1
|
Wojtczak-Kwaśniewska M, Przekoracka-Krawczyk A, Van der Lubbe RHJ. The engagement of cortical areas preceding exogenous vergence eye movements. PLoS One 2018; 13:e0198405. [PMID: 29883483 PMCID: PMC5993318 DOI: 10.1371/journal.pone.0198405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/20/2018] [Indexed: 12/02/2022] Open
Abstract
Source analyses on event related potentials (ERPs) derived from the electroencephalogram (EEG) were performed to examine the respective roles of cortical areas preceding exogenously triggered saccades, combined convergences, and combined divergences. All eye movements were triggered by the offset of a central fixation light emitting diode (LED) and the onset of a lateral LED at various depths in an otherwise fully darkened room. Our analyses revealed that three source pairs, two located in the frontal lobe–the frontal eye fields (FEF) and an anterior frontal area–, and one located within the occipital cortex, can account for 99.2% of the observed ERPs. Overall, the comparison between source activities revealed the largest activity in the occipital cortex, while no difference in activity between FEF and the anterior frontal area was obtained. For all sources, increased activity was observed for combined vergences, especially combined convergences, relative to saccades. Behavioral results revealed that onset latencies were longest for combined convergences, intermediate for combined divergences, and the shortest for saccades. Together, these findings fit within a perspective in which both occipital and frontal areas play an important role in retinal disparity detection. In the case of saccades and combined divergences stimulus-locked activity was larger than response-locked activity, while no difference between stimulus- and response-locked activity was observed for combined convergences. These findings seem to imply that the electrophysiological activity preceding exogenous eye movements consists of a sensory-related part that is under cortical control, while subcortical structures may be held responsible for final execution.
Collapse
Affiliation(s)
- Monika Wojtczak-Kwaśniewska
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Anna Przekoracka-Krawczyk
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Rob H J Van der Lubbe
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Cognitive Psychology and Ergonomics, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Saint-Amour D, Walsh V, Guillemot JP, Lassonde M, Lepore F. Role of primary visual cortex in the binocular integration of plaid motion perception. Eur J Neurosci 2005; 21:1107-15. [PMID: 15787716 DOI: 10.1111/j.1460-9568.2005.03914.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study assessed the early mechanisms underlying perception of plaid motion. Thus, two superimposed gratings drifting in a rightward direction composed plaid stimuli whose global motion direction was perceived as the vector sum of the two components. The first experiment was aimed at comparing the perception of plaid motion when both components were presented to both eyes (dioptic) or separately to each eye (dichoptic). When components of the patterns had identical spatial frequencies, coherent motion was correctly perceived under dioptic and dichoptic viewing condition. However, the perceived direction deviated from the predicted direction when spatial frequency differences were introduced between components in both conditions. The results suggest that motion integration follows similar rules for dioptic and dichoptic plaids even though performance under dichoptic viewing did not reach dioptic levels. In the second experiment, the role of early cortical areas in the processing of both plaids was examined. As convergence of monocular inputs is needed for dichoptic perception, we tested the hypothesis that primary visual cortex (V1) is required for dichoptic plaid processing by delivering repetitive transcranial magnetic stimulation to this area. Ten minutes of magnetic stimulation disrupted subsequent dichoptic perception for approximately 15 min, whereas no significant changes were observed for dioptic plaid perception. Taken together, these findings suggest that V1 is not crucial for the processing of dioptic plaids but it is necessary for the binocular integration underlying dichoptic plaid motion perception.
