1
|
Li H, Akella S, Engstler C, Omini JJ, Rodriguez M, Obata T, Carrie C, Cerutti H, Mower JP. Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida. Nat Commun 2024; 15:1548. [PMID: 38378784 PMCID: PMC10879542 DOI: 10.1038/s41467-024-45813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.
Collapse
Affiliation(s)
- Huang Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Soujanya Akella
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Carina Engstler
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Joy J Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Moira Rodriguez
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Heriberto Cerutti
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
3
|
Upadhyaya S, Rao BJ. Reciprocal regulation of photosynthesis and mitochondrial respiration by TOR kinase in Chlamydomonas reinhardtii. PLANT DIRECT 2019; 3:e00184. [PMID: 31832599 PMCID: PMC6854518 DOI: 10.1002/pld3.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
While the role of TOR kinase in the chloroplast biogenesis and transcriptional regulation of photosynthesis is well documented in Arabidopsis, the functional relevance of this metabolic sensor kinase in chloroplast-mitochondria cross talk is unknown. Using Chlamydomonas reinhardtii as the model system, we demonstrate the role of TOR kinase in the regulation of chloroplast and mitochondrial functions: We show that TOR kinase inhibition impairs the maintenance of high ETR associated with PSII and low NPQ and inhibits efficient state transitions between PSII and PSI. While compromised photosynthetic functions are observed in TOR kinase inhibited cells, same conditions lead to augmentation in mitochondrial basal respiration rate by twofold and concomitantly a rise in ATP production. Interestingly, such upregulated mitochondrial functions in TOR-inhibited cells are mediated by fragmented mitochondria via upregulating COXIIb and downregulating Hxk1 and AOX1 protein levels. We propose that TOR kinase may act as a sensor that counter-regulates chloroplast versus mitochondrial functions in a normal C. reinhardtii cell.
Collapse
Affiliation(s)
- Shivani Upadhyaya
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Basuthkar Jagadeeshwar Rao
- Indian Institute of Science Education and Research (IISER) TirupatiTransit Campus: Sree Rama Engineering CollegeTirupatiIndia
| |
Collapse
|
4
|
Radin I, Mansilla N, Rödel G, Steinebrunner I. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity. FRONTIERS IN PLANT SCIENCE 2015; 6:1091. [PMID: 26734017 PMCID: PMC4683207 DOI: 10.3389/fpls.2015.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/20/2015] [Indexed: 05/19/2023]
Abstract
Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.
Collapse
Affiliation(s)
- Ivan Radin
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del LitoralSanta Fe, Argentina
| | - Gerhard Rödel
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | | |
Collapse
|
5
|
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:481-503. [PMID: 25752440 DOI: 10.1111/tpj.12823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular, soil-dwelling (and aquatic) green alga that has significant metabolic flexibility for balancing redox equivalents and generating ATP when it experiences hypoxic/anoxic conditions. The diversity of pathways available to ferment sugars is often revealed in mutants in which the activities of specific branches of fermentative metabolism have been eliminated; compensatory pathways that have little activity in parental strains under standard laboratory fermentative conditions are often activated. The ways in which these pathways are regulated and integrated have not been extensively explored. In this review, we primarily discuss the intricacies of dark anoxic metabolism in Chlamydomonas, but also discuss aspects of dark oxic metabolism, the utilization of acetate, and the relatively uncharacterized but critical interactions that link chloroplastic and mitochondrial metabolic networks.
