (TS) patients from the Jordanian population, with focus on 4 patients with Y chromosomal abnormalities. From 1989 to 2011, 504 patients with TS stigmata were referred to our institute for karyotyping, resulting in 142 positive TS cases. Of these, 62 (43.7%) had the typical 45,X karyotype and the remaining individuals (56.3%) were found to be mosaics. Fifteen TS patients (10.5%) carried a structural abnormality of the Y chromosome and presented with the mosaic 45,X/46,XY karyotype. From these, 4 TS cases were investigated further. Karyotyping revealed that 1 patient carried a small supernumerary marker chromosome, whereas cytogenetic and molecular analyses showed that 3 patients carried 2 copies of the SRY gene. Further analysis by SRY sequencing revealed no mutations within the gene. The analyzed patients were found to be phenotypically either females or males, depending on the predominance of the cell line carrying the Y chromosome. This study demonstrates the importance of detailed cytogenetic analysis (such as FISH) in TS patients, and it also emphasizes the need for molecular analysis (such as PCR and sequencing) when fragments of the Y chromosome are present.
Collapse
Affiliation(s)
- H Daggag
- National Center for Diabetes, Endocrinology and Genetics (NCDEG), University of Jordan, Amman, Jordan
| | | | | | | |
Collapse
|
37
|
Bondy C, Bakalov VK, Cheng C, Olivieri L, Rosing DR, Arai AE. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome. J Med Genet 2013; 50:662-5. [PMID: 23825392 PMCID: PMC3786649 DOI: 10.1136/jmedgenet-2013-101720] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Congenital heart disease (CHD) is a cardinal feature of X chromosome monosomy, or Turner syndrome (TS). Haploinsufficiency for gene(s) located on Xp have been implicated in the short stature characteristic of the syndrome, but the chromosomal region related to the CHD phenotype has not been established. Design We used cardiac MRI to diagnose cardiovascular abnormalities in four non-mosaic karyotype groups based on 50-metaphase analyses: 45,X (n=152); 46,X,del(Xp) (n=15); 46,X,del(Xq) (n=4); and 46,X,i(Xq) (n=14) from peripheral blood cells. Results Bicuspid aortic valves (BAV) were found in 52/152 (34%) 45,X study subjects and aortic coarctation (COA) in 19/152 (12.5%). Isolated anomalous pulmonary veins (APV) were detected in 15/152 (10%) for the 45,X study group, and this defect was not correlated with the presence of BAV or COA. BAVs were present in 28.6% of subjects with Xp deletions and COA in 6.7%. APV were not found in subjects with Xp deletions. The most distal break associated with the BAV/COA trait was at cytologic band Xp11.4 and ChrX:41,500 000. One of 14 subjects (7%) with the 46,X,i(Xq) karyotype had a BAV and no cases of COA or APV were found in this group. No cardiovascular defects were found among four patients with Xq deletions. Conclusions The high prevalence of BAV and COA in subjects missing only the X chromosome short arm indicates that haploinsufficiency for Xp genes contributes to abnormal aortic valve and aortic arch development in TS.
Collapse
Affiliation(s)
- Carolyn Bondy
- Section on Epigenetics and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schulz EG, Heard E. Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev 2013; 23:109-15. [PMID: 23465885 DOI: 10.1016/j.gde.2013.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Many species have evolved sex chromosomes with highly divergent gene content, such as the X and Y chromosomes in mammals. As most non sex-specific genes probably need to be expressed at similar levels in males and females, dosage compensation mechanisms are in place to equalize the gene dosage between the sexes, and possibly also between sex chromosomes and autosomes. In mammals, one out of two X chromosomes is inactivated early during development in a process called X-chromosome inactivation that has been investigated intensively in the 50 years since it was discovered. Less is known about the potential functional roles of X-linked gene dosage, for example in controlling development in a sex-specific manner. In this review, we discuss the evolution of dosage compensation and how it is controlled during embryogenesis of mammals. In addition we will summarize evidence on the potential role of X chromosome number during early development.
