1
|
Moreno E, Arenas A. Foraging task specialization in honey bees (Apis mellifera): the contribution of floral rewards to the learning performance of pollen and nectar foragers. J Exp Biol 2024; 227:jeb246979. [PMID: 38873739 DOI: 10.1242/jeb.246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.
Collapse
Affiliation(s)
- Emilia Moreno
- Grupo de Fisiología del Comportamiento y Sociobiología de Abejas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Andrés Arenas
- Grupo de Fisiología del Comportamiento y Sociobiología de Abejas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
2
|
Güneşdoğdu M, Sarıoğlu-Bozkurt A, Şekeroğlu A, Abacı SH. Changes in Vitellogenin, Abdominal Lipid Content, and Hypopharyngeal Gland Development in Honey Bees Fed Diets with Different Protein Sources. INSECTS 2024; 15:215. [PMID: 38667345 PMCID: PMC11050231 DOI: 10.3390/insects15040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Honey bees play an important role in the pollination of flowering plants. When honey bee colonies are deficient in pollen, one of their main nutrients, protein supplements are required. In this study, the effects of diets with six different protein sources on the physiological characteristics of worker bees (vitellogenin (Vg), abdominal lipid content (ALC), hypopharyngeal gland (HPG)) and consumption were investigated. The protein sources of the diets (diet I, …, diet VI) included pollen, spirulina dust (Arthrospira platensis Gomont), fresh egg yolk, lyophilized lactose-free skimmed milk powder, active fresh yeast, and ApiProtein. It was identified that consumption by worker bees was highest in the diet group supplemented with spirulina (diet II). Although there was no statistical difference regarding the Vg content in the hemolymph, numerically, the highest content was found in diet group IV (lyophilized lactose-free skimmed milk powder) (4.73 ± 0.03 ng/mL). ALC and HPG were highest in the group fed diet II. These results suggest that offering honey bees diets with certain protein sources can support their physiological traits.
Collapse
Affiliation(s)
- Mustafa Güneşdoğdu
- Department of Animal Production and Technologies, Faculty of Applied Sciences, Muş Alparslan University, 49250 Muş, Türkiye
| | - Aybike Sarıoğlu-Bozkurt
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Türkiye;
| | - Ahmet Şekeroğlu
- Department of Animal Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Türkiye;
| | - Samet Hasan Abacı
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Türkiye;
| |
Collapse
|
3
|
Jain A, Nagar S, Singh PK, Dhar J. A hybrid learning-based genetic and grey-wolf optimizer for global optimization. Soft comput 2022. [DOI: 10.1007/s00500-022-07604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Cook CN, Freeman AR, Liao JC, Mangiamele LA. The Philosophy of Outliers: Reintegrating Rare Events Into Biological Science. Integr Comp Biol 2022; 61:2191-2198. [PMID: 34283241 PMCID: PMC9076997 DOI: 10.1093/icb/icab166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Individual variation in morphology, physiology, and behavior has been a topic of great interest in the biological sciences. While scientists realize the importance of understanding diversity in individual phenotypes, historically the "minority" results (i.e., outlier observations or rare events) of any given experiment have been dismissed from further analysis. We need to reframe how we view "outliers" to improve our understanding of biology. These rare events are often treated as problematic or spurious, when they can be real rare events or individuals driving evolution in a population. It is our perspective that to understand what outliers can tell us in our data, we need to: (1) Change how we think about our data philosophically, (2) Fund novel collaborations using science "weavers" in our national funding agencies, and (3) Bridge long-term field and lab studies to reveal these outliers in action. By doing so, we will improve our understanding of variation and evolution. We propose that this shift in culture towards more integrative science will incorporate diverse teams, citizen scientists and local naturalists, and change how we teach future students.
Collapse
Affiliation(s)
- Chelsea N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Angela R Freeman
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - James C Liao
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL 32611, USA
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
5
|
Molecular underpinnings of division of labour among workers in a socially complex termite. Sci Rep 2021; 11:18269. [PMID: 34521896 PMCID: PMC8440649 DOI: 10.1038/s41598-021-97515-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Division of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.
Collapse
|
6
|
Bagheri S, Mirzaie M. A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure. PLoS One 2019; 14:e0225632. [PMID: 31756236 PMCID: PMC6874302 DOI: 10.1371/journal.pone.0225632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
The decline in colony populations of the honey bee, known as the Colony Collapse Disorder (CCD), is a global concern. Numerous studies have reported possible causes, including pesticides, parasites, and nutritional stress. Poor nutrition affects the immune system at both the individual and colony level, amplifying effects of other stress factors. Pollen is the only source of ten amino acids that are essential to honey bee development, brood rearing and reproduction. This paper presents a new mathematical model to explore the effect of pollen on honey bee colony dynamics. In this model, we considered pollen and nectar as the required food for the colony. The effect of pollen and nectar collected by foragers was evaluated at different mortality rates of pupa, pollen and nectar foragers.