Collapse
Affiliation(s)
- Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Claudia Catalanotti
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew C Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Steinebrunner I, Gey U, Andres M, Garcia L, Gonzalez DH. Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response. FRONTIERS IN PLANT SCIENCE 2014; 5:87. [PMID: 24723925 PMCID: PMC3971200 DOI: 10.3389/fpls.2014.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/24/2014] [Indexed: 05/07/2023]
Abstract
The two related putative cytochrome c oxidase (COX) assembly factors HCC1 and HCC2 from Arabidopsis thaliana are Homologs of the yeast Copper Chaperones Sco1p and Sco2p. The hcc1 null mutation was previously shown to be embryo lethal while the disruption of the HCC2 gene function had no obvious effect on plant development, but increased the expression of stress-responsive genes. Both HCC1 and HCC2 contain a thioredoxin domain, but only HCC1 carries a Cu-binding motif also found in Sco1p and Sco2p. In order to investigate the physiological implications suggested by this difference, various hcc1 and hcc2 mutants were generated and analyzed. The lethality of the hcc1 knockout mutation was rescued by complementation with the HCC1 gene under the control of the embryo-specific promoter ABSCISIC ACID INSENSITIVE 3. However, the complemented seedlings did not grow into mature plants, underscoring the general importance of HCC1 for plant growth. The HCC2 homolog was shown to localize to mitochondria like HCC1, yet the function of HCC2 is evidently different, because two hcc2 knockout lines developed normally and exhibited only mild growth suppression compared with the wild type (WT). However, hcc2 knockouts were more sensitive to UV-B treatment than the WT. Complementation of the hcc2 knockout with HCC2 rescued the UV-B-sensitive phenotype. In agreement with this, exposure of wild-type plants to UV-B led to an increase of HCC2 transcripts. In order to corroborate a function of HCC1 and HCC2 in COX biogenesis, COX activity of hcc1 and hcc2 mutants was compared. While the loss of HCC2 function had no significant effect on COX activity, the disruption of one HCC1 gene copy was enough to suppress respiration by more than half compared with the WT. Therefore, we conclude that HCC1 is essential for COX function, most likely by delivering Cu to the catalytic center. HCC2, on the other hand, seems to be involved directly or indirectly in UV-B-stress responses.
Collapse
Affiliation(s)
- Iris Steinebrunner
- Department of Biology, Technische Universität DresdenDresden, Germany
- *Correspondence: Iris Steinebrunner, Department of Biology, Technische Universität Dresden, Helmholtzstr. 10, 01062 Dresden, Germany e-mail:
| | - Uta Gey
- Department of Biology, Technische Universität DresdenDresden, Germany
| | - Manuela Andres
- Department of Biology, Technische Universität DresdenDresden, Germany
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Universidad Nacional del LitoralSanta Fe, Argentina
| | - Daniel H. Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Universidad Nacional del LitoralSanta Fe, Argentina
| |
Collapse
|
7
|
Salinas T, Larosa V, Cardol P, Maréchal-Drouard L, Remacle C. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Biochimie 2013; 100:207-18. [PMID: 24139906 DOI: 10.1016/j.biochi.2013.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/08/2013] [Indexed: 12/28/2022]
Abstract
Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Véronique Larosa
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Claire Remacle
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium.
| |
Collapse
|
8
|
Scholz D, Westermann B. Mitochondrial fusion in Chlamydomonas reinhardtii zygotes. Eur J Cell Biol 2013; 92:80-6. [DOI: 10.1016/j.ejcb.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 11/15/2022] Open
|
9
|
Characterization of an internal type-II NADH dehydrogenase from Chlamydomonas reinhardtii mitochondria. Curr Genet 2012; 58:205-16. [PMID: 22814755 DOI: 10.1007/s00294-012-0378-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/22/2012] [Accepted: 07/04/2012] [Indexed: 12/28/2022]
Abstract
Type-II NAD(P)H dehydrogenases form a multigene family that comprise six members in the green microalga Chlamydomonas. To date, only one enzyme (Nda2) located in the chloroplast has been characterized in this alga and demonstrated to participate in the reduction of the plastoquinone pool. We present here the functional characterization of Nda1. The enzyme is located on the inner face of the inner mitochondrial membrane. Its downregulation leads to a slight decrease of NADH:ferricyanide activity and of dark whole cell respiration. To determine whether the reduction of Nda1 combined with the lack of complex I would affect mitochondrial processes, double mutants affected in both Nda1 and complex I were isolated. Respiration and growth rates in heterotrophic conditions were significantly altered in the double mutants investigated, suggesting that Nda1 plays a role in the oxidation of matrix NADH in the absence of complex I.
