1
|
Maraj JJ, Ringley JD, Sarles SA. Alamethicin channel inactivation caused by voltage-driven flux of alamethicin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184386. [PMID: 39343086 DOI: 10.1016/j.bbamem.2024.184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
We show that voltage alone can inactivate alamethicin channels, which has been previously observed for monazomycin and suzukacillin channels. The voltage required to trigger inactivation is above the potential to form channels, and, like with channel activation, this threshold reduces with increasing peptide concentration and membrane fluidity. Since similar monazomycin channels inactivate via channel break up and translocation, we hypothesized that inactivation of alamethicin channels occurs via the same mechanism. Our data prove this hypothesis to be true through two experiments. First, we show that inactivation of channels at positive voltages when peptides are supplied to only the cis side correlates to new channel activity on the trans side at negative potentials. This result indicates translocation of alamethicin peptides occurs only during voltage-induced inactivation. Second, we measured the ratio of steady-state (with inactivation) to ideal (without inactivation) conductance versus voltage for membranes with equal amounts of alamethicin on both sides and used these values to quantify alamethicin flux. Plotting flux versus steady-state conductance across multiple alamethicin concentrations shows a single linear dependence, signifying that translocated peptides originate from active channels that break up under prolonged voltage. Given the frequent use of alamethicin as model ion channels, these results add important understanding of their kinetic responses when subjected to prolonged, high voltages.
Collapse
Affiliation(s)
- Joshua J Maraj
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessie D Ringley
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Mitra S, Chen MT, Stedman F, Hernandez J, Kumble G, Kang X, Zhang C, Tang G, Daugherty I, Liu W, Ocloo J, Klucznik KR, Li AA, Heinrich F, Deslouches B, Tristram-Nagle S. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J Phys Chem B 2024; 128:9772-9784. [PMID: 39328031 PMCID: PMC11472314 DOI: 10.1021/acs.jpcb.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mei-Tung Chen
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francisca Stedman
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jedidiah Hernandez
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Kumble
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Kang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Churan Zhang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Tang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ian Daugherty
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wanqing Liu
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy Ocloo
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Raphael Klucznik
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Anzhi Li
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Berthony Deslouches
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
5
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Adamson LSR, Tasneem N, Andreas MP, Close W, Jenner EN, Szyszka TN, Young R, Cheah LC, Norman A, MacDermott-Opeskin HI, O'Mara ML, Sainsbury F, Giessen TW, Lau YH. Pore structure controls stability and molecular flux in engineered protein cages. SCIENCE ADVANCES 2022. [PMID: 35119930 DOI: 10.1101/2021.01.27.428512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Protein cages are a common architectural motif used by living organisms to compartmentalize and control biochemical reactions. While engineered protein cages have featured in the construction of nanoreactors and synthetic organelles, relatively little is known about the underlying molecular parameters that govern stability and flux through their pores. In this work, we systematically designed 24 variants of the Thermotoga maritima encapsulin cage, featuring pores of different sizes and charges. Twelve pore variants were successfully assembled and purified, including eight designs with exceptional thermal stability. While negatively charged mutations were better tolerated, we were able to form stable assemblies covering a full range of pore sizes and charges, as observed in seven new cryo-EM structures at 2.5- to 3.6-Å resolution. Molecular dynamics simulations and stopped-flow experiments revealed the importance of considering both pore size and charge, together with flexibility and rate-determining steps, when designing protein cages for controlling molecular flux.
Collapse
Affiliation(s)
- Lachlan S R Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Nuren Tasneem
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Close
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Li Chen Cheah
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Frank Sainsbury
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Campderdown, NSW 2006, Australia
| |
Collapse
|
7
|
Adamson LSR, Tasneem N, Andreas MP, Close W, Jenner EN, Szyszka TN, Young R, Cheah LC, Norman A, MacDermott-Opeskin HI, O’Mara ML, Sainsbury F, Giessen TW, Lau YH. Pore structure controls stability and molecular flux in engineered protein cages. SCIENCE ADVANCES 2022; 8:eabl7346. [PMID: 35119930 PMCID: PMC8816334 DOI: 10.1126/sciadv.abl7346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein cages are a common architectural motif used by living organisms to compartmentalize and control biochemical reactions. While engineered protein cages have featured in the construction of nanoreactors and synthetic organelles, relatively little is known about the underlying molecular parameters that govern stability and flux through their pores. In this work, we systematically designed 24 variants of the Thermotoga maritima encapsulin cage, featuring pores of different sizes and charges. Twelve pore variants were successfully assembled and purified, including eight designs with exceptional thermal stability. While negatively charged mutations were better tolerated, we were able to form stable assemblies covering a full range of pore sizes and charges, as observed in seven new cryo-EM structures at 2.5- to 3.6-Å resolution. Molecular dynamics simulations and stopped-flow experiments revealed the importance of considering both pore size and charge, together with flexibility and rate-determining steps, when designing protein cages for controlling molecular flux.
Collapse
Affiliation(s)
- Lachlan S. R. Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Nuren Tasneem
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P. Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Close
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Eric N. Jenner
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Taylor N. Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Li Chen Cheah
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Frank Sainsbury
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tobias W. Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Corresponding author. (T.W.G.); (Y.H.L.)
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Campderdown, NSW 2006, Australia
- Corresponding author. (T.W.G.); (Y.H.L.)
| |
Collapse
|
8
|
Shigedomi K, Osada S, Jelokhani-Niaraki M, Kodama H. Systematic Design and Validation of Ion Channel Stabilization of Amphipathic α-Helical Peptides Incorporating Tryptophan Residues. ACS OMEGA 2021; 6:723-732. [PMID: 33553860 PMCID: PMC7853622 DOI: 10.1021/acsomega.0c05254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
Aromatic interactions such as π-π interaction and cation-π interaction are present in membrane proteins and play important roles in both structure and function. To systematically investigate the effect of aromatic residues on the structural stability and ion permeability of peptide-formed ion channels, we designed several peptides with one or two tryptophan (Trp) residues incorporated at different positions in amphipathic α-helical peptides. Circular dichroism (CD) studies revealed the preferable position of Trp residues for self-association in these designed peptides. Systematically designed di-substituted peptides with two Trps at each helix termini demonstrated intermolecular Trp-Trp interactions caused by aggregation. In the presence of liposomes, Trp on the hydrophilic face of the peptide enhanced interaction with the lipid membrane to increase the amphipathic α-helical contents. Appropriate incorporation and positioning of Trp enabled peptides to form more stable channels and had notable effects with Trp di-substituted peptides. The ion channel forming capability of a series of these peptides showed that the cation-π interactions between Trp and Lys residues in adjacent transmembrane helices contribute to remarkable stabilization of the channel structure.