Collapse
Affiliation(s)
- Edda G Schulz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France
| | | |
Collapse
|
39
|
Rizell S, Barrenas ML, Andlin-Sobocki A, Stecksen-Blicks C, Kjellberg H. Palatal height and dental arch dimensions in Turner syndrome karyotypes. Eur J Orthod 2013; 35:841-7. [DOI: 10.1093/ejo/cjs097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
40
|
Nakashima S, Watanabe Y, Okada J, Ono H, Nagata E, Fukami M, Ogata T. Critical role of Yp inversion in PRKX/PRKY-mediated Xp;Yp translocation in a patient with 45,X testicular disorder of sex development. Endocr J 2013; 60:1329-34. [PMID: 24088663 DOI: 10.1507/endocrj.ej13-0334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
45,X testicular disorder of sex development (TDSD), previously known as 45,X maleness, with unbalanced Xp;Yp translocation is an extremely rare condition caused by concomitant occurrence of loss of an X chromosome of maternal origin and an aberrant Xp;Yp translocation during paternal meiosis. We identified a Japanese male infant with an apparently 45,X karyotype who exhibited chondrodysplasia punctata and growth failure. Cytogenetic analysis revealed a 45,X.ish der(X)t(X;Y)(p22.33;p11.2)(DXZ1+,SRY+) karyotype. Array comparative genome hybridization analysis showed a simple Xp terminal deletion involving SHOX and ARSE with the breakpoint just centromeric to PRKX, and an apparently complex Yp translocation with the middle Yp breakpoint just telomeric to PRKY and the centromeric and the telomeric Yp breakpoints around the long inverted repeats for the generation of a common paracentric Yp inversion. Subsequently, a long PCR product was obtained with an X-specific and a Y-specific primers that were designed on the assumption of the presence of a Yp inversion that permits the alignment of PRKX and PRKY in the same direction, and the translocation fusion point was determined to reside within a 246 bp X-Y homologous segment at the "hot spot A" in the 5' region of PRKX/PRKY, by sequential direct sequencing for the long PCR product. These results argue not only for the presence of rare 45,X-TDSD with Xp;Yp translocation, but also for a critical role of a common paracentric Yp inversion in the occurrence of PRKX/PRKY-mediated unbalanced Xp;Yp translocation.
Collapse
Affiliation(s)
- Shinichi Nakashima
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ontogenetic changes of craniofacial complex in Turner syndrome patients treated with growth hormone. Clin Oral Investig 2012; 17:1563-71. [PMID: 23001189 DOI: 10.1007/s00784-012-0844-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The present study assessed changes of craniofacial complex in Turner syndrome (TS) patients treated with growth hormone (GH) during development. The objective was to examine the growth rate and pattern of craniofacial structures and to establish effects of GH on craniofacial development. MATERIALS AND METHODS The study population consisted of 15 TS patients treated with GH aged 5-18.5 years (13.3 ± 4.4) and corresponding control group of 45 females aged 6.8-18.7 (11.4 ± 2.6). According to the stage of cervical vertebral maturation, subjects were categorized into pre-growth (5 TS and 15 controls) and growth (10 TS and 30 controls) subgroups. The cephalometric analysis comprised angular and linear variables, measured on lateral cephalometric radiographs. RESULTS The mandibular corpus/anterior cranial base ratio increased significantly only in controls during development. In growth period, ramus/corpus ratio was significantly larger in TS group. SNA and SNB angles were significantly smaller in TS growth subgroup compared to corresponding controls. Among other variables, no statistically significant differences were revealed. CONCLUSIONS In TS patients treated with GH, growth capacities of cranial base and maxilla are adequate which can be attributed to GH treatment. Shape of mandible is altered due to decreased growth of corpus and overdeveloped ramus. Both maxillary and mandibular retrognathism are becoming more expressed during development. CLINICAL RELEVANCE Favorable influence of GH on craniofacial complex growth rate and altered growth pattern revealed in this study should be considered while planning both orthodontic treatment and retention.