Collapse
|
10
|
Nakamura S. Paternal inheritance of mitochondria in Chlamydomonas. JOURNAL OF PLANT RESEARCH 2010; 123:163-170. [PMID: 20069335 DOI: 10.1007/s10265-009-0295-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
To analyze mitochondrial DNA (mtDNA)inheritance, differences in mtDNA between Chlamydomonas reinhardtii and Chlamydomonas smithii, respiration deficiency and antibiotic resistance were used to distinguish mtDNA origins. The analyses indicated paternal inheritance. However, these experiments raised questions regarding whether paternal inheritance occurred normally.Mitochondrial nucleoids were observed in living zygotes from mating until 3 days after mating and then until progeny formation. However, selective disappearance of nucleoids was not observed. Subsequently, experimental serial backcrosses between the two strains demonstrated strict paternal inheritance. The fate of mt+ and mt- mtDNA was followed using the differences in mtDNA between the two strains. The slow elimination of mt+ mtDNA through zygote maturation in darkness was observed, and later the disappearance of mt+ mtDNA was observed at the beginning of meiosis. To explain the different fates of mtDNA, methylation status was investigated; however, no methylation was detected. Variously constructed diploid cells showed biparental inheritance. Thus, when the mating process occurs normally, paternal inheritance occurs. Mutations disrupting mtDNA inheritance have not yet been isolated. Mutations that disrupt maternal inheritance of chloroplast DNA (cpDNA) do not disrupt inheritance of mtDNA. The genes responsible for mtDNA inheritance are different from those of chloroplasts.
Collapse
Affiliation(s)
- Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan.
| |
Collapse
|
11
|
Maas MFPM, Krause F, Dencher NA, Sainsard-Chanet A. Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. J Mol Biol 2008; 387:259-69. [PMID: 19111556 DOI: 10.1016/j.jmb.2008.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/29/2022]
Abstract
The functional relevance of respiratory supercomplexes in various eukaryotes including mammals, plants, and fungi is hitherto poorly elucidated. However, substantial evidence indicates as a major role the assembly and/or stabilization of mammalian complex I by supercomplex formation with complexes III and IV. Here, we demonstrate by using native electrophoresis that the long-lived Podospora anserina mutant Cyc1-1, respiring exclusively via the alternative oxidase (AOX), lacks an assembled complex III and possesses complex I partially assembled with complex IV into a supercomplex. This resembles the situation in complex-IV-deficient mutants displaying a corresponding phenotype but possessing I-III supercomplexes instead, suggesting that either complex III or complex IV is in a redundant manner necessary for assembly/stabilization of complex I as previously shown in mammals. To corroborate this notion, we constructed the double mutant Cyc1-1,Cox5::ble. Surprisingly, this mutant lacking both complexes III and IV is viable and essentially a phenocopy of mutant Cyc1-1 including the reversal of the phenotype towards wild-type-like characteristics by the several-fold overexpression of the AOX in mutant Cyc1-1,Cox5::ble(Gpd-Aox). Fungal specific features (not found in mammals) that must be responsible for assembly/stabilization of fungal complex I when complexes III and IV are absent, such as the presence of the AOX and complex I dimerization, are addressed and discussed. These intriguing results unequivocally prove that complexes III and IV are dispensable for assembly/stability of complex I in fungi contrary to the situation in mammals, thus highlighting the imperative to unravel the biogenesis of complex I as well as the true supramolecular organization of the respiratory chain and its functional significance in a variety of model eukaryotes. In summary, we present the first obligatorily aerobic eukaryote with an artificial, simultaneous lack of the respiratory complexes III and IV.
Collapse
Affiliation(s)
- Marc F P M Maas
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
12
|
Cardol P, Boutaffala L, Memmi S, Devreese B, Matagne RF, Remacle C. In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:388-96. [PMID: 18258177 DOI: 10.1016/j.bbabio.2008.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
In the green alga Chlamydomonas reinhardtii, a mutant deprived of complex I enzyme activity presents a 1T deletion in the mitochondrial nd5 gene. The loss of the ND5 subunit prevents the assembly of the 950 kDa whole complex I. Instead, a low abundant 700 kDa subcomplex, loosely associated to the inner mitochondrial membrane, is assembled. The resolution of the subcomplex by SDS-PAGE gave rise to 19 individual spots, sixteen having been identified by mass spectrometry analysis. Eleven, mainly associated to the hydrophilic part of the complex, are homologs to subunits of the bovine enzyme whereas five (including gamma-type carbonic anhydrase subunits) are specific to green plants or to plants and fungi. None of the subunits typical of the beta membrane domain of complex I enzyme has been identified in the mutant. This allows us to propose that the truncated enzyme misses the membrane distal domain of complex I but retains the proximal domain associated to the matrix arm of the enzyme. A complex I topology model is presented in the light of our results. Finally, a supercomplex most probably corresponding to complex I-complex III association, was identified in mutant mitochondria, indicating that the missing part of the enzyme is not required for the formation of the supercomplex.