Collapse
Affiliation(s)
- Keita Shigedomi
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Satoshi Osada
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and Biochemistry, Wilfrid Laurier
University, Waterloo, Ontario N2L3C5, Canada
| | - Hiroaki Kodama
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
9
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
10
|
Su Z, Juhaniewicz-Debinska J, Sek S, Lipkowski J. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:409-418. [PMID: 31815479 DOI: 10.1021/acs.langmuir.9b03271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The structure of water in the submembrane region of the bilayer of DPhPC floating (fBLM) on a monolayer of 1-thio-β-d-glucose (β-Tg)-modified gold nanoparticle film was studied by the surface-enhanced infrared absorption spectroscopy (SEIRAS). SEIRAS employs surface enhancement of the mean square electric field of the photon, which is acting on a few molecular layers above the film of gold nanoparticles. Therefore, it is uniquely suited to probe water molecules in the submembrane region and provides unique information concerning the structure of the hydrogen bond network of water surrounding the lipid bilayer. The IR spectra indicated that water with a strong hydrogen network is separating the membrane from the gold surface. This water is more ordered than the water in the bulk. When alamethicin, a peptide forming ion channels, is inserted into the membrane, the network is only slightly loosened. The addition of amiloride, an ion channel blocker, results in a significant decrease in the amount of water in the submembrane region. The remaining water has a significantly distorted hydrogen bond network. This study provides unique information about the effect of the ion channel on water transport across the bilayer. The electrode potential has a relatively small effect on water structure in the submembrane region. However, the IR studies demonstrated that water is less ordered at positive transmembrane potentials. The present results provide significant insight into the nature of hydration of a floating lipid bilayer on the gold electrode surface.
Collapse
Affiliation(s)
- ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Slawomir Sek
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
11
|
Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci 2019; 20:E5713. [PMID: 31739573 PMCID: PMC6887943 DOI: 10.3390/ijms20225713] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Resistance to antibiotics is one of the main current threats to human health and every year multi-drug resistant bacteria are infecting millions of people worldwide, with many dying as a result. Ever since their discovery, some 40 years ago, the antimicrobial peptides (AMPs) of innate defense have been hailed as a potential alternative to conventional antibiotics due to their relatively low potential to elicit resistance. Despite continued effort by both academia and start-ups, currently there are still no antibiotics based on AMPs in use. In this study, we discuss what we know and what we do not know about these agents, and what we need to know to successfully translate discovery to application. Understanding the complex mechanics of action of these peptides is the main prerequisite for identifying and/or designing or redesigning novel molecules with potent biological activity. However, other aspects also need to be well elucidated, i.e., the (bio)synthetic processes, physiological and pathological contexts of their activity, and a quantitative understanding of how physico-chemical properties affect activity. Research groups worldwide are using biological, biophysical, and algorithmic techniques to develop models aimed at designing molecules with the necessary blend of antimicrobial potency and low toxicity. Shedding light on some open questions may contribute toward improving this process.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Jasna Puizina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
12
|
Yamamoto T, Umegawa Y, Yamagami M, Suzuki T, Tsuchikawa H, Hanashima S, Matsumori N, Murata M. The Perpendicular Orientation of Amphotericin B Methyl Ester in Hydrated Lipid Bilayers Supports the Barrel-Stave Model. Biochemistry 2019; 58:2282-2291. [PMID: 30973009 DOI: 10.1021/acs.biochem.9b00180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity. The methyl ester of AmB (AME) labeled with NMR isotopes, d3-AME, and its fluorinated and/or 13C-labeled derivatives were prepared. All of the AmB derivatives showed similar membrane-disrupting activities and ultraviolet spectra in phospholipid liposomes, suggesting that their molecular assemblies in membranes closely mimic those of AmB. Solid-state 2H NMR measurements of d3-AME in a hydrated membrane showed that the mobility of AME molecules depends on concentration and temperature. At a 1:5:45 AME:Erg:dimyristoylphosphatidylcholine ratio, AME became sufficiently mobilized to observe the motional averaging of quadrupole coupling. On the basis of the rotational averaging effect of 19F chemical shift anisotropy, 2H quadrupolar splitting, and 13C-19F dipolar coupling of 14β-F-AMEs, we deduced that the molecular axis of AME is predominantly parallel to the normal of a lipid bilayer. This result supports the barrel-stave model as a molecular assembly of AmB in membranes.
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Fundamental Science Research Center, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Masaki Yamagami
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Taiga Suzuki
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Department of Chemistry, Graduate School of Sciences , Kyushu University , Fukuoka 819-0395 , Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Fundamental Science Research Center, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
13
|
Zhou W, Mu L, Li J, Reed M, Burke PJ. Sensing the electrical activity of single ion channels with top-down silicon nanoribbons. NANO FUTURES 2018; 2:025008. [PMID: 30828648 PMCID: PMC6390970 DOI: 10.1088/2399-1984/aac737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using top-down fabricated silicon nanoribbons, we measure the opening and closing of ion channels alamethicin and gramicidin A. A capacitive model of the system is proposed to demonstrate that the geometric capacitance of the nanoribbon is charged by ion channel currents. The integration of top-down nanoribbons with electrophysiology holds promise for integration of electrically active living systems with artificial electronics.