Collapse
|
42
|
Dillon SP, Kurien BT, Maier-Moore JS, Wiley GB, Gaffney PM, Scofield RH. WITHDRAWN: A female autoimmunity gene exists: DDX3X. Med Hypotheses 2012:S0306-9877(12)00337-4. [PMID: 22917660 DOI: 10.1016/j.mehy.2012.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Skyler P Dillon
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Kurahashi H, Kogo H, Tsutsumi M, Inagaki H, Ohye T. Failure of homologous synapsis and sex-specific reproduction problems. Front Genet 2012; 3:112. [PMID: 22719750 PMCID: PMC3376420 DOI: 10.3389/fgene.2012.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023] Open
Abstract
The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis, and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
44
|
Mekkawy M, Kamel A, El-Ruby M, Mohamed A, Essawi M, Soliman H, Dessouky N, Shehab M, Mazen I. Isodicentric Y chromosomes in Egyptian patients with disorders of sex development (DSD). Am J Med Genet A 2012; 158A:1594-603. [DOI: 10.1002/ajmg.a.35487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/26/2012] [Indexed: 11/07/2022]
|
45
|
Cho SY, Ki CS, Jang JH, Sohn YB, Park SW, Kim SH, Kim SJ, Jin DK. Familial Xp22.33-Xp22.12 deletion delineated by chromosomal microarray analysis causes proportionate short stature. Am J Med Genet A 2012; 158A:1462-6. [DOI: 10.1002/ajmg.a.35357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/02/2012] [Indexed: 11/10/2022]
|
46
|
Onalan G, Yılmaz Z, Durak T, Sahin FI, Zeyneloglu HB. Successful pregnancy with preimplantation genetic diagnosis in a woman with mosaic Turner syndrome. Fertil Steril 2011; 95:1788.e1-3. [DOI: 10.1016/j.fertnstert.2010.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/11/2010] [Accepted: 12/22/2010] [Indexed: 11/28/2022]
|
47
|
Genetic aspects of premature ovarian failure: a literature review. Arch Gynecol Obstet 2010; 283:635-43. [PMID: 21188402 DOI: 10.1007/s00404-010-1815-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND The diagnosis of premature ovarian failure (POF) is based on the finding of amenorrhea before the age of 40 years associated with follicle-stimulating hormone levels in the menopausal range. It is a heterogeneous disorder affecting approximately 1% of women <40 years, 1:10,000 women by age 20 years and 1:1,000 women by age 30 years. POF is generally characterized by low levels of gonadal hormones (estrogens and inhibins) and high levels of gonadotropins (LH and FSH) (hypergonadotropic amenorrhea). METHODS Review of significant articles regarding genetic causes that are associated with POF. RESULTS Heterogeneity of POF is reflected by a variety of possible causes, including autoimmunity, toxics, drugs, as well as genetic defects. Changes at a single autosomal locus and many X-linked loci have been implicated in women with POF. X chromosome abnormalities (e.g., Turner syndrome) represent the major cause of primary amenorrhea associated with ovarian dysgenesis. Many genes have been involved in POF development, among them BMP15, FMR1, FMR2, LHR, FSHR, INHA, FOXL2, FOXO3, ERα, SF1, ERβ and CYP19A1 genes. CONCLUSION Despite the description of several candidate genes, the cause of POF remains undetermined in the vast majority of cases.
Collapse
|
48
|
Bouchlariotou S, Tsikouras P, Dimitraki M, Athanasiadis A, Papoulidis I, Maroulis G, Liberis A, Liberis V. Turner's syndrome and pregnancy: has the 45,X/47,XXX mosaicism a different prognosis? Own clinical experience and literature review. J Matern Fetal Neonatal Med 2010; 24:668-72. [PMID: 20923275 DOI: 10.3109/14767058.2010.520769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Turner's syndrome is characterized by an ovarian failure which occurs in most cases before puberty and leads to infertility. In less than 10% of women with Turner syndrome, puberty may occur and spontaneous pregnancies is possible but with a high risk of fetal loss, chromosomal and congenital abnormalities. We present the case of a 33-year-old woman with a mosaic Turner's syndrome karyotype 45,X/47,XXX who conceived spontaneously and had two successful pregnancies. Short stature was the only manifestation of Turner's syndrome. In the present report, we reviewed the available literature on the fertility of women with Turner's syndrome and the phenotypic effects of mosaicism for a 47,XXX cell line in Turner's syndrome.
