1
|
Xu L, Qian Z, Wang S, Wang R, Pu X, Yang B, Zhou Q, Du C, Chen Q, Feng Z, Xu L, Zhu Z, Qiu Y, Sun X. Galectin-3 Enhances Osteogenic Differentiation of Precursor Cells From Patients With Diffuse Idiopathic Skeletal Hyperostosis via Wnt/β-Catenin Signaling. J Bone Miner Res 2022; 37:724-739. [PMID: 35064940 DOI: 10.1002/jbmr.4508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory skeletal disease characterized by the progressive ectopic ossification and calcification of ligaments and enthuses. However, specific pathogenesis remains unknown. Bone marrow mesenchymal stem cells (BMSCs) are a major source of osteoblasts and play vital roles in bone metabolism and ectopic osteogenesis. However, it is unclear whether BMSCs are involved in ectopic calcification and ossification in DISH. The current study aimed to explore the osteogenic differentiation abilities of BMSCs from DISH patients (DISH-BMSCs). Our results showed that DISH-BMSCs exhibited stronger osteogenic differentiation abilities than normal control (NC)-BMSCs. Human cytokine array kit analysis showed significantly increased secretion of Galectin-3 in DISH-BMSCs. Furthermore, Galectin-3 downregulation inhibited the increased osteogenic differentiation ability of DISH-BMSCs, whereas exogenous Galectin-3 significantly enhanced the osteogenic differentiation ability of NC-BMSCs. Notably, the increased Galectin-3 in DISH-BMSCs enhanced the expression of β-catenin as well as TCF-4, whereas attenuation of Wnt/β-catenin signaling partially alleviated Galectin-3-induced osteogenic differentiation and activity in DISH-BMSCs. In addition, our results noted that Galectin-3 interacted with β-catenin and enhanced its nuclear accumulation. Further in vivo studies showed that exogenous Galectin-3 enhanced ectopic bone formation in the Achilles tendon in trauma-induced rats by activating Wnt/β-catenin signaling. The current study indicated that enhanced osteogenic differentiation of DISH-BMSCs was mainly attributed to the increased secretion of Galectin-3 by DISH-BMSCs, which enhanced β-catenin expression and its nuclear accumulation. Our study helps illuminate the mechanisms of pathological osteogenesis and sheds light on the possible development of potential therapeutic strategies for DISH treatment. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Liang Xu
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuang Qian
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sinian Wang
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiaojiang Pu
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Yang
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingshuang Zhou
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Changzhi Du
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Quanchi Chen
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leilei Xu
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Qiu
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xu Sun
- Spine Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Yukata K, Kanchiku T, Egawa H, Nakamura M, Nishida N, Hashimoto T, Ogasa H, Taguchi T, Yasui N. Continuous infusion of PTH 1-34 delayed fracture healing in mice. Sci Rep 2018; 8:13175. [PMID: 30181648 PMCID: PMC6123430 DOI: 10.1038/s41598-018-31345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/17/2018] [Indexed: 01/19/2023] Open
Abstract
Hyperparathyroidism, which is increased parathyroid hormone (PTH) levels in the blood, could cause delayed or non-union of bone fractures. But, no study has yet demonstrated the effects of excess continuous PTH exposure, such as that seen in hyperparathyroidism, for fracture healing. Continuous human PTH1–34 (teriparatide) infusion using an osmotic pump was performed for stabilized tibial fractures in eight-week-old male mice to determine the relative bone healing process compared with saline treatment. Radiographs and micro-computed tomography showed delayed but increased calcified callus formation in the continuous PTH1–34 infusion group compared with the controls. Histology and quantitative histomorphometry confirmed that continuous PTH1–34 treatment significantly increased the bone callus area at a later time point after fracture, since delayed endochondral ossification occurred. Gene expression analyses showed that PTH1–34 resulted in sustained Col2a1 and reduced Col10a1 expression, consistent with delayed maturation of the cartilage tissue during fracture healing. In contrast, continuous PTH1–34 infusion stimulated the expression of both Bglap and Acp5 through the healing process, in accordance with bone callus formation and remodeling. Mechanical testing showed that continuously administered PTH1–34 increased the maximum load on Day 21 compared with control mice. We concluded that continuous PTH1–34 infusion resulted in a delayed fracture healing process due to delayed callus cell maturation but ultimately increased biomechanical properties.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan. .,Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.
| | - Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Egawa
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takahiro Hashimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroyoshi Ogasa
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshihiko Taguchi
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Natsuo Yasui
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Houston DA, Myers K, MacRae VE, Staines KA, Farquharson C. The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures. Calcif Tissue Int 2016; 99:510-524. [PMID: 27444010 PMCID: PMC5055575 DOI: 10.1007/s00223-016-0176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Sustained exposure to high levels of parathyroid hormone (PTH), as observed in hyperparathyroidism, is catabolic to bone. The increase in the RANKL/OPG ratio in response to continuous PTH, resulting in increased osteoclastogenesis, is well established. However, the effects of prolonged PTH exposure on key regulators of skeletal mineralisation have yet to be investigated. This study sought to examine the temporal expression of PHOSPHO1, TNAP and nSMase2 in mineralising osteoblast-like cell cultures and to investigate the effects of continuous PTH exposure on the expression of these enzymes in vitro. PHOSPHO1, nSMase2 and TNAP expression in cultured MC3T3-C14 cells significantly increased from day 0 to day 10. PTH induced a rapid downregulation of Phospho1 and Smpd3 gene expression in MC3T3-C14 cells and cultured hemi-calvariae. Alpl was differentially regulated by PTH, displaying upregulation in cultured MC3T3-C14 cells and downregulation in hemi-calvariae. PTH was also able to abolish the stimulatory effects of bone morphogenic protein 2 (BMP-2) on Smpd3 and Phospho1 expression. The effects of PTH on Phospho1 expression were mimicked with the cAMP agonist forskolin and blocked by the PKA inhibitor PKI (5-24), highlighting a role for the cAMP/PKA pathway in this regulation. The potent down-regulation of Phospho1 and Smpd3 in osteoblasts in response to continuous PTH may provide a novel explanation for the catabolic effects on the skeleton of such an exposure. Furthermore, our findings support the hypothesis that PHOSPHO1, nSMase2 and TNAP function cooperatively in the initiation of skeletal mineralisation.
Collapse
Affiliation(s)
- D A Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - K Myers
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - V E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - K A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - C Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
4
|
Evaluation of the effects of transient or continuous PTH administration to odontoblast-like cells. Arch Oral Biol 2012; 58:638-45. [PMID: 23245578 DOI: 10.1016/j.archoralbio.2012.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone participates in the metabolism of mineralized tissue. Its role in the formation of dentine is, as yet, incompletely understood. In the present study we analyzed the effect of transient (1 and 24-h/cycle) or continuous hPTH (1-34) treatment in odontoblast-like cells (MDPC-23) to the following parameters: mineral deposition detected by alizarin red, mRNA expression of the type I collagen (COL1), alkaline phosphatase (ALP), biglycan (BGN), matrix metalloproteinase 2 (MMP-2) and dentine sialophosphoprotein (DSPP) quantified by qRT-PCR. MMP-2 and ALP activities were quantified by zymography and colorimetric assay, respectively. The results showed that compared to Control group: intermittent PTH administration (1 and 24-h/cycle) decreased the mineral deposition and ALP activity. DSPP gene expression was not detected in both control and PTH treated cells. The PTH administration for 24-h/cycle increased the ALP, BGN and COL1 mRNA expression and continuous PTH treatment increased BGN and COL1 mRNA expression. Zymography assays showed that compared to Control group: PTH treatment for 1-h/cycle increased the total MMP-2 secretion and the continuous treatment decreased the secreted levels of MMP-2 active-form. Taken together, the results shown that PTH may regulate the odontoblast-like cells-induced secretion, and potentially this hormone can affect in vivo odontoblasts functions.
Collapse
|
5
|
Mackenzie NCW, Huesa C, Rutsch F, MacRae VE. New insights into NPP1 function: lessons from clinical and animal studies. Bone 2012; 51:961-8. [PMID: 22842219 DOI: 10.1016/j.bone.2012.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
The recent elucidation of rare human genetic disorders resulting from mutations in ectonucleotide pyrophosphotase/phosphodiesterase (ENPP1), also known as plasma cell membrane glycoprotein 1 (PC-1), has highlighted the vital importance of this molecule in human health and disease. Generalised arterial calcification in infants (GACI), a frequently lethal disease, has been reported in recessive inactivating mutations in ENPP1. Recent findings have also linked hypophosphataemia to a lack of NPP1 function. A number of human genetic studies have indicated that NPP1 is a vital regulator that influences a wide range of tissues through various signalling pathways and when disrupted can lead to significant pathology. The function of Enpp1 has been widely studied in rodent models, where both the mutant tiptoe walking (ttw/ttw) mouse and genetically engineered Enpp1(-/-) mice show significant alterations in skeletal and soft tissue mineralisation, calcium/phosphate balance and glucose homeostasis. These models therefore provide important tools with which to study the potential mechanisms underpinning the human diseases associated with altered NPP1. This review will focus on the recent advances in our current knowledge of the actions of NPP1 in relation to bone disease, cardiovascular pathologies and diabetes. A fuller understanding of the mechanisms through which NPP1 exerts its pathological effects may stimulate the development of novel therapeutic strategies for patients at risk from the devastating clinical outcomes associated with disrupted NPP1 function.
Collapse
Affiliation(s)
- N C W Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | | | | | | |
Collapse
|
6
|
Stapleton CJ, Pham MH, Attenello FJ, Hsieh PC. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg Focus 2012; 30:E6. [PMID: 21434822 DOI: 10.3171/2010.12.focus10271] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a disease of progressive ectopic calcification of the PLL of the spine. It occurs most frequently in the cervical spine, followed by the thoracic spine. The disease was first described in the Japanese population, and the prevalence of OPLL is highest in Japan at a rate of 1.9%-4.3%. Note, however, that OPLL is also seen and is a known cause of cervical myelopathy in other Asian countries and in the white population. Research into the underlying cause of OPLL over the past few decades has shown that it is a multifactorial disease with significant genetic involvement. Genetic studies of OPLL have revealed several gene loci that may be involved in the pathogenesis of this disease. Genes encoding for proteins that process extracellular inorganic phosphate, collagen fibrils, and transcription factors involved in osteoblast and chondrocyte development and differentiation have all been implicated in the pathophysiology of OPLL. In this paper, the authors review current understanding of the genetics and pathophysiology of OPLL.