Collapse
Affiliation(s)
- Weiwei Zhou
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, United States of America
| | - Luye Mu
- Department of Electrical Engineering; Department of Applied Physics, Yale University, New Haven, CT, United States of America
| | - Jinfeng Li
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, United States of America
| | - Mark Reed
- Department of Electrical Engineering; Department of Applied Physics, Yale University, New Haven, CT, United States of America
| | - Peter J Burke
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, United States of America
| |
Collapse
|
14
|
Su Z, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6249-6260. [PMID: 29722994 DOI: 10.1021/acs.langmuir.8b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The insertion and ion-conducting channel properties of alamethicin reconstituted into a 1,2-di- O-phytanyl- sn-glycero-3-phosphocholine bilayer floating on the surface of a gold (111) electrode modified with a 1-thio-β-d-glucose (β-Tg) self-assembled monolayer were investigated using a combination of electrochemical impedance spectroscopy (EIS) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The hydrophilic β-Tg monolayer separated the bilayer from the gold substrate and created a water-rich spacer region, which better represents natural cell membranes. The EIS measurements acquired information about the membrane resistivity (a measure of membrane porosity), and the PM-IRRAS experiments provided insight into the conformation and orientation of the membrane constituents as a function of the transmembrane potential. The results showed that the presence of alamethicin had a small effect on the conformation and orientation of phospholipid molecules within the bilayer for all studied potentials. In contrast, the alamethicin peptides assumed a surface state, where the helical axes adopted a large tilt angle with respect to the surface normal, at small transmembrane potentials, and inserted into the bilayer at sufficiently negative transmembrane potentials forming pores, which behaved as barrel-stave ion channels for ionic transport across the membrane. The results indicated that insertion of alamethincin peptides into the bilayer was driven by the dipole-field interactions and that the transitions between the inserted and surface states were electrochemically reversible. Additionally, the EIS measurements performed on phospholipid bilayers without alamethicin also showed that the application of negative transmembrane potentials introduces defects into the bilayer. The membrane resistances measured in both the absence and presence of alamethicin show similar dependencies on the electrode potential, suggesting that the insertion of the peptide may also be assisted by the electroporation of the membrane. The findings in this study provide new insights into the mechanism of alamethicin insertion into phospholipid bilayers.
Collapse
Affiliation(s)
- ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Muzaffar Shodiev
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
15
|
Beltramo PJ, Scheidegger L, Vermant J. Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5880-5888. [PMID: 29715042 DOI: 10.1021/acs.langmuir.8b00837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capacitance measurements provide unique insights into the thickness, compressibility, and composition of large-area membrane bilayers and are used here in addition to demonstrate the successful incorporation of model ion channels. The simultaneous ability to control the bilayer size, manipulate tension, and optically monitor and electrically stimulate freestanding membranes enables precise determination of their specific capacitance and thickness across a wide range of areas. We confirm that membranes formed by this recently developed technique have capacitive properties similar to those formed by existing protocols, including solvent-free approaches, and discuss the effect using either hexadecane or squalene as the oil solvent. The results obtained here are relevant for other methods where lipid membranes are reconstituted from a bulk oil solvent. Because biological membranes have a diverse phospholipid profile, we show that the technique can successfully reconstitute membranes with binary composition mixtures. As an outlook, we show the capability of model membrane proteins, specifically α-hemolysin and alamethicin, to be incorporated into the formed bilayers and measure ion transport.
Collapse
Affiliation(s)
- Peter J Beltramo
- Department of Chemical Engineering , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Laura Scheidegger
- Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Jan Vermant
- Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| |
Collapse
|
16
|
Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J. Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Iwamoto M, Sumino A, Shimada E, Kinoshita M, Matsumori N, Oiki S. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Sci Rep 2017; 7:10782. [PMID: 28883505 PMCID: PMC5589915 DOI: 10.1038/s41598-017-11135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022] Open
Abstract
Amphidinol 3 (AM3) is an anti-fungal polyene extracted from a marine dinoflagellate. Here, we examined the ion channel activity and membrane-embedded structure of AM3 using a lipid bilayer method and atomic force microscopy (AFM). AM3 exhibited large-conductance (~1 nS) and non-selective single-channel activity only when sterols were present in the membrane leaflet of the AM3-added side. The variable conductance suggests the formation of a multimeric barrel-stave pore. At high AM3 concentrations, giant-conductance “jumbo” channels (~40 nS) emerged. AFM revealed a thicker raft-like membrane phase with the appearance of a wrinkled surface, in which phase pores (diameter: ~10 nm) were observed. The flip-flop of ergosterol occurred only after the appearance of the jumbo channel, indicating that the jumbo channel induced a continuity between the outer and inner leaflets of the membrane: a feature characteristic of toroidal-like pores. Thus, AM3 forms different types of sterol-aided polymorphic channels in a concentration dependent manner.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ayumi Sumino
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.,High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.,Bio-AFM frontier Research Center, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eri Shimada
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
18
|
Strakosas X, Selberg J, Hemmatian Z, Rolandi M. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600527. [PMID: 28725527 PMCID: PMC5515233 DOI: 10.1002/advs.201600527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Indexed: 05/08/2023]
Abstract
From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic currents. Here, we summarize our latest efforts on bioprotonic devices that monitor and control a current of H+ in physiological conditions, and discuss future potential applications. Specifically, we describe the integration of these devices with enzymatic logic gates, bioluminescent reactions, and ion channels.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Zahra Hemmatian
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
19
|
Zhou W, Burke PJ. Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14618-14632. [PMID: 28387499 PMCID: PMC6373873 DOI: 10.1021/acsami.7b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Interfacing nanoelectronic devices with cell membranes can enable multiplexed detection of fundamental biological processes (such as signal transduction, electrophysiology, and import/export control) even down to the single ion channel level, which can lead to a variety of applications in pharmacology and clinical diagnosis. Therefore, it is necessary to understand and control the chemical and electrical interface between the device and the lipid bilayer membrane. Here, we develop a simple bottom-up approach to assemble tethered bilayer lipid membranes (tBLMs) on silicon wafers and glass slides, using a covalent tether attachment chemistry based on silane functionalization, followed by step-by-step stacking of two other functional molecular building blocks (oligo-poly(ethylene glycol) (PEG) and lipid). A standard vesicle fusion process was used to complete the bilayer formation. The monolayer synthetic scheme includes three well-established chemical reactions: self-assembly, epoxy-amine reaction, and EDC/NHS cross-linking reaction. All three reactions are facile and simple and can be easily implemented in many research labs, on the basis of common, commercially available precursors using mild reaction conditions. The oligo-PEG acts as the hydrophilic spacer, a key role in the formation of a homogeneous bilayer membrane. To explore the broad applicability of this approach, we have further demonstrated the formation of tBLMs on three common classes of (nano)electronic biosensor devices: indium-tin oxide-coated glass, silicon nanoribbon devices, and high-density single-walled carbon nanotubes (SWNT) networks on glass. More importantly, we incorporated alemethicin into tBLMs and realized the real-time recording of single ion channel activity with high sensitivity and high temporal resolution using the tBLMs/SWNT network transistor hybrid platform. This approach can provide a covalently bonded lipid coating on the oxide layer of nanoelectronic devices, which will enable a variety of applications in the emerging field of nanoelectronic interfaces to electrophysiology.