Collapse
Affiliation(s)
- Dave Saint-Amour
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7
| | | | | | | | | |
Collapse
|
3
|
Boire D, Théoret H, Ptito M. Visual pathways following cerebral hemispherectomy. PROGRESS IN BRAIN RESEARCH 2002; 134:379-97. [PMID: 11702556 DOI: 10.1016/s0079-6123(01)34025-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomical consequences of unilateral cerebral hemispherectomy in some animal models are reviewed. We have shown that the retinogenigulate pathway undergoes severe degenerative changes in hemispherectomized monkeys, greater than those shown in cats and we proposed that remaining retinal terminals to the dorsal lateral geniculate nucleus have little potential for conveying visual information any further. All subdivisions of the pulvinar undergo severe degeneration following hemispherectomy showing that the ascending tectofugal pathway is also shut off. On the other hand, the retina subserving the blind field is not depleted of ganglion cells which still send normal appearing terminals to the midbrain pretectum and superior colliculus. Visual information from the blind hemifield can thus gain access to the brain and could potentially reach the contralateral cerebral cortex through the midbrain commissure and possibly through thalamic commissural cells.
Collapse
Affiliation(s)
- D Boire
- Ecole d'Optométrie, Université de Montréal, CP, 6128, succursale Centre-ville, Montréal, PQ, H3C 3J7 Canada
| | | | | |
Collapse
|
4
|
Desautels A, Casanova C. Response properties in the pulvinar complex after neonatal ablation of the primary visual cortex. PROGRESS IN BRAIN RESEARCH 2002; 134:83-95. [PMID: 11702565 DOI: 10.1016/s0079-6123(01)34007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Injuries to specific areas of the brain (such as cerebrovascular accidents or surgical procedures) and particularly to the primary visual cortex, yield profound visual defects. The level of spared visual functions or residual vision depends on the extent and location of the lesion as well as the age at which the trauma occurs. For instance, in primate as well as non-primate species, it is well established that lesions in adulthood have a more profound effect than those occurring in young animals. The recovery of visually guided behavior observed after massive destruction of the occipital cortex in young animals across many species has been generally associated with the reorganization of the pathways from the extrageniculate thalamus to the spared visual cortex, i.e. the extrastriate areas. In this chapter, we present some evidence that the lateral posterior-pulvinar (LP-pulvinar) complex may contribute to maintaining visual capacities in brain-damaged cats. Our data indicate that the overall visual responsiveness of the lateral part of the LP (LPl) cells is not altered by the early removal of the visual cortex. However, some specific properties differ from those of intact animals: on average, LPl neurons in brain-damaged animals are more broadly tuned for orientation than that in intact cats. Spatial frequency tuning functions are also affected since most units in lesioned animals are of the low-pass type. Moreover, most LPl cells of lesioned cats responded to drifting gratings with modulated discharges and a linear spatial summation within their receptive field, a characteristic that is infrequently observed in intact animals. The change in LPl response properties observed in the present study is likely to come from the reorganization of cortical and retinal fibers reaching this extrageniculate nucleus.
Collapse
Affiliation(s)
- A Desautels
- Laboratoire des Neurosciences de la Vision, Ecole d'Optométrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, PQ, H3C 3J7 Canada
| | | |
Collapse
|
5
|
Abstract
Binocular disparity provides the visual system with information concerning the three-dimensional layout of the environment. Recent physiological studies in the primary visual cortex provide a successful account of the mechanisms by which single neurons are able to signal disparity. This work also reveals that additional processing is required to make explicit the types of signal required for depth perception (such as the ability to match features correctly between the two monocular images). Some of these signals, such as those encoding relative disparity, are found in extrastriate cortex. Several other lines of evidence also suggest that the link between perception and neuronal activity is stronger in extrastriate cortex (especially MT) than in the primary visual cortex.
Collapse
Affiliation(s)
- B G Cumming
- University Laboratory of Physiology, Oxford, OX1 3PT United Kingdom.