Collapse
Affiliation(s)
- Christopher J Stapleton
- Harvard-M.I.T. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
7
|
Tissue transglutaminase expression and activity in human ligamentum flavum cells derived from thoracic ossification of ligamentum flavum. Spine (Phila Pa 1976) 2010; 35:E1018-24. [PMID: 20802389 DOI: 10.1097/brs.0b013e3181e198ab] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The study was undertaken to compare the expression and activity of tissue transglutaminase (TG2) in human ligamentum flavum cells derived from ossification of the ligamentum flavum (OLF) and non-OLF patients. OBJECTIVE To determine whether TG2 is involved in the pathologic process of OLF. SUMMARY OF BACKGROUND DATA OLF is a disease characterized by heterotopic formation of new bone in the flavum ligament. Recently, TG2 is proved to directly promote skeletal matrix mineralization and play an important role in the ossification. TG2 activity is vital to the differentiation of osteoblasts and the formation of mineralization. But whether TG2 is involved in the pathologic process of OLF is unknown. We investigated the relations between TG2 expression and OLF. METHODS OLF and non-OLF cells were cultured and osteocalcin, bone morphogenetic protein-2(BMP-2) and TG2 mRNA expressions were assayed by reverse transcription polymerase chain reaction. Meanwhile, alkaline phosphatase activity and calcified nodules were compared between OLF and non-OLF cells. To detect TG2 expression, Western blot and immunohistochemical analysis were carried out, and TG2 activity was compared between OLF and non-OLF cells. RESULTS Our experiments demonstrated that OLF cells showed osteoblast-like activity and increased mRNA expression of BMP-2. More interesting, compared with non-OLF cells, OLF cells showed elevated expression levels of TG2 mRNA and protein, as well as enzyme activity. CONCLUSION TG2 expression and enzyme activity are upregulated in the OLF cells and TG2 may be involved in the pathologic process of OLF.
Collapse
|
8
|
Polewski MD, Johnson KA, Foster M, Millán JL, Terkeltaub R. Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone 2010; 46:81-90. [PMID: 19733704 PMCID: PMC2818162 DOI: 10.1016/j.bone.2009.08.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The physiologic selectivity of calcification in bone tissue reflects selective co-expression by osteoblasts of fibrillar collagen I and of tissue nonspecific alkaline phosphatase (TNAP), which hydrolyzes the calcification inhibitor pyrophosphate (PP(i)) and generates phosphate (P(i)). Humans and mice deficient in the PP(i)-generating ecto-enzyme NPP1 demonstrate soft tissue calcification, occurring at sites of extracellular matrix expansion. Significantly, the function in osteoblasts of cytosolic inorganic pyrophosphatase (abbreviated iPP(i)ase), which generates P(i) via PP(i) hydrolysis with neutral pH optimum, remains unknown. We assessed iPP(i)ase in Enpp1(-/-) and wild type (WT) mouse osteoblasts and we tested the hypothesis that iPP(i)ase regulates collagen I expression. METHODS We treated mouse calvarial osteoblasts with ascorbate and beta-glycerol phosphate to promote calcification, and we assessed cytosolic P(i) and PP(i) levels, sodium-dependent P(i) uptake, Pit-1 P(i) co-transporter expression, and iPP(i)ase and TNAP activity and expression. We also assessed the function of transfected Ppa1 in osteoblasts. RESULTS Inorganic pyrophosphatase but not TNAP was elevated in Enpp1(-/-) calvariae in situ. Cultured primary Enpp1(-/-) calvarial osteoblasts demonstrated increased calcification despite flat TNAP activity rather than physiologic TNAP up-regulation seen in WT osteoblasts. Despite decreased cytosolic PP(i) in early culture, Enpp1(-/-) osteoblasts maintained cytosolic P(i) levels comparable to WT osteoblasts, in association with increased iPP(i)ase, enhanced sodium-dependent P(i) uptake and expression of Pit-1, and markedly increased collagen I synthesis. Suppression of collagen synthesis in Enpp1(-/-) osteoblasts using 3,4-dehydroproline markedly suppressed calcification. Last, transfection of Ppa1 in WT osteoblasts increased cytosolic P(i) and decreased cytosolic but not extracellular PP(i), and induced both collagen I synthesis and calcification. CONCLUSIONS Increased iPP(i)ase is associated with "P(i) hunger" and increased calcification by NPP1-deficient osteoblasts. Furthermore, iPP(i)ase induces collagen I at the levels of mRNA expression and synthesis and, unlike TNAP, stimulates calcification by osteoblasts without reducing the extracellular concentration of the hydroxyapatite crystal inhibitor PP(i).