Collapse
Affiliation(s)
- Shahin Bagheri
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Padilha AC, Piovesan B, Morais MC, Arioli CJ, Zotti MJ, Grützmacher AD, Botton M. Toxicity, attraction, and repellency of toxic baits to stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109490. [PMID: 31398582 DOI: 10.1016/j.ecoenv.2019.109490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Toxic bait formulations have been one of the main strategies used in apple orchards in southern Brazil for the control of South American fruit fly. However, its effects on the stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) are unknown. This study aimed to assess the toxicity, attraction and repellency of food lures and toxic baits on P. emerina and T. fiebrigi. We evaluated the food lures Anamed® (pure), Biofruit® (3%), Flyral® (1.25%), Sugarcane molasses (7%) and Samaritá Tradicional® (3%), in toxic baits formulations associated with spinosad (Tracer® 480SC) and malathion (Malathion® 1000EC), and the ready-to-use toxic baits Success® 0.02CB and Gelsura®. We obtained the mean lethal concentration (LC50) and the mean survival of workers after exposure to toxic bait formulations. In the field, we carried out attraction and repellency tests of toxic baits to foraging. The food lures associated with malathion and spinosad showed different levels of toxicity to P. emerina and T. fiebrigi. Sugarcane molasses and Samaritá Tradicional® associated with spinosad showed high toxicity, with LC50 values of 6.92 and 10.61 ng/μL diet to P. emerina, and of 4.37 and 15.48 ng/μL diet to T. fiebrigi, respectively. Gelsura® and food lures with malathion caused rapid workers mortality, with mean survival less than 3 h after exposure. No toxic bait formulation was attractive to P. emerina foragers in the field. Anamed®, Gelsura®, and Success® were repellent to P. emerina foragers.
Collapse
Affiliation(s)
- Aline Costa Padilha
- Department of Plant Protection, Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900, Capão-do-Leão, RS, Brazil.
| | - Bruna Piovesan
- Department of Plant Protection, Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900, Capão-do-Leão, RS, Brazil
| | - Maíra Chagas Morais
- Department of Plant Protection, Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900, Capão-do-Leão, RS, Brazil
| | - Cristiano João Arioli
- Agricultural Research and Rural Extension Corporation of Santa Catarina (EPAGRI), 88600-000, São Joaquim, SC, Brazil
| | - Moises João Zotti
- Department of Plant Protection, Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900, Capão-do-Leão, RS, Brazil
| | - Anderson Dionei Grützmacher
- Department of Plant Protection, Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900, Capão-do-Leão, RS, Brazil
| | - Marcos Botton
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Grape & Wine, P.O. Box 130, 95701-008, Bento Gonçalves, RS, Brazil
| |
Collapse
|
8
|
Task repertoires of hygienic workers reveal a link between specialized necrophoric behaviors in honey bees. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2731-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Ma R, Rangel J, Grozinger CM. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genomics 2019; 20:592. [PMID: 31324147 PMCID: PMC6642498 DOI: 10.1186/s12864-019-5923-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background Foraging behavior in honey bees (Apis mellifera) is a complex phenotype that is regulated by physiological state and social signals. How these factors are integrated at the molecular level to modulate foraging behavior has not been well characterized. The transition of worker bees from nursing to foraging behaviors is mediated by large-scale changes in brain gene expression, which are influenced by pheromones produced by the queen and larvae. Larval pheromones can also stimulate foragers to leave the colony to collect pollen. However, the mechanisms underpinning this rapid behavioral plasticity in foragers that specialize in collecting pollen over nectar, and how larval pheromones impact these different behavioral states, remains to be determined. Here, we investigated the patterns of gene expression related to rapid behavioral plasticity and task allocation among honey bee foragers exposed to two larval pheromones, brood pheromone (BP) and (E)-beta-ocimene (EBO). We hypothesized that both pheromones would alter expression of genes in the brain related to foraging and would differentially impact brain gene expression depending on foraging specialization. Results Combining data reduction, clustering, and network analysis methods, we found that foraging preference (nectar vs. pollen) and pheromone exposure are each associated with specific brain gene expression profiles. Furthermore, pheromone exposure has a strong transcriptional effect on genes that are preferentially expressed in nectar foragers. Representation factor analysis between our study and previous landmark honey bee transcriptome studies revealed significant overlaps for both pheromone communication and foraging task specialization. Conclusions Our results suggest that, as social signals, pheromones alter expression patterns of foraging-related genes in the bee’s brain to increase pollen foraging at both long and short time scales. These results provide new insights into how social signals and task specialization are potentially integrated at the molecular level, and highlights the possible role that brain gene expression may play in honey bee behavioral plasticity across time scales. Electronic supplementary material The online version of this article (10.1186/s12864-019-5923-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Ma
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Honey bees increase their foraging performance and frequency of pollen trips through experience. Sci Rep 2019; 9:6778. [PMID: 31043647 PMCID: PMC6494865 DOI: 10.1038/s41598-019-42677-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
Honey bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions. Here we explored the relationship between foraging activity and foraging performance in honey bees (Apis mellifera) by using an automated behaviour monitoring system to record mass on departing the hive, trip duration, presence of pollen on the hind legs and mass upon return to the hive, during the lifelong foraging career of individual bees. In our colonies, only a subset of foragers collected pollen, and no bee exclusively foraged for pollen. A minority of very active bees (19% of the foragers) performed 50% of the colony’s total foraging trips, contributing to both pollen and nectar collection. Foraging performance (amount and rate of food collection) depended on bees’ individual experience (amount of foraging trips completed). We argue that this reveals an important vulnerability for these social bees since environmental stressors that alter the activity and reduce the lifespan of foragers may prevent bees ever achieving maximal performance, thereby seriously compromising the effectiveness of the colony foraging force.