Collapse
Affiliation(s)
- Weiwei Zhou
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California at Irvine, Irvine, California 92697, United States
| | - Peter J. Burke
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
20
|
Hemmatian Z, Keene S, Josberger E, Miyake T, Arboleda C, Soto-Rodríguez J, Baneyx F, Rolandi M. Electronic control of H + current in a bioprotonic device with Gramicidin A and Alamethicin. Nat Commun 2016; 7:12981. [PMID: 27713411 PMCID: PMC5059763 DOI: 10.1038/ncomms12981] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/19/2016] [Indexed: 12/04/2022] Open
Abstract
In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.
Collapse
Affiliation(s)
- Zahra Hemmatian
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Scott Keene
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Erik Josberger
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Takeo Miyake
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Carina Arboleda
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Jessica Soto-Rodríguez
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Marco Rolandi
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
Lella M, Mahalakshmi R. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide. J Phys Chem Lett 2016; 7:2298-2303. [PMID: 27257735 DOI: 10.1021/acs.jpclett.6b00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Re-engineering nature's molecules is an ideal strategy to obtain explicit functionality such as synthetic molecular machines, yet novel strategies for producing engineered molecular channels are few. Here we report a peptide engineering strategy through sequence reversal, which we applied on the first transmembrane peptide of the mycobacteriophage membranoporin protein holin. We have successfully redesigned the membrane rupture property of this peptide to form specific nanopore ion channels. We report the structural characterization and electrophysiology measurements of a library of 28-residue engineered membrane peptides, with remarkable ion channel behavior. We further identify that key residues at the peptide terminus, the central proline, charge distribution, and hydropathy index of the peptide together contribute to the channel properties that we measure. Our sequence reversal strategy for peptide engineering to successfully obtain nanopore channels can pave the way for better biobased design of controlled nanopores, using only natural amino acids.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| |
Collapse
|
22
|
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording. SENSORS 2016; 16:s16050709. [PMID: 27213382 PMCID: PMC4883400 DOI: 10.3390/s16050709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/13/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022]
Abstract
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
Collapse
|
23
|
Freeman EC, Farimani AB, Aluru NR, Philen MK. Multiscale modeling of droplet interface bilayer membrane networks. BIOMICROFLUIDICS 2015; 9:064101. [PMID: 26594262 PMCID: PMC4644148 DOI: 10.1063/1.4935382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/28/2015] [Indexed: 05/17/2023]
Abstract
Droplet interface bilayer (DIB) networks are considered for the development of stimuli-responsive membrane-based materials inspired by cellular mechanics. These DIB networks are often modeled as combinations of electrical circuit analogues, creating complex networks of capacitors and resistors that mimic the biomolecular structures. These empirical models are capable of replicating data from electrophysiology experiments, but these models do not accurately capture the underlying physical phenomena and consequently do not allow for simulations of material functionalities beyond the voltage-clamp or current-clamp conditions. The work presented here provides a more robust description of DIB network behavior through the development of a hierarchical multiscale model, recognizing that the macroscopic network properties are functions of their underlying molecular structure. The result of this research is a modeling methodology based on controlled exchanges across the interfaces of neighboring droplets. This methodology is validated against experimental data, and an extension case is provided to demonstrate possible future applications of droplet interface bilayer networks.
Collapse
Affiliation(s)
- Eric C Freeman
- College of Engineering, University of Georgia , Athens, Georgia 30602, USA
| | - Amir B Farimani
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | - Michael K Philen
- Department of Aerospace and Ocean Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
24
|
Zhou W, Wang YY, Lim TS, Pham T, Jain D, Burke PJ. Detection of single ion channel activity with carbon nanotubes. Sci Rep 2015; 5:9208. [PMID: 25778101 PMCID: PMC4361846 DOI: 10.1038/srep09208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.
Collapse
Affiliation(s)
- Weiwei Zhou
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Yung Yu Wang
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Tae-Sun Lim
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Ted Pham
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Dheeraj Jain
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Peter J. Burke
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| |
Collapse
|
25
|
Wang YY, Pham TD, Zand K, Li J, Burke PJ. Charging the quantum capacitance of graphene with a single biological ion channel. ACS NANO 2014; 8:4228-38. [PMID: 24754625 PMCID: PMC4046776 DOI: 10.1021/nn501376z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/22/2014] [Indexed: 05/22/2023]
Abstract
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.
Collapse
Affiliation(s)
- Yung Yu Wang
- Department of Chemical Engineering and Materials Science, Department of Biomedical Engineering, Department of Physics and Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States
| | - Ted D. Pham
- Department of Chemical Engineering and Materials Science, Department of Biomedical Engineering, Department of Physics and Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States
| | - Katayoun Zand
- Department of Chemical Engineering and Materials Science, Department of Biomedical Engineering, Department of Physics and Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States
| | - Jinfeng Li
- Department of Chemical Engineering and Materials Science, Department of Biomedical Engineering, Department of Physics and Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States
| | - Peter J. Burke
- Department of Chemical Engineering and Materials Science, Department of Biomedical Engineering, Department of Physics and Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States
- Address correspondence to
| |
Collapse
|
26
|
Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer. Biophys J 2014; 105:1569-80. [PMID: 24094398 DOI: 10.1016/j.bpj.2013.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine-serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a "dimer of dimers." In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.