Collapse
Affiliation(s)
- Monika D Polewski
- Department of Medicine, Rheumatology Section, VA Health Care System/UCSD, San Diego, CA 92161, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
STUDY DESIGN Gene expression and protein localization of osteopontin (OPN) in spinal hyperostosis of the twy mouse by means of in situ hybridization, immunohistochemistry, and Northern blot analysis. OBJECTIVE To verify the involvement of OPN in spinal hyperostosis in the twy mouse and elucidate its ossification pattern at molecular levels. SUMMARY OF BACKGROUND DATA OPN is a molecule that consistently colocalizes with ectopic calcification in human pathologic conditions. The twy mouse, which shows ectopic calcification of the spinal ligament resulting in hind limb paralysis, is considered to be a model for human ossification of the posterior longitudinal ligament of the spine. METHODS Twenty-eight each of age-matched twy, heterozygote, and wild-type mice were killed at 2, 4, 8, 12, and 16 weeks old and subject to histologic and/or molecular analyses. Sections were hybridized with RNA probes for OPN and also stained with anti-OPN antibodies. Total cellular RNA was extracted from the cervicothoracic spine of each genotype at 2- and 16-week-old, and gene expression for OPN and COL10A1 was quantified by Northern blot analysis. RESULTS Enhanced expression of OPN mRNA was observed in spinal hyperostotic lesions of the twy mouse, specifically in cells of the spinal ligament and chondrogenic cells in the outer layer of the anulus fibrosus. These trends were also confirmed by immunohistochemical analyses. Northern blot analysis showed that a considerable amount of OPN transcripts was detected in all genotypes at 2 weeks old, but the robust expression of OPN mRNA was maintained only in twy mice at 16 weeks old. COL10A1 transcripts were hardly detected regardless of the genotype at 16 weeks old. CONCLUSION OPN was overexpressed in the hyperostotic spinal lesions of twy mice, and the hyperostosis was induced mainly by ectopic ossification of the spinal ligament. Because OPN is considered to be an inhibitor of calcification, further studies will be necessary to verify whether OPN overexpressed in the twy mouse is functional.
Collapse
|
10
|
Zhong ZM, Chen JT. Phenotypic characterization of ligamentum flavum cells from patients with ossification of ligamentum flavum. Yonsei Med J 2009; 50:375-9. [PMID: 19568599 PMCID: PMC2703760 DOI: 10.3349/ymj.2009.50.3.375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/25/2009] [Accepted: 01/25/2009] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The objective of this study was to determine the phenotypic characterization of ligamentum flavum cells from patients with ossification of the ligamentum flavum (OLF). MATERIALS AND METHODS Ligamentum flavum tissues were harvested from OLF and non-OLF patients during surgery. OLF and non-OLF cells were isolated from explant cultures. Cultured cells were analyzed using immunofluorescence staining and reverse transcription-polymerase chain reaction. RESULTS OLF cells exhibited various appearances compared with the typical fibroblast-like morphology of non-OLF cells. Expressions of collagen type I and collagen type III were observed in OLF and non-OLF cells. OLF cells uniquely expressed osteocalcin, which is a marker for osteoblasts, and collagen type II which is a marker for chondrocytes, whereas they were negative in non-OLF cells. CONCLUSION These findings indicate that OLF cells have phenotypic characterization of osteoblasts and chondrocytes which could play a role in the pathophysiology of OLF.
Collapse
Affiliation(s)
- Zhao-Ming Zhong
- Department of Orthopedic and Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Department of Orthopedic and Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Expression of apoptosis signal-regulating kinase 1 in mouse spinal cord under chronic mechanical compression: possible involvement of the stress-activated mitogen-activated protein kinase pathways in spinal cord cell apoptosis. Spine (Phila Pa 1976) 2008; 33:1943-50. [PMID: 18708926 DOI: 10.1097/brs.0b013e3181822ed7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To examine apoptosis signal cascade in neurons and oligodendrocytes under the chronic spinal cord compression of tiptoe-walking Yoshimura (TWY) mouse, which is model of progressive cervical cord compression. OBJECTIVE To clarify the biologic mechanisms of apoptosis, which may produce destructive changes in the spinal cord under chronic mechanical compression, with a resulting irreversible neurologic deficit. SUMMARY OF BACKGROUND DATA The stress-activated mitogen-activated protein kinase pathways including ASK1 transmitted apoptosis signals after acute spinal cord injury. Apoptosis in acute spinal cord injury induced both secondary degeneration around the site of injury and chronic demyelination. Chronic spinal cord compression showed myelin destruction, loss of axons, and oligodendrocytes in white matter, and loss of neurons in gray matter. Apoptosis associated with chronic spinal cord compression contributes to these changes. However, the biologic mechanisms of apoptosis in the spinal cord under chronic mechanical compression remain unclear. METHODS We examined the expression of phosphorylated-apoptosis signal-regulating kinase 1 (ASK1), phosphorylated-c-Jun N-terminal kinase (JNK), phosphorylated-p38 mitogen-activated protein kinase (p38), and activated caspase-3 immunohistologically in TWY mice, an animal model of progressive cervical spinal cord compression, since the ASK1-JNK and -p38 signaling cascades participate in the signaling pathway leading to apoptosis in neural tissue and neuronal culture. RESULTS Double immunohistochemistry for phosphorylated-ASK1, phosphorylated-JNK, phosphorylated-p38, activated-caspase3, and cell-specific markers confirmed the presence of apoptosis signals in both neurons and oligodendrocytes in compressed spinal cord cells. CONCLUSION We found that mitogen-activated protein kinase pathways including ASK1, JNK, and p38 were activated in destructive spinal cord under chronic compression.