Collapse
|
11
|
Potter C, de Vere N, Jones LE, Ford CR, Hegarty MJ, Hodder KH, Diaz A, Franklin EL. Pollen metabarcoding reveals broad and species-specific resource use by urban bees. PeerJ 2019; 7:e5999. [PMID: 30809427 PMCID: PMC6385686 DOI: 10.7717/peerj.5999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Bee populations are currently undergoing severe global declines driven by the interactive effects of a number of factors. Ongoing urbanisation has the potential to exacerbate bee declines, unless steps are taken to ensure appropriate floral resources are available. Sown wildflower strips are one way in which floral resources can be provided to urban bees. However, the use of these strips by pollinators in urban environments remains little studied. Here, we employ pollen metabarcoding of the rbcL gene to compare the foraging patterns of different bee species observed using urban sown wildflower strips in July 2016, with a goal of identifying which plant species are most important for bees. We also demonstrate the use of a non-destructive method of pollen collection. Bees were found to forage on a wide variety of plant genera and families, including a diverse range of plants from outside the wildflower plots, suggesting that foragers visiting sown wildflower strips also utilize other urban habitats. Particular plants within the wildflower strips dominated metabarcoding data, particularly Papaver rhoeas and Phacelia tanacetifolia. Overall, we demonstrate that pollinators observed in sown wildflower strips use certain sown foodplants as part of a larger urban matrix.
Collapse
Affiliation(s)
- Caitlin Potter
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Natasha de Vere
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
| | - Laura E. Jones
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd, UK
| | - Col R. Ford
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
| | | | - Kathy H. Hodder
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Anita Diaz
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Elizabeth L. Franklin
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Arenas A, Kohlmaier MG. Nectar source profitability influences individual foraging preferences for pollen and pollen-foraging activity of honeybee colonies. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2644-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Van Nest BN, Otto MW, Moore D. High experience levels delay recruitment but promote simultaneous time-memories in honey bee foragers. ACTA ACUST UNITED AC 2018; 221:jeb.187336. [PMID: 30337357 DOI: 10.1242/jeb.187336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Honey bee (Apis mellifera) foragers can remember both the location and time of day food is collected and, even in the absence of a reward, reconnoiter the food source at the appropriate time on subsequent days. This spatiotemporal memory (time-memory) is linked to the circadian clock and enables foragers to synchronize their behavior with floral nectar secretion rhythms, thus eliminating the need to rediscover productive food sources each day. Here, we asked whether the establishment of one time-memory influences the formation of another time-memory at the same time of day. In other words, can two time-place memories with the same 'time-stamp' co-exist? We simultaneously trained two groups of foragers from a single hive to two separate feeders at the same restricted time of day. After 5 days of training, one feeder was shut off. The second feeder continued being productive 4 more days. Our results showed that (1) foragers with high experience levels at the first source were significantly more likely than low-experience foragers to maintain fidelity to their original source and resist recruitment to the alternative source, (2) nearly one-third of foragers demonstrated multiple, overlapping time-memories by visiting both feeders at the correct time and (3) significantly more high-experience than low-experience foragers exhibited this multitasking behavior. The ability to maintain and act upon two different, yet contemporaneous, time-memories gives the forager bee a previously unknown level of versatility in attending to multiple food sources. These findings have major implications for understanding the formation and management of circadian spatiotemporal memories.
Collapse
Affiliation(s)
- Byron N Van Nest
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Matthew W Otto
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Darrell Moore
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
14
|
Saar M, Eyer PA, Kilon-Kallner T, Hefetz A, Scharf I. Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants. Sci Rep 2018; 8:13868. [PMID: 30217995 PMCID: PMC6138738 DOI: 10.1038/s41598-018-32064-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
There is accumulating evidence that genetic diversity improves the behavioral performance and consequently the fitness in groups of social animals. We examined the behavioral performance of colonies of two co-occurring, congeneric harvester ant species (Messor arenarius and a non-described Messor sp.) in fitness-related behaviors, pertaining to foraging performance, nest maintenance, and aggression. We linked these behaviors to the colonial genetic diversity, by genotyping workers, using six and five microsatellite markers for M. arenarius and M. sp., respectively. Correlations of genetic diversity with colony performance and aggression level contrasted between the two species. In M. arenarius, genetic diversity was correlated with foraging performance and nest maintenance but not with the overall aggression level, while in M. sp., genetic diversity was correlated with the overall aggression level, but not with foraging performance or nest maintenance. The two species exhibited similar specific aggression levels, with higher aggression shown towards heterospecifics and lower towards non-nestmate conspecifics and nestmates. However, M. sp. workers displayed a tendency to interact for longer with heterospecifics than did M. arenarius. We speculate that the different foraging strategies, group vs. individual foraging, and possibly also the different mating systems, contribute to the differences found in behavior between the two species.