| | | |
Collapse
|
6
|
Bacon BA, Mimeault D, Lepore F, Guillemot JP. Spatial disparity sensitivity in area PMLS of the Siamese cat. Brain Res 2001; 906:149-56. [PMID: 11430872 DOI: 10.1016/s0006-8993(01)02576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies of the visual system of Siamese cats have shown that binocular cells are scarce in areas 17, 18 and 19, yet significantly more abundant in suprasylvian areas such as the postero-medial lateral suprasylvian area (PMLS). The present study aims at evaluating the sensitivity to spatial disparity of PMLS binocular cells in paralyzed and anesthetized Siamese cats. Centrally located receptive fields were mapped, separated using prisms and then stimulated simultaneously using two luminous bars optimally adjusted to the size of the excitatory receptive fields. Delays were introduced in the arrival of the luminous bars in the receptive fields so as to create the desired spatial disparities. Results indicate that approximately a third of PMLS units are binocular and that these binocular cells can detect spatial disparity cues. Indeed, although the sample was relatively small, cells of the tuned excitatory (14/34), tuned inhibitory (2/34), near (6/34) and far (1/34) types were identified. The spatial selectivity, as measured by the width at half height of the tuning curves of the excitatory and inhibitory cells and the slopes of the near and far cells, was similar to that obtained in PMLS of normal cats but not as precise as that found for primary visual areas in these animals. This suggests that these cells might serve as a substrate for coarse stereopsis.
Collapse
Affiliation(s)
- B A Bacon
- Université de Montréal, Groupe de Recherche en Neuropsychologie Expérimentale, Département de Psychologie, C.P. 6128, Succ. Centre-Ville, Montréal H3C 3J7, Canada
| | | | | | | |
Collapse
|
7
|
Khayat PS, Saint-Amour D, Molotchnikoff S, Lepore F, Guillemot JP. Cellular response to texture and form defined by motion in area 19 of the cat. Eur J Neurosci 2000; 12:1727-38. [PMID: 10792450 DOI: 10.1046/j.1460-9568.2000.00046.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined the neuronal sensitivity in area 19 of the cat to a motion-defined bar and to texture. Sensitivity was tested in normal, lesioned (areas 17-18) and split-chiasm cats using a kinematogram, as well as a textured bar drifting on a uniform light background and a light bar drifting on a stationary textured background. Texture density was varied. The results indicate that almost all cells of area 19 recorded in the three groups of cats responded to a motion-defined bar or to its edges. Texture density influenced the responses in that the discharge rate increased as density decreased. However, the majority of cells were sensitive to the highest texture density kinematogram. Moreover, the neural responses of all cats were either independent of the density of the textured bar or background, or were modulated by it. These results show that cells in area 19 can signal the presence of a kinetic bar and that the density of either the textured bar, the background or both can influence figure-ground detection. The results are interpreted with respect to how various inputs influence the function of area 19.
Collapse
Affiliation(s)
- P S Khayat
- Groupe de Recherche en Neuropsychologie Expérimentale, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
8
|
Sandyk R. Impairment of depth perception in multiple sclerosis is improved by treatment with AC pulsed electromagnetic fields. Int J Neurosci 1999; 98:83-94. [PMID: 10395363 DOI: 10.3109/00207459908994794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is associated with postural instability and an increased risk of falling which is facilitated by a variety of factors including diminished visual acuity, diplopia, ataxia, apraxia of gait, and peripheral neuropathy. Deficient binocular depth perception may also contribute to a higher incidence of postural instability and falling in these patients who, for example, find it an extremely difficult task to walk on uneven ground, over curbs, or up and down steps. I report a 51 year old woman with secondary progressive MS who experienced difficulties with binocular depth perception resulting in frequent falls and injuries. Deficient depth perception was demonstrated also on spontaneous drawing of a cube. Following a series of transcranial treatments with AC pulsed electromagnetic fields (EMFs) of 7,5 picotesla flux density, the patient experienced a major improvement in depth perception which was evident particularly on ascending and descending stairs. These clinical changes were associated with an improvement in spatial organization and depth perception on drawing a cube. These findings suggest that in MS impairment of depth perception, which is encoded in the primary visual cortex (area 17) and visual association cortex (areas 18 and 19), may be improved by administration of AC pulsed EMFs of picotesla flux density. The primary visual cortex is densely innervated by serotonergic neurons which modulate visual information processing. Cerebral serotonin concentrations are diminished in MS patients and at least some aspects of deficient depth perception in MS may be related to dysfunction of serotonergic transmission in the primary visual cortex. It is suggested that transcranial AC pulsed applications of EMFs improve depth perception partly by augmenting serotonergic transmission in the visual cortex.