Collapse
|
12
|
Yayama T, Uchida K, Kobayashi S, Kokubo Y, Sato R, Nakajima H, Takamura T, Bangirana A, Itoh H, Baba H. Thoracic ossification of the human ligamentum flavum: histopathological and immunohistochemical findings around the ossified lesion. J Neurosurg Spine 2007; 7:184-93. [PMID: 17688058 DOI: 10.3171/spi-07/08/184] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The object of this study was to histopathologically and immunohistochemically characterize ossification of the ligamentum flavum (OLF) in samples of the thoracic spine harvested en bloc during surgery and to enhance the understanding of the ossifying process, particularly calcification and ossification. METHODS Samples of OLF plaque were obtained en bloc from 43 patients who underwent posterior decompression. The histopathological findings were correlated with radiological subtypes using computed tomography. The expression of type I and type II collagens, vascular endothelial growth factor (VEGF), transforming growth factor (TGF)beta, and bone morphogenetic protein (BMP)-2 was investigated. RESULTS Surgical decompression using the posterior floating and en bloc resection technique resulted in neurological improvement in 40 of 43 patients. Progression of the OLF lesion longitudinally and medially was associated with significant degeneration of elastic fibers, fiber bundle derangement, decrements in fiber diameter, and fragmentation. Calcification and ossification paralleled the degeneration of the elastic fibers, extended more medially, and fused in the central area. Expression of BMP-2, TGFbeta, and VEGF was significant in chondrocytes in the calcified cartilage and fibrocartilage layers, especially around the calcified front. CONCLUSIONS Histopathologically, the progress of calcification and ossification was closely associated with the degeneration of elastic fibers and with significant expression of BMP-2, TGFbeta, and VEGF in the ossification front.
Collapse
Affiliation(s)
- Takafumi Yayama
- Departments of Orthopaedics and Rehabilitation Medicine, Fukui University Faculty of Medical Sciences, Fukui, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
van der Horst G, Farih-Sips H, Löwik CWGM, Karperien M. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells. J Bone Miner Res 2005; 20:2233-44. [PMID: 16294276 DOI: 10.1359/jbmr.050821] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/28/2005] [Accepted: 08/23/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the mechanism by which PTHrP and PTH inhibit KS483 osteoblastic differentiation. We show that PTHrP and PTH inhibit differentiation downstream of early BMP signaling and downregulated components of the hedgehog (Hh) signaling cascade. In addition, PTHrP and PTH repressed RunX2 and osx expression. Overexpression of either gene, however, could not relieve PTHrP and PTH's inhibitory actions. Our data suggest that multiple parallel mechanisms are involved in the inhibition of osteoblast differentiation and matrix mineralization by PTHrP and PTH. INTRODUCTION PTH-related peptide (PTHrP) and PTH are potent inhibitors of osteoblast differentiation in vitro by as yet unexplained mechanisms. MATERIALS AND METHODS We treated murine bone marrow stromal cells and the mesenchymal progenitor cell line KS483 with PTHrP and PTH in combination with either BMPs or hedgehog (Hh) and measured early and late markers of osteoblast differentiation and studied the expression of RunX2 and Osterix (osx). In addition, we examined the PTHrP and PTH response in stable KS483 cells overexpressing either RunX2 or osx. RESULTS PTHrP and PTH inhibited BMP- and Hh-induced osteogenesis downstream of early BMP signaling and by downregulation of components of the Hh signaling cascade. PTHrP and PTH prevented the upregulation of RunX2 expression associated with osteoblast differentiation in an indirect response. However, PTHrP and PTH could still inhibit differentiation, and particularly matrix mineralization, of cells expressing RunX2. In addition, PTHrP and PTH potently downregulated osx expression only in mature osteoblasts in an intermediate early response, but osx overexpression could not relieve the inhibitory effects of PTHrP and PTH on matrix mineralization. CONCLUSIONS Our data suggest that, besides transcriptional repression of RunX2 and osx, other mechanisms in parallel with or downstream of RunX2 and osx are involved in the inhibition of osteoblast differentiation and matrix mineralization by PTHrP and PTH in vitro.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
14
|
Lin Y, Liu LJF, Murray T, Sodek J, Rao L. Effect of raloxifene and its interaction with human PTH on bone formation. J Endocrinol Invest 2004; 27:416-23. [PMID: 15279072 DOI: 10.1007/bf03345284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the of effects raloxifene alone or in combination with human PTH (hPTH) 1-34 in mineralizing cultures of SaOS-2 cells. Raloxifene (10(-8)-10(-6) M) increased bone nodule formation in cultures of SaOS-2 cells when added intermittently from day 8 to day 17. A single 24-h treatment with 10(-8) M hPTH (1-34) at day 8 reduced the nodule area by 75.6% at day 17, and raloxifene added concomitantly with hPTH (1-34) reduced this inhibitory effect in a dose-dependent manner. Raloxifene also reduced the hPTH (1-34)-induced inhibition of alkaline phosphatase (ALP) activity. The 10-fold stimulation of c-fos mRNA expression by hPTH (1-34) was not influenced by raloxifene co-treatment. The protein kinase A (PKA) inhibitor 6-22 amide (1.7 nM) and the protein kinase C (PKC) inhibitor-bisindolylmaleimide 1 (10 nM) did not influence the separate effects of PTH and raloxifene on mineralized bone nodule formation. This is the first report on the interaction of PTH and raloxifene in an osteoblast culture system.