Collapse
|
27
|
Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc Natl Acad Sci U S A 2012; 109:21223-7. [PMID: 23236158 DOI: 10.1073/pnas.1201559110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present direct visualization of pores formed by alamethicin (Alm) in a matrix of phospholipids using electrochemical scanning tunneling microscopy (EC-STM). High-resolution EC-STM images show individual peptide molecules forming channels. The channels are not dispersed randomly in the monolayer but agglomerate forming 2D nanocrystals with a hexagonal lattice in which the average channel-channel distance is 1.90 ± 0.1 nm. The STM images suggest that each Alm is shared between the two adjacent channels. Every channel consists of six Alm molecules. Three or four of these molecules have the hydrophilic group oriented toward the center of the channel allowing for water column formation inside the channel. The dimensions of the central pore in the images are consistent with the dimension of the water column in a model of hexameric pore proposed in the literature. The images obtained in this work validate the barrel-stave model of the pore formed in phospholipid membranes by amphiphatic peptides. They also provide direct evidence for cluster formation by such pores.
Collapse
|
28
|
Khan T, van Brummelen AC, Parkinson CJ, Hoppe HC. ATP and luciferase assays to determine the rate of drug action in in vitro cultures of Plasmodium falciparum. Malar J 2012; 11:369. [PMID: 23134617 PMCID: PMC3505462 DOI: 10.1186/1475-2875-11-369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Knowledge of the rate of action of compounds against cultured malaria parasites is required to determine the optimal time-points for drug mode of action studies, as well as to predict likely in vivo parasite clearance rates in order to select optimal hit compounds for further development. In this study, changes in parasite ATP levels and transgenic luciferase reporter activity were explored as means to detect drug-induced stress in cultured parasites. Methods In vitro cultures of Plasmodium falciparum 3D7 wild-type or firefly luciferase-expressing parasites were incubated with a panel of six anti-malarial compounds for 10 hours and parasite ATP levels or luciferase activity determined at two-hour intervals using luminescence-based reagents. For comparative purposes, parasite morphology changes were evaluated by light microscopy, as well as the extent to which parasites recover after 48 hours from a six-hour drug treatment using a parasite lactate dehydrogenase assay. Results Changes in parasite ATP levels displayed three phenotypes: mild or no change (chloroquine, DFMO); 2–4 fold increase (mefloquine, artemisinin); severe depletion (ritonavir, gramicidin). The respective phenotypes and the rate at which they manifested correlated closely with the extent to which parasites recovered from a six-hour drug treatment (with the exception of chloroquine) and the appearance and severity of morphological changes observed by light microscopy. Luciferase activity decreased profoundly in parasites treated with mefloquine, artemisinin and ritonavir (34-67% decrease in 2 hours), while chloroquine and DFMO produced only mild changes over 10 hours. Gramicidin yielded intermediate decreases in luciferase activity. Conclusions ATP levels and luciferase activity respond rapidly to incubation with anti-malarial drugs and provide quantitative read-outs to detect the appearance and magnitude of drug-induced stress in cultured parasites. The correlation between the observed changes and irreversible parasite toxicity is not yet sufficiently clear to predict clinical clearance rates, but may be useful for ranking compounds against each other and standard drugs vis-à-vis rate of action and for determining early time-points for drug mode of action studies.
Collapse
Affiliation(s)
- Tasmiyah Khan
- CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa
| | | | | | | |
Collapse
|
29
|
Gurnev PA, Ortenberg R, Dörr T, Lewis K, Bezrukov SM. Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Lett 2012; 586:2529-34. [PMID: 22728134 PMCID: PMC3498054 DOI: 10.1016/j.febslet.2012.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
We studied membrane activity of the bacterial peptide TisB involved in persister cell formation. TisB and its analogs form multi-state ion-conductive pores in planar lipid bilayers with all states displaying similar anionic selectivity. TisB analogs differing by ±1 elementary charges show corresponding changes in selectivity. Probing TisB pores with poly-(ethylene glycol)s reveals only restricted partitioning even for the smallest polymers, suggesting that the pores are characterized by a relatively small diameter. These findings allow us to suggest that TisB forms clusters of narrow pores that are essential for its mechanism of action.
Collapse
Affiliation(s)
- Philip A Gurnev
- Program in Physical Biology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 2012; 134:6237-43. [PMID: 22420296 PMCID: PMC3328217 DOI: 10.1021/ja2110784] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Feng Wei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Joshua Jasensky
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
| | - Andrew P. Boughton
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Pei Yang
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Zhan Chen
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| |
Collapse
|
31
|
Fischer WB, Hsu HJ. Viral channel forming proteins - modeling the target. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:561-71. [PMID: 20546700 PMCID: PMC7094444 DOI: 10.1016/j.bbamem.2010.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/02/2023]
Abstract
The cellular and subcellular membranes encounter an important playground for the activity of membrane proteins encoded by viruses. Viral membrane proteins, similar to their host companions, can be integral or attached to the membrane. They are involved in directing the cellular and viral reproduction, the fusion and budding processes. This review focuses especially on those integral viral membrane proteins which form channels or pores, the classification to be so, modeling by in silico methods and potential drug candidates. The sequence of an isolate of Vpu from HIV-1 is aligned with host ion channels and a toxin. The focus is on the alignment of the transmembrane domains. The results of the alignment are mapped onto the 3D structures of the respective channels and toxin. The results of the mapping support the idea of a 'channel-pore dualism' for Vpu.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
32
|
Sarles SA, Stiltner LJ, Williams CB, Leo DJ. Bilayer formation between lipid-encased hydrogels contained in solid substrates. ACS APPLIED MATERIALS & INTERFACES 2010; 2:3654-3663. [PMID: 21067200 DOI: 10.1021/am100826s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Solidified biomolecular networks that incorporate liquid-supported lipid bilayers are constructed by attaching lipid-encased, water-swollen hydrogels contained in oil. Poly(ethylene glycol) dimethacrylate (PEG-DMA) and a free-radical photoinitiator are added to an aqueous lipid vesicle solution such that exposure to ultraviolet light results in solidification of neighboring aqueous volumes. Bilayer formation can occur both prior to photopolymerization with the aqueous mixture in the liquid state and after solidification by using the regulated attachment method (RAM) to attach the aqueous volumes contained within a flexible substrate. In addition, photopolymerization of the hydrogels can be performed in a separate mold prior to placement in the supporting substrate. Membranes formed across a wide range of hydrogel concentrations [0-80% (w/v); MW=1000 g/mol PEG-DMA] exhibit high electrical resistances (1-10 GΩ), which enable single-channel recordings of alamethicin channels and show significant durability and longevity. We demonstrate that just as liquid phases can be detached and reattached using RAM, reconfiguration of solid aqueous phases is also possible. The results presented herein demonstrate a step toward constructing nearly solid-state biomolecular materials that retain fluid interfaces for driving molecular assembly. This work also introduces the use of three-dimensional printing to rapidly prototype a molding template used to fabricate polyurethane substrates and to shape individual hydrogels.