Collapse
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF. Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:873-82. [PMID: 17092311 DOI: 10.1111/j.1365-313x.2006.02923.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Frataxin, a protein crucial for the biogenesis of mitochondria in different organisms, was recently identified in Arabidopsis thaliana. To investigate the role of frataxin in higher plants, we analyze two knock-out and one knock-down T-DNA insertion mutants. The knock-out mutants present an embryo-lethal phenotype, indicating an essential role for frataxin. The knock-down mutant has reduced frataxin mRNA and protein levels. This mutant also presents retarded growth, reduced fresh weight of fruits and reduced number of seeds per fruit. Surprisingly, transcription of aconitase and the Fe-S subunit of succinate dehydrogenase (SDH2-1) are increased in mutant plants; however, the activity of these proteins is reduced, indicating a role for frataxin in Fe-S cluster assembly or insertion of Fe-S clusters into proteins. Mutant plants also have increased CO(2) assimilation rates, exhibit increased formation of reactive oxygen species (ROS) and have increased levels of transcripts for proteins known to be involved in the ROS stress responses. These results indicate that frataxin is an essential protein in plants, required for full activity of mitochondrial Fe-S proteins and playing a protective role against oxidative damage.
Collapse
Affiliation(s)
- Maria V Busi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM, Camino Circunvalación Km 6, 7130 Chascomús, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Matsuo M, Obokata J. Remote control of photosynthetic genes by the mitochondrial respiratory chain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:873-82. [PMID: 16911586 DOI: 10.1111/j.1365-313x.2006.02839.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we study whether mitochondrial respiration has an impact on the biogenesis of photosynthetic apparatus in the unicellular alga, Chlamydomonas reinhardtii. When respiration was activated by acetate in the dark, mRNAs of nuclear-encoded photosynthetic genes were induced. This induction did not occur in the cells treated with respiration inhibitors or in respiration mutants. An uncoupler of oxidative phosphorylation did not inhibit this mRNA induction; rather, it enhanced it in response to the increase in respiratory electron transport (RET). Plant and algal mitochondria have two RET pathways: the cytochrome pathway and the alternative pathway. Inhibitors of the former pathway inhibited mRNA induction, but inhibitors of the latter enhanced it. Taken together, these indicate that photosynthetic gene mRNAs are induced in response to activation of the cytochrome pathway. This RET-responsive induction is analogous to the photosynthetic electron transport (PET)-responsive induction of photosynthetic gene mRNAs (Matsuo and Obokata, Plant Cell Physiol. 43, 1189). PET-responsive induction occurred in photo-autotrophic and mixotrophic conditions, while RET-responsive induction occurred in mixotrophic and dark heterotrophic conditions. These results indicate that the regulatory system of photosynthetic genes changes between chloroplastic PET-dependent type and mitochondrial RET-dependent type in response to shifts in the dominant energy source between photosynthesis and respiration.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
15
|
Aoyama H, Hagiwara Y, Misumi O, Kuroiwa T, Nakamura S. Complete elimination of maternal mitochondrial DNA during meiosis resulting in the paternal inheritance of the mitochondrial genome in Chlamydomonas species. PROTOPLASMA 2006; 228:231-42. [PMID: 16838082 DOI: 10.1007/s00709-006-0155-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/27/2005] [Indexed: 05/10/2023]
Abstract
The non-Mendelian inheritance of organellar DNA is common in most plants and animals. In the isogamous green alga Chlamydomonas species, progeny inherit chloroplast genes from the maternal parent, as paternal chloroplast genes are selectively eliminated in young zygotes. Mitochondrial genes are inherited from the paternal parent. Analogically, maternal mitochondrial DNA (mtDNA) is thought to be selectively eliminated. Nevertheless, it is unclear when this selective elimination occurs. Here, we examined the behaviors of maternal and paternal mtDNAs by various methods during the period between the beginning of zygote formation and zoospore formation. First, we observed the behavior of the organelle nucleoids of living cells by specifically staining DNA with the fluorochrome SYBR Green I and staining mitochondria with 3,3'-dihexyloxacarbocyanine iodide. We also examined the fate of mtDNA of male and female parental origin by real-time PCR, nested PCR with single zygotes, and fluorescence in situ hybridization analysis. The mtDNA of maternal origin was completely eliminated before the first cell nuclear division, probably just before mtDNA synthesis, during meiosis. Therefore, the progeny inherit the remaining paternal mtDNA. We suggest that the complete elimination of maternal mtDNA during meiosis is the primary cause of paternal mitochondrial inheritance.