Collapse
Affiliation(s)
- Y Lin
- Calcium Research Lab, St. Michael Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:1-19. [PMID: 12757929 DOI: 10.1016/s0925-4439(03)00058-9] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) multigene family contains five members. NPP1-3 are type II transmembrane metalloenzymes characterized by a similar modular structure composed of a short intracellular domain, a single transmembrane domain and an extracellular domain containing a conserved catalytic site. The short intracellular domain of NPP1 has a basolateral membrane-targeting signal while NPP3 is targeted to the apical surface of polarized cells. NPP4-5 detected by database searches have a predicted type I membrane orientation but have not yet been functionally characterized. E-NPPs have been detected in almost all tissues often confined to specific substructures or cell types. In some cell types, NPP1 expression is constitutive or can be induced by TGF-beta and glucocorticoids, but the signal transduction pathways that control expression are poorly documented. NPP1-3 have a broad substrate specificity which may reflect their role in a host of physiological and biochemical processes including bone mineralization, calcification of ligaments and joint capsules, modulation of purinergic receptor signalling, nucleotide recycling, and cell motility. Abnormal NPP expression is involved in pathological mineralization, crystal depositions in joints, invasion and metastasis of cancer cells, and type 2 diabetes. In this review we summarize the present knowledge on the structure and the physiological and biochemical functions of E-NPP and their contribution to the pathogenesis of diseases.
Collapse
Affiliation(s)
- James W Goding
- Department of Pathology and Immunology, Monash Medical School, Monash University, 3181, Victoria, Prahran, Australia
| | | | | |
Collapse
|
16
|
Nociti FH, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, Miyauchi M, Somerman MJ. Cementum: a phosphate-sensitive tissue. J Dent Res 2002; 81:817-21. [PMID: 12454094 DOI: 10.1177/154405910208101204] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ectopic calcification within joints has been reported in humans and rodents exhibiting mutations in genes that regulate the level of extracellular pyrophosphate, e.g., ank and PC-1; however, periodontal effects of these mutations have not previously been examined. These initial studies using ank and PC-1 mutant mice were done to see if such mineral deposition and resulting ankylosis were occurring in the periodontium as well. Surprisingly, results indicated the absence of ankylosis; however, a marked increase in cementum formation on the root surfaces of fully developed teeth of these mutant mice was noted. Examination of ank mutant mice at earlier ages of tooth root formation indicated that this striking observation is apparent from the onset of cementogenesis. These findings suggest that cells within the periodontal region are highly responsive to changes in phosphate metabolism. This information may prove valuable in attempts to design successful therapies for regenerating periodontal tissues.
Collapse
Affiliation(s)
- F H Nociti
- Department of Periodontics/Prevention/Geriatrics, School of Dentistry, Rm. 3310M Dental, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Maeda S, Ishidou Y, Koga H, Taketomi E, Ikari K, Komiya S, Takeda J, Sakou T, Inoue I. Functional impact of human collagen alpha2(XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 2001; 16:948-57. [PMID: 11341341 DOI: 10.1359/jbmr.2001.16.5.948] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) of the spine is the leading cause of myelopathy in Japan. In earlier studies, we provided genetic linkage and allelic association evidence of distinct differences in the human collagen alpha2(XI) gene (COL11A2) that might constitute inherited predisposition to OPLL. In the present study, a strong allelic association with non-OPLL (p = 0.0003) was observed with an intron 6 polymorphism [intron 6 (-4A)], in which the intron 6 (-4A) allele is more frequently observed in non-OPLL subjects than in OPLL patients. In addition, a newly identified polymorphism in exon 6 [exon 6 (+28A)] was in linkage disequilibrium with the intron 6 (-4A). The functional impact of the polymorphisms was analyzed by comparing the differences in messenger RNA (mRNA) splicing by reverse-transcription polymerase chain reaction (RT-PCR) analysis in cultured cells from the interspinous ligament and an in vitro exon trapping study. The intron 6 (-4A) allele resulted in skipping exon 6 and retaining exon 7, while the exon 6 (+28A) allele was not associated with alteration in mRNA splicing. Similar mRNA species were observed in undifferentiated osteoblast (Ob) cells and in cells from posterior longitudinal ligament of non-OPLL subjects. The region containing exons 6-8 is an acidic subdomain presumably exposed to the surface that could interact with molecules of the extracellular matrix. Accordingly, retaining exon 7 together with removal of exon 6 observed in intron 6 (-4A) could play a protective role in the ectopic ossification process because the same pattern was observed in undifferentiated Ob cells and nonossified posterior longitudinal ligament cells.