Collapse
Affiliation(s)
- Maya Saar
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pierre-André Eyer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tal Kilon-Kallner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Hefetz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Kuszewska K, Miler K, Woyciechowski M. Honeybee rebel workers invest less in risky foraging than normal workers. Sci Rep 2018; 8:9459. [PMID: 29930293 PMCID: PMC6013497 DOI: 10.1038/s41598-018-27844-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 06/12/2018] [Indexed: 11/29/2022] Open
Abstract
In eusocial insect colonies, workers have individual preferences for performing particular tasks. Previous research suggests that these preferences might be associated with worker reproductive potential; however, different studies have yielded inconsistent results. This study constitutes the first comparison of foraging preferences between genetically similar normal and rebel honeybee workers, which present different reproductive potential. We found that rebels, which have a higher reproductive potential than normal workers, displayed a delayed onset of foraging and a stronger tendency to collect nectar compared with normal workers. These results support the hypothesis that workers with high reproductive potential invest more in their own egg laying and avoid risky tasks such as foraging. In contrast, the results do not support the hypothesis that reproductive workers initiate foraging earlier in life than normal workers and specialize in pollen foraging.
Collapse
Affiliation(s)
- Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
16
|
The effects of artificial rearing environment on the behavior of adult honey bees, Apis mellifera L. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2507-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Moauro MA, Balbuena MS, Farina WM. Assessment of Appetitive Behavior in Honey Bee Dance Followers. Front Behav Neurosci 2018; 12:74. [PMID: 29755329 PMCID: PMC5934941 DOI: 10.3389/fnbeh.2018.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information.
Collapse
Affiliation(s)
- Mariel A Moauro
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Ingram T, Costa-Pereira R, Araújo MS. The dimensionality of individual niche variation. Ecology 2018; 99:536-549. [DOI: 10.1002/ecy.2129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/26/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Travis Ingram
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - Raul Costa-Pereira
- Programa de Pós-graduação em Ecologia e Biodiversidade, Instituto de Biociências; Universidade Estadual Paulista (UNESP); Av. 24-A, 1515 Rio Claro 15807 Brazil
- Instituto de Biociências; Universidade Estadual Paulista (UNESP); Av. 24-A, 1515 Rio Claro 15807 Brazil
| | - Márcio S. Araújo
- Instituto de Biociências; Universidade Estadual Paulista (UNESP); Av. 24-A, 1515 Rio Claro 15807 Brazil
| |
Collapse
|
19
|
Abstract
Honey bees feed on floral nectar and pollen that they store in their colonies as honey and bee bread. Social division of labor enables the collection of stores of food that are consumed by within-hive bees that convert stored pollen and honey into royal jelly. Royal jelly and other glandular secretions are the primary food of growing larvae and of the queen but are also fed to other colony members. Research clearly shows that bees regulate their intake, like other animals, around specific proportions of macronutrients. This form of regulation is done as individuals and at the colony level by foragers.
Collapse
Affiliation(s)
- Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom;
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Sharoni Shafir
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
20
|
Liu F, Shi T, Yin W, Su X, Qi L, Huang ZY, Zhang S, Yu L. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:34-42. [PMID: 28941994 DOI: 10.1016/j.ibmb.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence demonstrates that microRNAs (miRNA) play an important role in the regulation of animal behaviours. Honey bees (Apis mellifera) are eusocial insects, with honey bee workers displaying age-dependent behavioural maturation. Many different miRNAs have been implicated in the change of behaviours in honey bees and ame-miR-279a was previously shown to be more highly expressed in nurse bee heads than in those of foragers. However, it was not clear whether this difference in expression was associated with age or task performance. Here we show that ame-miR-279a shows significantly higher expression in the brains of nurse bees relative to forager bees regardless of their ages, and that ame-miR-279a is primarily localized in the Kenyon cells of the mushroom body in both foragers and nurses. Overexpression of ame-miR-279a attenuates the sucrose responsiveness of foragers, while its absence enhances their sucrose responsiveness. Lastly, we determined that ame-miR-279a directly target the mRNA of Mblk-1. These findings suggest that ame-miR-279a plays important roles in regulating honey bee division of labour.
Collapse
Affiliation(s)
- Fang Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China.
| | - Tengfei Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin Su
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Lei Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, United States.
| | - Shaowu Zhang
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Australia
| | - Linsheng Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| |
Collapse
|
21
|
Mosqueiro T, Cook C, Huerta R, Gadau J, Smith B, Pinter-Wollman N. Task allocation and site fidelity jointly influence foraging regulation in honeybee colonies. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170344. [PMID: 28878985 PMCID: PMC5579100 DOI: 10.1098/rsos.170344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour, we do not know if and how they jointly affect collective outcomes. Here, we use a detailed computational model to examine the joint impact of colony-level distribution among tasks and behavioural persistence of individuals, specifically their fidelity to particular resource sites, on the collective trade-off between exploring for new resources and exploiting familiar ones. We developed an agent-based model of foraging honeybees, parametrized by data from five colonies, in which we simulated scouts, who search the environment for new resources, and individuals who are recruited by the scouts to the newly found resources, i.e. recruits. We varied the persistence of returning to a particular food source of both scouts and recruits and found that, for each value of persistence, there is a different optimal ratio of scouts to recruits that maximizes resource collection by the colony. Furthermore, changes to the persistence of scouts induced opposite effects from changes to the persistence of recruits on the collective foraging of the colony. The proportion of scouts that resulted in the most resources collected by the colony decreased as the persistence of recruits increased. However, this optimal proportion of scouts increased as the persistence of scouts increased. Thus, behavioural persistence and task participation can interact to impact a colony's collective behaviour in orthogonal directions. Our work provides new insights and generates new hypotheses into how variations in behaviour at both the individual and colony levels jointly impact the trade-off between exploring for new resources and exploiting familiar ones.