Collapse
Affiliation(s)
- R Sandyk
- Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Bay Shore, NY 11706, USA
| |
Collapse
|
9
|
Payne BR, Lomber SG, Macneil MA, Cornwell P. Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 1996; 34:741-74. [PMID: 8817506 DOI: 10.1016/0028-3932(95)00161-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review compares the behavioral, physiological and anatomical repercussions of lesions of primary visual cortex incurred by developing and mature humans, monkey and cats. Comparison of the data on the repercussions following lesions incurred earlier or later in life suggests that earlier, but not later, damage unmasks a latent flexibility of the brain to compensate partially for functions normally attributed to the damaged cortex. The compensations are best documented in the cat and they can be linked to system-wide repercussions that include selected pathway expansions and neuron degenerations, and functional adjustments in neuronal activity. Even though evidence from humans and monkeys is extremely limited, it is argued on the basis of known repercussions and similarity of visual system organization and developmental sequence, that broadly equivalent repercussions most likely occur in humans and monkeys following early lesions of primary visual cortex. The extant data suggest potentially useful directions for future investigations on functional anatomical aspects of visual capacities spared in human patients and monkeys following early damage of primary visual cortex. Such research is likely to have a substantial impact on increasing our understanding of the repercussions that result from damage elsewhere in the developing cerebral cortex and it is likely to contribute to our understanding of the remarkable ability of the human brain to adapt to insults.
Collapse
Affiliation(s)
- B R Payne
- Laboratory of Visual Perception and Cognition, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
10
|
Takayama Y, Sugishita M. Astereopsis induced by repetitive magnetic stimulation of occipital cortex. J Neurol 1994; 241:522-5. [PMID: 7798999 DOI: 10.1007/bf00873513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three healthy subjects underwent repetitive transcranial magnetic stimulation (20 Hz, 1 s) with a round oil-cooled coil held tangentially against the skull surface 3 or 4 cm above the inion, while viewing a random-dot stereogram through red-green glasses. The coil was positioned over the midline of the bilateral superior occipital lobes. All three subjects experienced loss of stereoscopic perception during stimulation. A stimulus duration of more than 0.2 s and a stimulus frequency of more than 10 Hz seem to be necessary to disrupt the cortical mechanisms involved in global stereopsis. Repetitive magnetic stimulation easily and painlessly produced a reversible disturbance in global stereopsis. The results suggest that the bilateral superior occipital cortices are involved in the perception of global stereopsis.
Collapse
Affiliation(s)
- Y Takayama
- Department of Cognitive Neuroscience, University of Tokyo, Japan
| | | |
Collapse
|
11
|
Mitchell DE, Ptito M, Lepore F. Depth perception in monocularly deprived cats following part-time reverse occlusion. Eur J Neurosci 1994; 6:967-72. [PMID: 7952284 DOI: 10.1111/j.1460-9568.1994.tb00591.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The behavioural effects of an early period of monocular deprivation can be extremely profound. However, it is possible to achieve a high degree of recovery, even to normal levels of visual acuity, by prompt imposition of certain regimes of part-time reverse occlusion where the initially non-deprived eye is occluded for only part of each day in order to allow a daily period of binocular visual exposure. In this paper we report on the depth perception of five monocularly deprived cats that had recovered normal visual acuity in both eyes following imposition of certain of the above occlusion regimes. Although three of the animals exhibited five- to sevenfold superiority of binocular over monocular depth thresholds, subsequent tests made on two of the animals revealed that they were unable to make stereoscopic discriminations with random-dot stereograms. Despite the recovery of normal visual acuity in both eyes, we conclude that these animals recover at best only local stereopsis.