Collapse
Affiliation(s)
- H Aoyama
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | |
Collapse
|
16
|
Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 2006; 103:4771-6. [PMID: 16537419 PMCID: PMC1450245 DOI: 10.1073/pnas.0509501103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial transformation of Chlamydomonas reinhardtii has been optimized by using a particle-gun device and cloned mitochondrial DNA or PCR fragments. A respiratory-deficient strain lacking a 1.2-kb mitochondrial DNA region including the left telomere and part of the cob gene could be rescued as well as a double-frameshift mutant in the mitochondrial cox1 and nd1 genes. High transformation efficiency has been achieved (100-250 transformants per microgram of DNA), the best results being obtained with linearized plasmid DNA. Molecular analysis of the transformants suggests that the right telomere sequence can be copied to reconstruct the left telomere by recombination. In addition, both nondeleterious and deleterious mutations could be introduced. Myxothiazol-resistant transformants have been created by introducing a nucleotide substitution into the cob gene. Similarly, an in-frame deletion of 23 codons has been created in the nd4 mitochondrial gene of both the deleted and frameshift recipient strains. These 23 codons are believed to encode the first transmembrane segment of the ND4 protein. This Deltand4 mutation causes a misassembly of complex I, with the accumulation of a subcomplex that is 250-kDa smaller than the wild-type complex I. The availability of efficient mitochondrial transformation in Chlamydomonas provides an invaluable tool for the study of mitochondrial biogenesis and, more specifically, for site-directed mutagenesis of mitochondrially encoded subunits of complex I, of special interest because the yeast Saccharomyces cerevisiae, whose mitochondrial genome can be manipulated virtually at will, is lacking complex I.
Collapse
Affiliation(s)
- Claire Remacle
- Génétique des Microorganismes, Département des Sciences de la Vie, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Yamasaki T, Kurokawa S, Watanabe KI, Ikuta K, Ohama T. Shared molecular characteristics of successfully transformed mitochondrial genomes in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2005; 58:515-27. [PMID: 16021336 DOI: 10.1007/s11103-005-7081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.
Collapse
Affiliation(s)
- Tomohito Yamasaki
- Graduate School of Engineering, Department of Environmental Systems Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | | | | | | | | |
Collapse
|
18
|
Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F. Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. PLANT PHYSIOLOGY 2003; 133:2010-20. [PMID: 14630958 PMCID: PMC300752 DOI: 10.1104/pp.103.028076] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 06/30/2003] [Accepted: 07/21/2003] [Indexed: 05/18/2023]
Abstract
Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast.
Collapse
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms, Institute of Plant Biology B22, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Cardol P, Matagne RF, Remacle C. Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 2002; 319:1211-21. [PMID: 12079358 DOI: 10.1016/s0022-2836(02)00407-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 35 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components (ND1, ND2, ND4, ND5 and ND6) are coded for by the mitochondrial genome. Here, we characterize two mitochondrial mutants (dum5 and dum17) showing strong reduction or inactivation of complex I activity: dum5 is a 1T deletion in the 3' UTR of nd5 whereas dum17 is a 1T deletion in the coding sequence of nd6. The impact of these mutations and of mutations affecting nd1, nd4 and nd4/nd5 genes on the assembly of complex I is investigated. After separation of the respiratory complexes by blue native (BN)-PAGE or sucrose gradient centrifugation, we demonstrate that the absence of intact ND1 or ND6 subunit prevents the assembly of the 850 kDa whole complex, whereas the loss of ND4 or ND4/ND5 leads to the formation of a subcomplex of 650 kDa present in reduced amount. The implications of our findings for the possible role of these ND subunits on the activity of complex I and for the structural organization of the membrane arm of the enzyme are discussed. In mitochondria from all the strains analyzed, we moreover detected a 160-210 kDa fragment comprising the hydrophilic 49 kDa and 76 kDa subunits of the complex I peripheral arm and showing NADH dehydrogenase activity.