Collapse
Affiliation(s)
- S Maeda
- Department of Orthopedic Surgery, Faculty of Medicine, Kagoshima University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kosaka T, Imakiire A, Mizuno F, Yamamoto K. Activation of nuclear factor kappaB at the onset of ossification of the spinal ligaments. J Orthop Sci 2001; 5:572-8. [PMID: 11180921 DOI: 10.1007/s007760070008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 06/22/2000] [Indexed: 11/27/2022]
Abstract
We examined the correlation between the activation of nuclear factor kappaB (NFkappaB), stimulated by environmental factors involving cytokines and growth factors in ligament cells, and the onset of ossification of the spinal ligaments (OSL) or diffuse idiopathic skeletal hyperostosis (DISH). Aseptic samples were taken carefully from non-ossified sites during surgery (75 patients). We carried out preliminary hematoxylin and eosin and toluidine blue staining, using five portions of each specimen, and excluded samples containing chondrocytic, osteoblastic, or inflammatory cells (n = 25). We used specimens from the remaining 50 patients (35 men and 15 women, ranging in age from 45-81 years); average age, 59.5 years (18 nuchal ligament specimens, and 32 yellow ligament specimens). OSL or DISH had occurred in 25 patients, 20 patients were in the non-OSL group (8 with cervical spondylotic myelopathy, and 12 with lumbar canal stenosis), and the remaining 5 samples were collected from patients with injury. For culture study, we used portions of the 14 largest samples from the above 50 patients. We extracted nuclear proteins and cytoplasmic proteins from non-ossified spinal ligaments in 50 patients and detected p65RelA/NFkappaB by Western blotting. Tumor necrosis factor-alpha (TNF alpha), interleukin 1beta (IL-1beta), platelet-derived growth factor BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1) in cytoplasm were quantified by enzyme-linked immunosorbent assays (ELISA). Cultured cells from the 14 samples were then stimulated with 10, 100, 250, or 500 ng/ml of recombinant human (rh)PDGF-B or TGFbeta1. A control experiment was performed without rhPDGF-BB or TGFbeta1 stimulation. Alkaline phosphatase (ALP) activity was standardized by the DNA content of the cells. The number of NFkappaB-positive samples was significantly higher in patients with OSL or DISH than in non-OSL patients. This tendency was obvious in the case of OSL or DISH with non-insulin-dependent diabetes mellitus (NIDDM). In OSL and in DISH patients, significantly greater amounts of PDGF-BB and TGFbeta1 were seen in ligament cells than in non-OSL patients (P < 0.05). There was a positive correlation between the detection of p65RelA/NFkappaB band and the content of PDGF-BB and TGFbeta1 in ligament cells (P < 0.05). ALP activity tended to be higher in cells in the OSL group not receiving any other treatment. Our results indicate the possibility that NFkappaB, stimulated by environmental factors involving PDGF-BB and TGFbeta1 in ligament cells, influences the osteoblastic differentiation of undifferentiated mesenchymal cells.
Collapse
Affiliation(s)
- T Kosaka
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | | | | | | |
Collapse
|
19
|
Johnson K, Moffa A, Chen Y, Pritzker K, Goding J, Terkeltaub R. Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 1999; 14:883-92. [PMID: 10352096 DOI: 10.1359/jbmr.1999.14.6.883] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A naturally occurring nonsense truncation mutation of the inorganic pyrophosphate (PPi)-generating nucleoside triphosphate pyrophosphohydrolase (NTPPPH) PC-1 is associated with spinal and periarticular ligament hyperostosis and cartilage calcification in "tiptoe walking" (ttw) mice. Thus, we tested the hypothesis that PC-1 acts directly in the extracellular matrix to restrain mineralization. Cultured osteoblastic MC3T3 cells expressed PC-1 mRNA and produced hydroxyapatite deposits at 12-14 days. NTPPPH activity increased steadily over 14 days. Transforming growth factor-beta and 1,25-dihydroxyvitamin D3 increased PC-1 and NTPPPH in matrix vesicles (MVs). Because PC-1/NTPPPH was regulated in mineralizing MC3T3 cells, we stably transfected or infected cells with recombinant adenovirus, in order to express 2- to 6-fold more PC-1. PC-1/NTPPPH and PPi content increased severalfold in MVs derived from cells transfected with PC-1. Furthermore, MC3T3 cells transfected with PC-1 deposited approximately 80-90% less hydroxyapatite (by weight) than cells transfected with empty plasmid or enzymatically inactive PC-1. ATP-dependent 45Ca precipitation by MVs from cells overexpressing active PC-1 was comparably diminished. Thus, regulation of PC-1 controls the PPi content and function of osteoblast-derived MVs and matrix hydroxyapatite deposition. PC-1 may provide a novel therapeutic target in certain disorders of bone mineralization.
Collapse
Affiliation(s)
- K Johnson
- VA Medical Center, University of California-San Diego, La Jolla, California 92161, USA
| | | | | | | | | | | |
Collapse
|
20
|
Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 1998; 19:271-3. [PMID: 9662402 DOI: 10.1038/956] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common form of human myelopathy caused by a compression of the spinal cord by ectopic ossification of spinal ligaments. To elucidate the genetic basis for OPLL, we have been studying the ttw (tiptoe walking; previously designated twy) mouse, a naturally occurring mutant which exhibits ossification of the spinal ligaments very similar to human OPLL (refs 3,4). Using a positional candidate-gene approach, we determined the ttw phenotype is caused by a nonsense mutation (glycine 568 to stop) in the Npps gene which encodes nucleotide pyrophosphatase. This enzyme regulates soft-tissue calcification and bone mineralization by producing inorganic pyrophosphate, a major inhibitor of calcification. The accelerated bone formation characteristic of ttw mice is likely to result from dysfunction of NPPS caused by predicted truncation of the gene product, resulting in the loss of more than one-third of the native protein. Our results may lead to novel insights into the mechanism of ectopic ossification and the aetiology of human OPLL.