Collapse
Affiliation(s)
- Stephen A Sarles
- Center for Intelligent Material Systems and Structures (CIMSS), Department of Mechanical Engineering, and Design, Research, and Education for Additive Manufacturing Systems (DREAMS) Laboratory, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | | | | |
Collapse
|
33
|
Liang X, Li ZY. Ion channels as antivirus targets. Virol Sin 2010; 25:267-80. [PMID: 20960300 DOI: 10.1007/s12250-010-3136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022] Open
Abstract
Ion channels are membrane proteins that are found in a number of viruses and which are of crucial physiological importance in the viral life cycle. They have one common feature in that their action mode involves a change of electrochemical or proton gradient across the bilayer lipid membrane which modulates viral or cellular activity. We will discuss a group of viral channel proteins that belong to the viroproin family, and which participate in a number of viral functions including promoting the release of viral particles from cells. Blocking these channel-forming proteins may be "lethal", which can be a suitable and potential therapeutic strategy. In this review we discuss seven ion channels of viruses which can lead serious infections in human beings: M2 of influenza A, NB and BM2 of influenza B, CM2 of influenza C, Vpu of HIV-1, p7 of HCV and 2B of picornaviruses.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | |
Collapse
|
34
|
Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ. Self-assembly behavior of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization. J Phys Chem B 2010; 114:4836-40. [PMID: 20302384 DOI: 10.1021/jp100458x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colistin is an amphiphilic antibiotic that has re-emerged into clinical use due to the increasing prevalence of difficult-to-treat Gram-negative infections. The existence of self-assembling colloids in solutions of colistin and its derivative prodrug, colistin methanesulfonate (CMS), was investigated. Colistin and CMS reduced the air-water interfacial tension, and dynamic light scattering (DLS) studies showed the existence of 2.07 +/- 0.3 nm aggregates above 1.5 mM for colistin and of 1.98 +/- 0.36 nm aggregates for CMS above 3.5 mM (mean +/- SD). Above the respective critical micelle concentrations (CMC) the solubility of azithromycin, a hydrophobic antibiotic, increased approximately linearly with increasing surfactant concentration (5:1 mol ratio colistin:azithromycin), suggestive of hydrophobic domains within the micellar cores. Rapid conversion of CMS to colistin occurred below the CMC (60% over 48 h), while conversion above the CMC was less than 1%. The formation of colistin and CMS micelles demonstrated in this study is the proposed mechanism for solubilization of azithromycin and the concentration-dependent stability of CMS.
Collapse
Affiliation(s)
- Stephanie J Wallace
- Facility for Anti-Infective Drug Development and Innovation, Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Ye S, Nguyen KT, Chen Z. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B 2010; 114:3334-40. [PMID: 20163089 PMCID: PMC2844632 DOI: 10.1021/jp911174d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structures of membrane-associated peptides and molecular interactions between peptides and cell membrane bilayers govern biological functions of these peptides. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study such structures and interactions at the molecular level. In this research, SFG has been applied, supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to characterize the interactions between alamethicin (a model for larger channel proteins) and different lipid bilayers in the absence of membrane potential. The orientation of alamethicin in lipid bilayers has been determined using SFG amide I spectra detected with different polarization combinations. It was found that alamethicin adopts a mixed alpha-helical and 3(10)-helical structure in fluid-phase lipid bilayers. The helix (mainly alpha-helix) at the N-terminus tilts at about 63 degrees versus the surface normal in a fluid-phase 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9 (d-DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. The 3(10)-helix at the C-terminus (beyond the Pro14 residue) tilts at about 43 degrees versus the surface normal. This is the first time to apply SFG to study a 3(10)-helix experimentally. When interacting with a gel-phase lipid bilayer, alamethicin lies down on the gel-phase bilayer surface or aggregates or both, which does not have significant insertion into the lipid bilayer.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, P.R. China 230026
| | - Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2010; 96:86-100. [PMID: 18835909 DOI: 10.1529/biophysj.108.136242] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022] Open
Abstract
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the alpha-tetrasubstituted amino acid residue ?-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with (15)N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled (15)N and (31)P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional (15)N chemical shift -(1)H-(15)N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed alpha-/3(10)-helical structures which can be explained by the restraints imposed by the membranes and the bulky alpha-aminoisobutyric acid residues. The (15)N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.
Collapse
|
37
|
Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 2009; 7:373-95. [PMID: 19940001 DOI: 10.1098/rsif.2009.0443] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids, other lipid metabolites and amphiphiles) regulate a wide range of membrane proteins in a seemingly non-specific manner. The commonality of the changes in protein function suggests an underlying physical mechanism, and recent studies show that at least some of the changes are caused by altered bilayer physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli.