Collapse
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, Belgium
| | | | | |
Collapse
|
20
|
Remacle C, Baurain D, Cardol P, Matagne RF. Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 2001; 158:1051-60. [PMID: 11454754 PMCID: PMC1461730 DOI: 10.1093/genetics/158.3.1051] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Genetics of Microorganisms, Department of Plant Biology, University of Liège, B-4000 Liège Sart-Tilman, Belgium
| | | | | | | |
Collapse
|
21
|
Nishimura Y, Higashiyama T, Suzuki L, Misumi O, Kuroiwa T. The biparental transmission of the mitochondrial genome in Chlamydomonas reinhardtii visualized in living cells. Eur J Cell Biol 1998; 77:124-33. [PMID: 9840462 DOI: 10.1016/s0171-9335(98)80080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the isogamous green alga Chlamydomonas reinhardtii, the chloroplast genome is transmitted from the mt+ parent, while the mitochondrial genes are believed to be inherited from the mt- parent. Chloroplast nucleoids have been visualized by DAPI (4,6-diamidino-2-phenylindole) staining, and the preferential digestion of the mt- chloroplast nucleoids has been observed in young zygotes. However, the mitochondrial nucleoids have never been visualized, and their behavior is only deduced from genetic and biochemical studies. We discovered that the mitochondrial and chloroplast genomes can be visualized simultaneously in living cells, using the fluorescent dye SYBR Green I. The ability to visualize the mitochondrial and chloroplast genome in vivo permits the direct observation of the number, distribution and behavior of the chloroplast and mitochondrial nucleoids in young zygotes. Using this method, the biparental transmission of the mitochondrial genome was revealed.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Xie Z, Culler D, Dreyfuss BW, Kuras R, Wollman FA, Girard-Bascou J, Merchant S. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: One chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 1998; 148:681-92. [PMID: 9504916 PMCID: PMC1459829 DOI: 10.1093/genetics/148.2.681] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chloroplasts contain up to two c-type cytochromes, membrane-anchored cytochrome f and soluble cytochrome c6. To elucidate the post-translational events required for their assembly, acetate-requiring mutants of Chlamydomonas reinhardtii that have combined deficiencies in both plastid-encoded cytochrome f and nucleus-encoded cytochrome c6 have been identified and analyzed. For strains ct34 and ct59, where the phenotype displays uniparental inheritance, the mutations were localized to the chloroplast ccsA gene, which was shown previously to be required for heme attachment to chloroplast apocytochromes. The mutations in another eight strains were localized to the nuclear genome. Complementation tests of these strains plus three previously identified strains of the same phenotype (ac206, F18, and F2D8) indicate that the 11 ccs strains define four nuclear loci, CCS1-CCS4. We conclude that the products of the CCS1-CCS4 loci are not required for translocation or processing of the preproteins but, like CcsA, they are required for the heme attachment step during assembly of both holocytochrome f and holocytochrome c6. The ccsA gene is transcribed in each of the nuclear mutants, but its protein product is absent in ccs1 mutants, and it appears to be degradation susceptible in ccs3 and ccs4 strains. We suggest that Ccsl may be associated with CcsA in a multisubunit "holocytochrome c assembly complex," and we hypothesize that the products of the other CCS loci may correspond to other subunits.
Collapse
Affiliation(s)
- Z Xie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Boynton JE, Gillham NW. Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods Enzymol 1996; 264:279-96. [PMID: 8965701 DOI: 10.1016/s0076-6879(96)64027-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Boynton
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
24
|
Remacle C, Colin M, Matagne RF. Genetic mapping of mitochondrial markers by recombinational analysis in Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:185-90. [PMID: 7500940 DOI: 10.1007/bf00290365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk- mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome b) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (+/- 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (+/- 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% +/- 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.
Collapse
Affiliation(s)
- C Remacle
- Département de Botanique, Université de Liège, Belgium
| | | | | |
Collapse
|