Collapse
Affiliation(s)
- Thiago Mosqueiro
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Chelsea Cook
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ramon Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| | - Jürgen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Brian Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Ernst UR, Cardoen D, Cornette V, Ratnieks FL, de Graaf DC, Schoofs L, Verleyen P, Wenseleers T. Individual and genetic task specialization in policing behaviour in the European honeybee. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Gong YJ, Li JJ, Zhou Y, Li Y, Chung HSH, Shi YH, Zhang J. Genetic Learning Particle Swarm Optimization. IEEE TRANSACTIONS ON CYBERNETICS 2016; 46:2277-2290. [PMID: 26394440 DOI: 10.1109/tcyb.2015.2475174] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for "learning." This leads to a generalized "learning PSO" paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.
Collapse
|
24
|
A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera. PLoS One 2016; 11:e0161059. [PMID: 27560969 PMCID: PMC4999132 DOI: 10.1371/journal.pone.0161059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.
Collapse
|
25
|
|
26
|
Liang ZS, Mattila HR, Rodriguez-Zas SL, Southey BR, Seeley TD, Robinson GE. Comparative brain transcriptomic analyses of scouting across distinct behavioural and ecological contexts in honeybees. Proc Biol Sci 2015; 281:rspb.2014.1868. [PMID: 25355476 DOI: 10.1098/rspb.2014.1868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individual differences in behaviour are often consistent across time and contexts, but it is not clear whether such consistency is reflected at the molecular level. We explored this issue by studying scouting in honeybees in two different behavioural and ecological contexts: finding new sources of floral food resources and finding a new nest site. Brain gene expression profiles in food-source and nest-site scouts showed a significant overlap, despite large expression differences associated with the two different contexts. Class prediction and 'leave-one-out' cross-validation analyses revealed that a bee's role as a scout in either context could be predicted with 92.5% success using 89 genes at minimum. We also found that genes related to four neurotransmitter systems were part of a shared brain molecular signature in both types of scouts, and the two types of scouts were more similar for genes related to glutamate and GABA than catecholamine or acetylcholine signalling. These results indicate that consistent behavioural tendencies across different ecological contexts involve a mixture of similarities and differences in brain gene expression.
Collapse
Affiliation(s)
- Zhengzheng S Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heather R Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Sandra L Rodriguez-Zas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas D Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Increased grooming after repeated brood care provides sanitary benefits in a clonal ant. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1117-27. [PMID: 24072064 DOI: 10.1007/s00359-013-0854-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.
Collapse
|
29
|
Hygienic Behavior of Africanized Honey Bees Apis mellifera Directed towards Brood in Old and New Combs during Diurnal and Nocturnal Periods. INSECTS 2013; 4:521-32. [PMID: 26462521 PMCID: PMC4553501 DOI: 10.3390/insects4040521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/30/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
Hygienic behavior in honey bees, Apis mellifera, is measured by determining the rate at which the bees uncap and remove dead sealed brood. We analyzed individual behavior of house-cleaning Africanized honey bees in order to focus on some poorly understood aspects of hygienic behavior. Two observation hives, each with approximately 3,000 individually marked bees, were used in this study. The efficiency of hygienic behavior was evaluated in hygienic and non-hygienic strains of bees using two types of combs (new and old), as well as at different periods of the day (night and day). We also recorded the age of workers that performed this task of removing dead brood. In both strains, the workers that performed tasks related to hygienic behavior were within the same age cohort; we found no influence of age on the amount of time dedicated to the task, independent of the type of comb or period of the day. The total time from perforation of the cell capping until the dead brood had been completely removed, and was significantly shorter during daytime than at night. Hygienic behavior directed towards dead brood in new combs was also significantly more efficient (faster) than for brood in old combs. The type of comb had significantly more effect than did the time of day. We conclude that the type of comb and time of day should be taken into consideration when evaluating hygienic behavior in honey bees.
Collapse
|
30
|
Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A. Behavioural syndromes and social insects: personality at multiple levels. Biol Rev Camb Philos Soc 2013; 89:48-67. [PMID: 23672739 DOI: 10.1111/brv.12042] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 11/28/2022]
Abstract
Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade-offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes-research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals).
Collapse
Affiliation(s)
- Jennifer M Jandt
- Department of Ecology, Evolutionary and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Menzel R. The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 2012; 13:758-68. [DOI: 10.1038/nrn3357] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Eyer PA, Freyer J, Aron S. Genetic polyethism in the polyandrous desert ant Cataglyphis cursor. Behav Ecol 2012. [DOI: 10.1093/beheco/ars146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Libbrecht R, Keller L. Genetic compatibility affects division of labor in the Argentine ant Linepithema humile. Evolution 2012; 67:517-24. [PMID: 23356622 DOI: 10.1111/j.1558-5646.2012.01792.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Division of labor is central to the organization of insect societies. Within-colony comparisons between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division of labor in many social insect species. Although this has been taken as evidence for additive genetic effects on division of labor, it has never been experimentally tested. To determine the relative roles of additive and nonadditive genetic effects (e.g., genetic compatibility, epistasis, and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency to collect pupae, the foraging propensity, and the distance between non-brood-tenders and brood) were affected by the maternal genetic background and the two others (the efficiency to feed larvae and the distance between brood-tenders and brood) by the paternal genetic background. Moreover, there were significant interactions between the maternal and paternal genetic backgrounds for three of the five behaviors. These results are most consistent with parent-of-origin and genetic compatibility effects on division of labor. The finding of nonadditive genetic effects is in strong contrast with the current view and has important consequences for our understanding of division of labor in insect societies.