Collapse
Affiliation(s)
- Jens A Lundbaek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
38
|
Ye S, Nguyen KT, Le Clair SV, Chen Z. In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. J Struct Biol 2009; 168:61-77. [PMID: 19306928 PMCID: PMC2753614 DOI: 10.1016/j.jsb.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 12/11/2022]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interactions between different peptides/proteins (melittin, G proteins, alamethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Pan J, Tristram-Nagle S, Nagle JF. Alamethicin aggregation in lipid membranes. J Membr Biol 2009; 231:11-27. [PMID: 19789905 DOI: 10.1007/s00232-009-9199-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
X-ray scattering features induced by aggregates of alamethicin (Alm) were obtained in oriented stacks of model membranes of DOPC(diC18:1PC) and diC22:1PC. The first feature obtained near full hydration was Bragg rod in-plane scattering near 0.11 A(-1) in DOPC and near 0.08 A(-1) in diC22:1PC at a 1:10 Alm:lipid ratio. This feature is interpreted as bundles consisting of n Alm monomers in a barrel-stave configuration surrounding a water pore. Fitting the scattering data to previously published molecular dynamics simulations indicates that the number of peptides per bundle is n = 6 in DOPC and n >or= 9 in diC22:1PC. The larger bundle size in diC22:1PC is explained by hydrophobic mismatch of Alm with the thicker bilayer. A second diffuse scattering peak located at q(r) approximately 0.7 A(-1) is obtained for both DOPC and diC22:1PC at several peptide concentrations. Theoretical calculations indicate that this peak cannot be caused by the Alm bundle structure. Instead, we interpret it as being due to two-dimensional hexagonally packed clusters in equilibrium with Alm bundles. As the relative humidity was reduced, interactions between Alm in neighboring bilayers produced more peaks with three-dimensional crystallographic character that do not index with the conventional hexagonal space groups.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
40
|
Bioelectronic silicon nanowire devices using functional membrane proteins. Proc Natl Acad Sci U S A 2009; 106:13780-4. [PMID: 19667177 DOI: 10.1073/pnas.0904850106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern means of communication rely on electric fields and currents to carry the flow of information. In contrast, biological systems follow a different paradigm that uses ion gradients and currents, flows of small molecules, and membrane electric potentials. Living organisms use a sophisticated arsenal of membrane receptors, channels, and pumps to control signal transduction to a degree that is unmatched by manmade devices. Electronic circuits that use such biological components could achieve drastically increased functionality; however, this approach requires nearly seamless integration of biological and manmade structures. We present a versatile hybrid platform for such integration that uses shielded nanowires (NWs) that are coated with a continuous lipid bilayer. We show that when shielded silicon NW transistors incorporate transmembrane peptide pores gramicidin A and alamethicin in the lipid bilayer they can achieve ionic to electronic signal transduction by using voltage-gated or chemically gated ion transport through the membrane pores.
Collapse
|
41
|
Modulating the activity of the channel-forming segment of Vpr protein from HIV-1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1089-95. [PMID: 19629466 DOI: 10.1007/s00249-009-0518-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Viral protein of regulation (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) is a short auxiliary protein that is 96 amino acids in length. During the viral life cycle, Vpr is released into the blood serum and is able to enter cellular membranes of noninfected cells. In this study a short peptide, Vpr(55-83), was shown to exhibit ion-channel-like activity when reconstituted into (1) planar lipid bilayers and (2) lipid bilayers held at the tip of a glass pipette. The two set-ups led to differences in the oligomerization state of the peptide, which was reflected in differences in the conductance levels. Experiments under applied hydrostatic pressure affect the dynamics of the protein within the membrane.
Collapse
|
42
|
Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1387-97. [PMID: 19248763 DOI: 10.1016/j.bbamem.2009.02.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/29/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 A at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 A for DOPC; Alm is then mismatched with the 7 A thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (K(C)) by a factor of approximately 2 in DOPC and a factor of approximately 10 in diC22:1PC membranes (P/L approximately 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.
Collapse
|
43
|
Abstract
Channel-forming proteins are found in a number of viral genomes. In some cases, their role in the viral life cycle is well understood, in some cases it needs still to be elucidated. A common theme is that their mode of action involves a change of electrochemical or proton gradient across the lipid membrane which modulates the viral or cellular activity. Blocking these proteins can be a suitable therapeutic strategy as for some viruses this may be "lethal." Besides the many biological relevant questions still to be answered, there are also many open questions concerning the biophysical side as well as structural information and the mechanism of function on a molecular level. The immanent biophysical issues are addressed and the work in the field is summarized.
Collapse
|
44
|
Mayer M, Semetey V, Gitlin I, Yang J, Whitesides GM. Using ion channel-forming peptides to quantify protein-ligand interactions. J Am Chem Soc 2008; 130:1453-65. [PMID: 18179217 DOI: 10.1021/ja077555f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW approximately 30 kD) to the ion channel-forming peptides (MW approximately 2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor, 4-carboxybenzenesulfonamide, to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of approximately 2 microM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry.
Collapse
Affiliation(s)
- Michael Mayer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | |
Collapse
|
45
|
Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005; 205:1-16. [PMID: 16245038 DOI: 10.1007/s00232-005-0753-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/19/2005] [Indexed: 12/12/2022]
Abstract
The interaction of reactive oxygen species with biological membranes is known to produce a great variety of different functional modifications. Part of these modifications may be classified as direct effects. They are due to direct interaction of the reactive species with the molecular machinery under study with a subsequent chemical and functional modification of these molecules. An important part of the observed functional modifications are, however, indirect effects. They are the consequence of an oxidative modification of the environment of biological macromolecules. Lipid peroxidation-via its generation of chemically reactive products-contributes to the loss of cellular functions through the inactivation of membrane enzymes and even of cytoplasmic (i.e., water soluble) proteins. Oxidation of membrane lipids may, however, also increase the efficiency of membrane functions. This was observed for a series of transport systems. Lipid peroxidation was accompanied by activation of certain types of ion channels and ion carriers. The effect is due to an increase of the polarity of the membrane interior by accumulation of polar oxidation products. The concomitant change of the dielectric constant, which may be detected via the increase of the membrane capacitance, facilitates the opening of membrane channels and lowers the inner membrane barrier for the movement of ions across the membrane. The predominant effect, however, at least at a greater extent of lipid peroxidation, is the inhibition of membrane functions. The strong increase of the leak conductance contributes to the depolarization of the membrane potential, it destroys the barrier properties of the membrane and it may finally lead, via an increase of cytoplasmic Ca(2+) concentration, to cell death. The conclusions were derived from experiments performed with different systems: model systems in planar lipid membranes, native ion channels either reconstituted in lipid membranes or investigated in their natural environment by the patch-clamp method, and two important ion pumps, the Na/K-ATPase and the sarcoplasmic reticulum (SR) Ca-ATPase.