Collapse
Affiliation(s)
- Sofia Bouchlariotou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Iijima K, Nozu K, Kamei K, Nakayama M, Ito S, Matsuoka K, Ogata T, Kaito H, Nakanishi K, Matsuo M. Severe Alport syndrome in a young woman caused by a t(X;1)(q22.3;p36.32) balanced translocation. Pediatr Nephrol 2010; 25:2165-70. [PMID: 20386926 DOI: 10.1007/s00467-010-1514-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/07/2010] [Accepted: 03/11/2010] [Indexed: 11/24/2022]
Abstract
The course of renal involvement and hearing loss is much milder in most female X-linked Alport syndromes than in male patients. We examined the molecular mechanism of development of the disease in a female patient with severe Alport syndrome. The patient showed heavy proteinuria, hematuria, neurosensory hearing loss and primary amenorrhea. Renal biopsy findings of electron microscopy and immunostaining of the alpha5 chain of type IV collagen indicated a female X-linked Alport syndrome. G-banding chromosomal analysis showed a t(X;1)(q22.3;p36.32) balanced translocation. Analysis of the collagen type IV (COL4A5) gene by genomic DNA sequencing, complementary DNA (cDNA) sequencing and multiplex ligation-dependent probe amplification assay showed no mutations or deletions/duplications of the gene. However, fluorescence in situ hybridization using the probes for exon 1 and exon 51 of the COL4A5 gene showed disruption of one copy of the gene. Replication R-banding chromosomal analysis indicated preferential inactivation of the normal X chromosome. This is the first report of severe Alport syndrome in a female patient carrying a balanced translocation between the chromosome X and 1 producing the disruption of one copy of COL4A5 gene and silencing of the other copy because of preferential inactivation of the normal X chromosome. Chromosomal abnormalities should be considered in female patients with severe forms of Alport syndrome.
Collapse
Affiliation(s)
- Kazumoto Iijima
- Department of Pediatrics, Division of Child Health and Development, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wistuba J, Luetjens CM, Stukenborg JB, Poplinski A, Werler S, Dittmann M, Damm OS, Hämäläinen T, Simoni M, Gromoll J. Male 41, XXY* mice as a model for klinefelter syndrome: hyperactivation of leydig cells. Endocrinology 2010; 151:2898-910. [PMID: 20427480 DOI: 10.1210/en.2009-1396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex chromosome imbalance in males is linked to a supernumerary X chromosome, a condition resulting in Klinefelter syndrome (KS; 47, XXY). KS patients suffer from infertility, hypergonadotropic hypogonadism, and cognitive impairments. Mechanisms of KS pathophysiology are poorly understood and require further exploration using animal models. Therefore, we phenotypically characterized 41, XX(Y)* mice of different ages, evaluated observed germ cell loss, studied X-inactivation, and focused on the previously postulated impaired Leydig cell maturation and function as a possible cause of the underandrogenization seen in KS. Xist methylation analysis revealed normal X-chromosome inactivation similar to that seen in females. Germ cell loss was found to be complete and to occur during the peripubertal phase. Significantly elevated FSH and LH levels were persistent in 41, XX(Y)* mice of different ages. Although Leydig cell hyperplasia was prominent, isolated XX(Y)* Leydig cells showed a mature mRNA expression profile and a significantly higher transcriptional activity compared with controls. Stimulation of XX(Y)* Leydig cells in vitro by human chorionic gonadotropin indicated a mature LH receptor whose maximal response exceeded that of control Leydig cells. The hyperactivity of Leydig cells seen in XX(Y)* mice suggests that the changes in the endocrine milieu observed in KS is not due to impaired Leydig cell function. We suggest that the embedding of Leydig cells into the changed testicular environment in 41 XX(Y)* males as such influences their endocrine function.
Collapse
Affiliation(s)
- Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University Clinics, Domagkstrasse 11, 48149 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|