Collapse
Affiliation(s)
- Romain Libbrecht
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
34
|
Hagbery J, Nieh JC. Individual lifetime pollen and nectar foraging preferences in bumble bees. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2012; 99:821-32. [PMID: 22965265 DOI: 10.1007/s00114-012-0964-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 11/25/2022]
Abstract
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.
Collapse
Affiliation(s)
- Jessica Hagbery
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA.
| | | |
Collapse
|
35
|
Duarte A, Weissing FJ, Pen I, Keller L. An Evolutionary Perspective on Self-Organized Division of Labor in Social Insects. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145017] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Duarte
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Franz J. Weissing
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Ido Pen
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015 Switzerland;
| |
Collapse
|
36
|
Mattila HR, Seeley TD. Does a polyandrous honeybee queen improve through patriline diversity the activity of her colony’s scouting foragers? Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1083-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Kraus FB, Gerecke E, Moritz RFA. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav Genet 2010; 41:323-8. [PMID: 20640499 DOI: 10.1007/s10519-010-9382-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 07/02/2010] [Indexed: 11/28/2022]
Abstract
Division of labour is a fundamental property of any social system. The specialization of different individuals in different tasks increases the overall work performance and efficiency. Specialization is thought to be the very foundation of the success of human societies but also in complex colonies of social insects. In human societies an advanced form of division of labour, especially since the industrialisation, is shift work, where individuals perform the same task but in subsequent cohorts in time. Although social insects can measure and are aware of time, shift work has not been documented in colonies of social insects so far. We observed foragers of two honeybee (Apis mellifera) colonies (approximately 140 workers each) and genotyped them with microsatellite DNA markers. We determined paternity and assigned them to the various subfamilies in the colony to test whether there is genetic variance for shift work in foraging honeybees. We could show that the patriline identity of the foragers had a significant effect on foraging either in the morning or evening. Individual foragers differed in their preference for the "early" or "late" shift, and shift work indeed existed in the colony.
Collapse
Affiliation(s)
- F Bernhard Kraus
- Institut für Biologie, Molecular Ecology Work Group, Martin Luther University Halle-Wittenberg, Hoher Weg 4, Halle (Saale), Germany.
| | | | | |
Collapse
|
38
|
Ihle KE, Page RE, Frederick K, Fondrk MK, Amdam GV. Genotype effect on regulation of behaviour by vitellogenin supports reproductive origin of honeybee foraging bias. Anim Behav 2010; 79:1001-1006. [PMID: 20454635 DOI: 10.1016/j.anbehav.2010.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In honeybee colonies, food collection is performed by a group of mostly sterile females called workers. After an initial nest phase, workers begin foraging for nectar and pollen, but tend to bias their collection towards one or the other. The foraging choice of honeybees is influenced by vitellogenin (vg), an egg-yolk precursor protein that is expressed although workers typically do not lay eggs. The forager reproductive ground plan hypothesis (RGPH) proposes an evolutionary path in which the behavioural bias toward collecting nectar or pollen on foraging trips is influenced by variation in reproductive physiology, such as hormone levels and vg gene expression. Recently, the connections between vg and foraging behaviour were challenged by Oldroyd and Beekman (2008), who concluded from their study that the ovary, and especially vg, played no role in foraging behaviour of bees. We address their challenge directly by manipulating vg expression by RNA interference- (RNAi) mediated gene knockdown in two honeybee genotypes with different foraging behaviour and reproductive physiology. We show that the effect of vg on the food-loading decisions of the workers occurs only in the genotype where timing of foraging onset (by age) is also sensitive to vg levels. In the second genotype, changing vg levels do not affect foraging onset or bias. The effect of vg on workers' age at foraging onset is explained by the well-supported double repressor hypothesis (DHR), which describes a mutually inhibitory relationship between vg and juvenile hormone (JH) - an endocrine factor that influences development, reproduction, and behaviour in many insects. These results support the RGPH and demonstrate how it intersects with an established mechanism of honeybee behavioural control.
Collapse
Affiliation(s)
- Kate E Ihle
- School of Life Sciences, Arizona State University, Tempe
| | | | | | | | | |
Collapse
|
39
|
Tsuruda JM, Page RE. The effects of young brood on the foraging behavior of two strains of honey bees (Apis mellifera). Behav Ecol Sociobiol 2009; 64:161-167. [PMID: 19946650 PMCID: PMC2779344 DOI: 10.1007/s00265-009-0833-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/01/2009] [Accepted: 07/13/2009] [Indexed: 11/30/2022]
Abstract
Honey bee foragers specialize on collecting pollen and nectar. Pollen foraging behavior is modulated by at least two stimuli within the nest: the presence of brood pheromone and young larvae and the quantity of stored pollen. Genetic variation in pollen foraging behavior has been demonstrated repeatedly. We used selected high and low pollen-hoarding strains of bees that differ dramatically in the quantity of pollen collected to determine if the observed differences in foraging could be explained by differential responses to brood stimuli. Workers from the high and low pollen-hoarding strains and wild-type bees were co-fostered in colonies with either brood or no brood. As expected based on previous studies, returning high pollen-hoarding foragers collected heavier pollen loads and lighter nectar loads than low pollen-hoarding bees. Effects of brood treatment were also observed; bees exposed to brood collected heavier pollen loads and initiated foraging earlier than those from broodless colonies. More specifically, brood treatment resulted in increased pollen foraging in high pollen-hoarding bees but did not affect pollen foraging in low pollen-hoarding bees, suggesting that high pollen-hoarding bees are more sensitive to the presence of brood. However, response to brood stimuli does not sufficiently explain the differences in foraging behavior between the strains since these differences persisted even in the absence of brood.