Collapse
Affiliation(s)
- G Stark
- Department of Biology, University of Konstanz, Box M638, D-78457 Konstanz, Germany.
| |
Collapse
|
46
|
Vitkova V, Méléard P, Pott T, Bivas I. Alamethicin influence on the membrane bending elasticity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:281-6. [PMID: 16211403 DOI: 10.1007/s00249-005-0019-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 11/25/2022]
Abstract
We investigate the bending elasticity of lipid membranes with the increase of the alamethicin concentrations in the membrane via analysis of the thermally induced shape fluctuations of quasi-spherical giant vesicles. Our experimental results prove the strong influence of alamethicin molecules on the bending elasticity of diphytanoyl phosphatidylcholine and dilauroyl phosphatidylcholine membranes even in the range of very low peptide concentrations (less than 10(-3) mol/mol in the membrane). The results presented in this work, testify to the peripheral orientation of alamethicin molecules at low peptide concentrations in the membrane for both types of lipid bilayers. An upper limit of the concentration of the peptide in the membrane is determined below which the system behaves as an ideal two-dimensional solution and the peptide molecules have a planar orientation in the membrane.
Collapse
Affiliation(s)
- Victoria Vitkova
- Liquid Crystal Laboratory, Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | | | | | | |
Collapse
|
47
|
Duclohier H, Alder GM, Bashford CL, Brückner H, Chugh JK, Wallace BA. Conductance studies on trichotoxin_A50E and implications for channel structure. Biophys J 2005; 87:1705-10. [PMID: 15345549 PMCID: PMC1304575 DOI: 10.1529/biophysj.104.040659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trichotoxin_A50E is an 18-residue peptaibol whose crystal structure has recently been determined. In this study, the conductance properties of trichotoxin_A50E have been investigated in neutral planar lipid bilayers. The macroscopic current-voltage curves disclose a moderate voltage-sensitivity and the concentration-dependence suggests the channels are primarily hexameric. Under ion gradients, shifts of the reversal potential indicate that cations are preferentially transported. Trichotoxin displays only one single-channel conductance state in a given experiment, but an ensemble of experiments reveals a distribution of conductance levels. This contrasts with the related peptaibol alamethicin, which produces multiple channel levels in a single experiment, indicative of recruitment of additional monomers into different multimeric-sized channels. Based on these conductance measurements and on the recently available crystal structure of trichotoxin_A50E, which is a shorter and straighter helix than alamethicin, a tightly-packed hexameric model structure has been constructed for the trichotoxin channel. It has molecular dimensions and surface electrostatic potential compatible with the observed conductance properties of the most probable and longer-lived channel.
Collapse
Affiliation(s)
- H Duclohier
- Interactions Cellulaires et Moléculaires, UMR 6026 Centre National de la Recherche Scientifique-Université de Rennes I, 35042 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
48
|
Haris PI, Molle G, Duclohier H. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics. Biophys J 2004; 86:248-53. [PMID: 14695266 PMCID: PMC1303787 DOI: 10.1016/s0006-3495(04)74100-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alamethicin, a 20 residue-long peptaibol remains a favorite high voltage-dependent channel-forming peptide. However, the structural significance of its abundant noncoded residues (alpha-methylalanine or Aib) for its ion channel activity remains unknown, although a previous study showed that replacement of all Aib residues with leucines preserved the essential channel behavior except for much faster single-channel events. To correlate these functional properties with structural data, here we compare the secondary structures of an alamethicin derivative where all the eight Aibs were replaced by leucines and the native alamethicin. Fourier transform infrared (FTIR) spectra of these peptides were recorded in methanol and in aqueous phospholipid membranes. Results obtained show a significant conformational change in alamethicin upon substitution of its Aib residues with Leu. The amide I band occurs at a lower frequency for the Leu-derivative indicating that its alpha-helices are involved in stronger hydrogen-bonding. In addition, the structure of the Leu-derivative is quite sensitive to membrane fluidity changes. The amide I band shifts to higher frequencies when the lipids are in the fluid phase. This indicates either a decreased solvation due to a more complete peptide insertion or a peptide stretching to match the full thickness of the bilayer. These results contribute to explain the fast single-channel kinetics displayed by the Leu-derivative.
Collapse
Affiliation(s)
- Parvez I Haris
- School of Molecular Sciences, De Montfort University, Leicester LE1 9BH, United Kingdom
| | | | | |
Collapse
|
49
|
Duclohier H. Helical kink and channel behaviour: a comparative study with the peptaibols alamethicin, trichotoxin and antiamoebin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:169-74. [PMID: 15014907 DOI: 10.1007/s00249-003-0383-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/04/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
Kinks or bends introduced in peptides and proteins by "helical distorter" residues such as proline, other imino acids and glycine, especially when these are in close proximity in the sequence, are increasingly recognized as playing an essential role in the gating of channel-forming peptides as well as of physiological ion channels. Peptaibols are useful simple models for the much more complex biological ion channels, especially voltage-gated ones. In this short review, we compare the monomeric structures of three selected peptaibols (alamethicin, trichotoxin and antiamoebin) that widely differ with regards their near-central kink angles and dipolar moment orientations. These structural features are then shown to be correlated to the different patterns of channel activity, both at the macroscopic and single-channel levels of investigation.
Collapse
Affiliation(s)
- H Duclohier
- Interactions Cellulaires et Moléculaires, UMR 6026 CNRS, Université de Rennes I, 35042 Cedex, Rennes, France.
| |
Collapse
|
50
|
Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M. Enlargement and contracture of C2-ceramide channels. Biophys J 2003; 85:1560-75. [PMID: 12944273 PMCID: PMC1303332 DOI: 10.1016/s0006-3495(03)74588-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C(2)-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La(+3) causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns.
Collapse
Affiliation(s)
- Leah J Siskind
- Department of Biology, University of Maryland, College Park, Maryland 20742 USA
| | | | | | | | | |
Collapse
|