Collapse
Affiliation(s)
- D E Mitchell
- Psychology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
12
|
Lomber SG, Payne BR, Cornwell P, Pearson HE. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats. J Comp Neurol 1993; 338:432-57. [PMID: 8113448 DOI: 10.1002/cne.903380308] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of the present study was to determine the pattern and density of retinal projections to the dorsal lateral geniculate nucleus (dLGN) following ablation of visual cortical areas in developing cats of different postnatal ages and in mature cats. The terminations of retinal projections to the dLGN were evaluated following the injection of tritiated amino acids into one eye. Regardless of age, a visual cortical ablation of areas 17 and 18 induces massive death of neurons within the regions of the dLGN that are linked topographically to the cortical areas removed. However, the pattern of retinal projections to these degenerated regions of the dLGN differs depending upon whether the cortical lesion is incurred early in postnatal life or in adulthood. Following ablation on the day of birth (P1), virtually all surviving cells were found in the C-complex of dLGN with only a token number in the A-laminae. Correspondingly, retinal projections were maintained to the C-complex of the nucleus and were barely detectable in the degenerated A-laminae. However, in cats in which areas 17 and 18 had been removed in adulthood (> or = 6 months of age) retinal projections were maintained to the A-laminae even though nearly all neurons in those laminae had degenerated. Moreover, a subgroup of animals that incurred area 17 and 18 ablations at P1 showed that the modification of retinal projections to the A-laminae occurs within the first postnatal month, and an additional subgroup showed that retinal projections become increasingly resistant to the degenerative events in the dLGN that follow ablation of areas 17 and 18 at progressively older ages during the first postnatal month. Furthermore, retinal inputs also respond, in an age-dependent way, to degeneration of neurons in the C-complex induced by extension of the cortical ablation to include extrastriate visual areas.
Collapse
Affiliation(s)
- S G Lomber
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Massachusetts 02118
| | | | | | | |
Collapse
|
13
|
Guillemot JP, Paradis MC, Samson A, Ptito M, Richer L, Lepore F. Binocular interaction and disparity coding in area 19 of visual cortex in normal and split-chiasm cats. Exp Brain Res 1993; 94:405-17. [PMID: 8359255 DOI: 10.1007/bf00230199] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binocular disparity, resulting from the projection of a three-dimensional object on the two spatially separated retinae, constitutes one of the principal cues for stereoscopic perception. The binocularity of cells in one hemisphere stems from two sources: (1) the ganglion cells in the homonymous temporal and nasal hemiretinae and (2) the contralateral hemisphere via the corpus callosum (CC). The objectives of this study were, on one hand, to determine whether disparity-sensitive cells are present in a "higher order" area, namely area 19 of the visual cortex, of the cat and, on the other hand, to ascertain whether the CC contributes to the formation of these cells. As in areas 17-18, two types of disparity-sensitive neurons were found: one type, showing maximal interactive effects around zero disparity, responded with strong excitation or inhibition when the stimuli presented independently to the two eyes were in register. These neurons are presumed to signal stimuli situated about the fixation plane. The other type, also made up of two subtypes of opposed valencies, gave maximum responses at one set of disparities and inhibitory responses to the other set. These are presumed to signal stimuli situated in front of or behind the fixation plane. Unlike areas 17-18, however, disparity-sensitive cells in area 19 of the normal cat were less finely tuned and their proportion was lower. In the split-chiasm animal, very few cells were sensitive to disparity. These results, when coupled with behavioral data obtained with destriate animals, indicate that (1) area 19 is probably less involved in the analysis of disparity information than area 17, (2) the disparity-sensitive neurons that are sensitive to disparity are not involved in the resolution of very fine three-dimensional spatial detail, and (3) the CC only determines a limited number of these cells in the absence of normal binocular input.
Collapse
Affiliation(s)
- J P Guillemot
- Groupe de Recherche en Neuropsychologie Expérimentale, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Guillemot JP, Richer L, Ptito M, Lepore F. Disparity coding in the cat: a comparison between areas 17-18 and area 19. PROGRESS IN BRAIN RESEARCH 1993; 95:179-87. [PMID: 8493332 DOI: 10.1016/s0079-6123(08)60368-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J P Guillemot
- Groupe de Recherche en Neuropsychologie Expérimentale, Université de Quebec, Montréal, Canada
| | | | | | | |
Collapse
|