Collapse
Affiliation(s)
- Jennifer M. Tsuruda
- Department of Entomology, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Robert E. Page
- Department of Entomology, University of California, One Shields Ave, Davis, CA 95616 USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501 USA
| |
Collapse
|
40
|
Oettler J, Johnson RA. The Old Ladies of the Seed Harvester ant Pogonomyrmex Rugosus: Foraging Performed by Two Groups of Workers. JOURNAL OF INSECT BEHAVIOR 2009; 22:217-226. [PMID: 21654914 PMCID: PMC3085757 DOI: 10.1007/s10905-008-9167-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 04/22/2008] [Accepted: 10/12/2008] [Indexed: 05/30/2023]
Abstract
We examined temporal polyethism in Pogonomyrmex rugosus, predicting a pattern of decreasing age from foragers to nest maintenance workers to individuals that were recruited to harvest a temporary food source. Nest maintenance workers were younger than foragers, as indicated by their heavier mass and lower mandibular wear. In contrast, recruited foragers were similar in mass to foragers but they displayed higher mandibular wear, suggesting that they were at least as old as foragers. Longevity estimates for marked individuals of these two latter task groups showed mixed results. Higher mandibular wear of recruited foragers suggests that they did not follow the normal sequence for temporal polyethism, but rather that they functioned as seed-millers, which should more quickly abrade their dentition. This would be the first demonstration of specialist milling individuals in a monomorphic seed-harvester ant.
Collapse
Affiliation(s)
- Jan Oettler
- Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
- Biologie 1, Universität Regensburg, 93040 Regensburg, Germany
| | - Robert A. Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501 USA
| |
Collapse
|
41
|
Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:673-9. [PMID: 19390855 DOI: 10.1007/s00359-009-0442-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
Honeybees (Apis mellifera) are able to regulate the brood nest temperatures within a narrow range between 32 and 36 degrees C. Yet this small variation in brood temperature is sufficient to cause significant differences in the behavior of adult bees. To study the consequences of variation in pupal developmental temperature we raised honeybee brood under controlled temperature conditions (32, 34.5, 36 degrees C) and individually marked more than 4,400 bees, after emergence. We analyzed dancing, undertaking behavior, the age of first foraging flight, and forager task specialization of these workers. Animals raised under higher temperatures showed an increased probability to dance, foraged earlier in life, and were more often engaged in undertaking. Since the temperature profile in the brood nest may be an emergent property of the whole colony, we discuss how pupal developmental temperature can affect the overall organization of division of labor among the individuals in a self-organized process.
Collapse
|
42
|
Bouga M, Kilias G, Harizanis PC, Papasotiropoulos V, Alahiotis S. Allozyme variability and phylogenetic relationships in honey bee (Hymenoptera: Apidae: Apis mellifera) populations from Greece and Cyprus. Biochem Genet 2008; 43:471-83. [PMID: 16341763 DOI: 10.1007/s10528-005-8163-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 10/21/2004] [Indexed: 12/01/2022]
Abstract
Ten gene enzymic systems (alpha-GPDH, AO, MDH, ADH, LAP, SOD, ALP, ACPH, ME, and EST), corresponding to 12 genetic loci, were assayed from five Greek populations representing three subspecies of Apis mellifera, A. m. cecropia (Pthiotida, Kythira), A. m. macedonica (Macedonia), and the "Aegean race" of A. mellifera, which is supposed to be very similar to A. m. adami (Ikaria, Kasos), as well as a population from Cypus (A. m. cypria). ADH( *)-1, ADH( *)-2, and LAP( *) electrophoretic patterns discriminate the Cyprus population from the Greek populations. MDH( *)-1, EST( *)-3, SOD( *), ALP( *), and ME( *) loci were found to be polymorphic in almost all populations. The observed heterozygosity was found to range from 0.066 to 0.251. Allele frequencies of all loci were used to estimate Nei's genetic distance, which was found to range between 0.011 and 0.413 among the populations studied. UPGMA and neighbor-joining phylogenetic trees obtained by genetic distance matrix methods, as well as a Wagner tree based on the discrete character parsimony method, support the hypothesis that the most distant population is that from Cyprus. Our allozymic data support A. m. cypria as a distinct subspecies, but there was no allozymic support for the distinction of the other subspecies existing in Greece.