Collapse
Affiliation(s)
- A Okawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Okawa A, Ikegawa S, Nakamura I, Goto S, Moriya H, Nakamura Y. Mapping of a gene responsible for twy (tip-toe walking Yoshimura), a mouse model of ossification of the posterior longitudinal ligament of the spine (OPLL). Mamm Genome 1998; 9:155-6. [PMID: 9457678 DOI: 10.1007/s003359900707] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A Okawa
- Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 1997; 99:2961-70. [PMID: 9185520 PMCID: PMC508148 DOI: 10.1172/jci119491] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been reported that PTH exerts bone-forming effects in vivo when administered intermittently. In the present study, the anabolic effects of PTH(1-34) on osteoblast differentiation were examined in vitro. Osteoblastic cells isolated from newborn rat calvaria were cyclically treated with PTH(1-34) for the first few hours of each 48-h incubation cycle. When osteoblastic cells were intermittently exposed to PTH only for the first hour of each 48-h incubation cycle and cultured for the remainder of the cycle without the hormone, osteoblast differentiation was inhibited by suppressing alkaline phosphatase activity, bone nodule formation, and mRNA expression of alkaline phosphatase, osteocalcin, and PTH/PTHrP receptor. Experiments using inhibitors and stimulators of cAMP/protein kinase A (PKA) and Ca2+/PKC demonstrated that cAMP/PKA was the major signal transduction system in the inhibitory action of PTH. In contrast, the intermittent exposure to PTH for the first 6 h of each 48-h cycle stimulated osteoblast differentiation. Both cAMP/ PKA and Ca2+/PKC systems appeared to be involved cooperatively in this anabolic effect. Continuous exposure to PTH during the 48-h incubation cycle strongly inhibited osteoblast differentiation. Although both cAMP/PKA and Ca2+/PKC were involved in the effect of continuous exposure to PTH, they appeared to act independently. A neutralizing antibody against IGF-I blocked the stimulatory effect on alkaline phosphatase activity and the expression of osteocalcin mRNA induced by the 6-h intermittent exposure. The inhibitory effect induced by the 1-h intermittent exposure was not affected by anti-IGF-I antibody. These results suggest that PTH has diverse effects on osteoblast differentiation depending on the exposure time in vitro mediated through different signal transduction systems. These in vitro findings explain at least in part the in vivo action of PTH that varies with the mode of administration.
Collapse
Affiliation(s)
- T Ishizuya
- Department of Oral Pathology, School of Dentistry, Showa University, Tokyo 142, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Baba H, Maezawa Y, Uchida K, Imura S, Kawahara N, Tomita K, Kudo M. Three-dimensional topographic analysis of spinal accessory motoneurons under chronic mechanical compression: an experimental study in the mouse. J Neurol 1997; 244:222-9. [PMID: 9112590 DOI: 10.1007/s004150050076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the effect of chronic mechanical compression of the cervical spinal cord on the number of spinal accessory motoneurons in 25 tiptoe-walking Yoshimura mice. The animals had calcified deposits in the atlantoaxial membrane at the C1-C2 vertebral level, compressing the spinal cord posterolaterally. Motoneurons of the spinal accessory nerve between C1 and C5 segments were labelled using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected into the sternocleidomastoid muscles. The counted cells were processed into a three-dimensional computer display to analyse the cytoarchitectonic changes caused by external cord compression. The number of WGA-HRP-labelled spinal accessory motoneurons was significantly reduced on the affected side. The number of motoneurons in compromised C2 and C3 cord segments correlated linearly with the extent of mechanical compression, but no such relationship was present on the contralateral side. There was an increase in the number of WGA-HRP-labelled spinal accessory motoneurons in the medial cell pools of the anterior grey horn at a level most rostral to the compression, and in the ventrolateral cell pools at levels immediately rostral to the compression. Our findings suggest that the spinal accessory motoneurons translocate rostral to the area of external compression in order to avoid mechanical injury.
Collapse
Affiliation(s)
- H Baba
- Department of Orthopaedic Surgery, Fukui Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Basson MD, Hong F. Regulation of human Caco-2 intestinal epithelial brush border enzyme activity by cyclic nucleotides. Cancer Lett 1996; 99:155-60. [PMID: 8616819 DOI: 10.1016/0304-3835(95)04058-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regulation of intestinal epithelial differentiation is critical to normal function, malignant transformation, and healing. However, the intracellular regulation of intestinal epithelial differentiation is incompletely understood. We studied the effects of intracellular cyclic AMP and cyclic GMP on brush border enzyme activity in the human Caco-2 intestinal epithelial cell using pharmacologic agonists and antagonists of cAMP and cGMP mediated pathways as probes. The stable cyclic nucleotide analogs dibutyryl cAMP and dibutyryl cGMP selectively decreased Caco-2 dipeptidyl dipeptidase specific activity while increasing alkaline phosphatase. The inhibitors of adenylate and guanylate cyclase KT5720 and KT5823 each exerted the opposite effects. Combinations of dibutyryl cAMP and dibutyryl cGMP demonstrated synergistic effects on each brush border enzyme but KT5720 and KT5823 were less than additive. Thus, cAMP and CGMP may regulate human intestinal epithelial differentiation by interacting pathways.
Collapse
Affiliation(s)
- M D Basson
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520-8062, USA
| | | |
Collapse
|