Collapse
Affiliation(s)
- M Bouga
- Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Rio, 265 00, Patras, Greece.
| | | | | | | | | |
Collapse
|
43
|
Barron AB, Robinson GE. The utility of behavioral models and modules in molecular analyses of social behavior. GENES BRAIN AND BEHAVIOR 2008; 7:257-65. [PMID: 17680804 DOI: 10.1111/j.1601-183x.2007.00344.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is extremely difficult to trace the causal pathway relating gene products or molecular pathways to the expression of behavior. This is especially true for social behavior, which being dependent on interactions and communication between individuals is even further removed from molecular-level events. In this review, we discuss how behavioral models can aid molecular analyses of social behavior. Various models of behavior exist, each of which suggest strategies to dissect complex behavior into simpler behavioral 'modules.' The resulting modules are easier to relate to neural processes and thus suggest hypotheses for neural and molecular function. Here we discuss how three different models of behavior have facilitated understanding the molecular bases of aspects of social behavior. We discuss the response threshold model and two different approaches to modeling motivation, the state space model and models of reinforcement and reward processing. The examples we have chosen illustrate how models can generate testable hypotheses for neural and molecular function and also how molecular analyses probe the validity of a model of behavior. We do not champion one model over another; rather, our examples illustrate how modeling and molecular analyses can be synergistic in exploring the molecular bases of social behavior.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
44
|
Genetic diversity, worker size polymorphism and division of labour in the polyandrous ant Cataglyphis cursor. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Oldroyd BP, Fewell JH. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 2007; 22:408-13. [PMID: 17573148 DOI: 10.1016/j.tree.2007.06.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/25/2007] [Accepted: 06/01/2007] [Indexed: 11/29/2022]
Abstract
Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
46
|
|
47
|
Jha S, Casey-Ford RG, Pedersen JS, Platt TG, Cervo R, Queller DC, Strassmann JE. The queen is not a pacemaker in the small-colony wasps Polistes instabilis and P. dominulus. Anim Behav 2006. [DOI: 10.1016/j.anbehav.2005.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Bertram SM, Gorelick R, Fewell JH. Colony response to graded resource changes: an analytical model of the influence of genotype, environment, and dominance. Theor Popul Biol 2003; 64:151-62. [PMID: 12948677 DOI: 10.1016/s0040-5809(03)00064-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Successful social groups must respond dynamically to environmental changes. However, a flexible group response requires the coordination of many individuals. Here we offer a static analytical model that integrates variation in environment-based cues for performance of a task with genetically and environmentally based variation in individual responses, and predicts the resultant colony behavior for that task. We also provide formulae for computing effective number of alleles in a haplo-diploid colony founded by any number of parents. Variable colony resources combined with variation among worker phenotypes generate known patterns of colony flexibility, allowing us to explicitly test how the number of loci, dominance/codominance, and the phenotype's environment influences group response. Our model indicates that the number of loci strongly influences colony behavior. For one or two loci, the proportion of workers foraging for pollen remain constant over vast increases in colony pollen stores, but then drops dramatically when the pollen stores increase past a specific threshold. As the number of loci controlling pollen foraging increases, graded increases in pollen stores result in a graded drop in the proportion of the worker population foraging for pollen. The effect of number of alleles is less strong, a result we discuss in light of the fact that a low number of effective alleles are expected in a colony. Comparisons of our model with empirical honey bee (Apis mellifera) data indicate that worker foraging response to pollen stores is driven by one or two loci, each with dominant allelic effects. The growing body of evidence that genotype has strong effects on task performance in social insect colonies, and the variation in within-colony genetic diversity across social insect taxa, make our model broadly applicable in explaining social group coordination.
Collapse
Affiliation(s)
- Susan M Bertram
- Department of Biology, Arizona State University, Mail Code 1501, Box 871501, Tempe, AZ 85287-1501, USA.
| | | | | |
Collapse
|
49
|
Feuerbacher E, Fewell JH, Roberts SP, Smith EF, Harrison JF. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera. J Exp Biol 2003; 206:1855-65. [PMID: 12728007 DOI: 10.1242/jeb.00347] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we tested the effect of pollen and nectar loading on metabolic rate (in mW) and wingbeat frequency during hovering, and also examined the effect of pollen loading on wing kinematics and mechanical power output. Pollen foragers had hovering metabolic rates approximately 10% higher than nectar foragers, regardless of the amount of load carried. Pollen foragers also had a more horizontal body position and higher inclination of stroke plane than measured previously for honey bees (probably nectar foragers). Thorax temperatures ranked pollen > nectar > water foragers, and higher flight metabolic rate could explain the higher thorax temperature of pollen foragers. Load mass did not affect hovering metabolic rate or wingbeat frequency in a regression-model experiment. However, using an analysis of variance (ANOVA) design, loaded pollen and nectar foragers (mean loads 27% and 40% of body mass, respectively) significantly increased metabolic rate by 6%. Mean pollen loads of 18% of body mass had no effect on wingbeat frequency, stroke amplitude, body angle or inclination of stroke plane, but increased the calculated mechanical power output by 16-18% (depending on the method of estimating drag). A rise in lift coefficient as bees carry loads without increasing wingbeat frequency or stroke amplitude (and only minimal increases in metabolic rate) suggests an increased use of unsteady power-generating mechanisms.
Collapse
Affiliation(s)
- Erica Feuerbacher
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | | | | | | | |
Collapse
|
50
|
Arnold G, Quenet B, Papin C, Masson C, Kirchner WH. Intra-Colonial Variability in the Dance Communication in Honeybees (Apis mellifera). Ethology 2002. [DOI: 10.1046/j.1439-0310.2002.00809.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|