1
|
Askvig JM, Watt JA. The MAPK and PI3K pathways mediate CNTF-induced neuronal survival and process outgrowth in hypothalamic organotypic cultures. J Cell Commun Signal 2015; 9:217-31. [PMID: 25698661 PMCID: PMC4580676 DOI: 10.1007/s12079-015-0268-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
While collateral sprouting has been shown to occur in a variety of neuronal populations, the factor or factors responsible for mediating the sprouting response remain largely un-defined. There is evidence indicating that ciliary neurotrophic factor (CNTF) may play an important role in promoting neuronal survival and process outgrowth in neuronal phenotypes tested to date. We previously demonstrated that the astrocytic Jak-STAT pathway is necessary to mediate CNTF-induced oxytocinergic (OT) neuronal survival; however, the mechanism (s) of CNTF-mediated process outgrowth remain unknown. Our working hypothesis is that CNTF mediates differential neuroprotective responses via different intracellular signal transduction pathways. In order to test this hypothesis, we utilized stationary hypothalamic organotypic cultures to assess the contribution of the MAPK-ERK and PI3-AKT pathways to OT neuron survival and process outgrowth. Our results demonstrate that the MAPK-ERK½ pathway mediates CNTF-induced neuronal survival. Moreover, we show that inhibition of the p38-, JNK-MAPK, and mTOR pathways prevents loss OT neurons following axotomy. We also provide quantitative evidence indicating that CNTF promotes process outgrowth of OT neurons via the PI3K-AKT pathway. Together, these data indicate that distinct intracellular signaling pathways mediate diverse neuroprotective processes in response to CNTF.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA.
| | - John A Watt
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Room 1701 Stop 9037, 501 N Columbia Road, Grand Forks, ND, 58203, USA.
| |
Collapse
|
2
|
Al Abri R, Kolethekkat AA, Kelleher MO, Myles LM, Glasby MA. Effect of locally administered ciliary neurotrophic factor on the survival of transected and repaired adult sheep facial nerve. Oman Med J 2014; 29:208-13. [PMID: 24936272 DOI: 10.5001/omj.2014.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/23/2014] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE to determine whether the administration of Ciliary Neurotrophic Factor (CNTF) at the site of repaired facial nerve enhances regeneration in the adult sheep model. METHODS Ten adult sheep were divided into 2 groups: control and study group (CNTF group). In the CNTF group, the buccal branch of the facial nerve was transected and then repaired by epineural sutures. CNTF was injected over the left depressor labii maxillaris muscle in the vicinity of the transected and repaired nerve for 28 days under local anesthesia. In the CNTF group, the sheep were again anesthetized after nine months and the site of facial nerve repair was exposed. Detailed electrophysiological, tension experiments and morphometric studies were carried out and then analyzed statistically. RESULTS The skin CV min, refractory period, Jitter and tension parameters were marginally raised in the CNTF group than the control but the difference was statistically insignificant between the two groups. Morphometric indices also did not show any significant changes in the CNTF group. CONCLUSION CNTF has no profound effect on neuronal regeneration of adult sheep animal model. KEYWORDS CNTF; Neurtrophic factors; Sheep; Facial nerve; Regeneration.
Collapse
Affiliation(s)
- Rashid Al Abri
- ENT Division, Surgery Department, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 38, Al Khod 123, Muscat, Sultanate of Oman
| | - Arif Ali Kolethekkat
- ENT Division, Surgery Department, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 38, Al Khod 123, Muscat, Sultanate of Oman
| | | | - Lynn M Myles
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Michael A Glasby
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Dekeyser GJ, Clary CR, Otis JS. Chronic alcohol ingestion delays skeletal muscle regeneration following injury. Regen Med Res 2013; 1:2. [PMID: 25984321 PMCID: PMC4376340 DOI: 10.1186/2050-490x-1-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/21/2012] [Indexed: 12/17/2022] Open
Abstract
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18–20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Collapse
Affiliation(s)
- Graham J Dekeyser
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30322 USA
| | | | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30322 USA
| |
Collapse
|
4
|
FGF-2 Low Molecular Weight Selectively Promotes Neuritogenesis of Motor Neurons In Vitro. Mol Neurobiol 2012; 47:770-81. [DOI: 10.1007/s12035-012-8389-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
|
5
|
Askvig JM, Lo DY, Sudbeck AW, Behm KE, Leiphon LJ, Watt JA. Inhibition of the Jak-STAT pathway prevents CNTF-mediated survival of axotomized oxytocinergic magnocellular neurons in organotypic cultures of the rat supraoptic nucleus. Exp Neurol 2012; 240:75-87. [PMID: 23123407 DOI: 10.1016/j.expneurol.2012.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that ciliary neurotrophic factor (CNTF) enhances survival and process outgrowth from magnocellular neurons in the paraventricular (PVN) and the supraoptic (SON) nuclei. However, the mechanisms by which CNTF facilitates these processes remain to be determined. Therefore, the aim of this study was to identify the immediate signal transduction events that occur within the rat SON following administration of exogenous rat recombinant CNTF (rrCNTF) and to determine the contribution of those intracellular signaling pathway(s) to neuronal survival and process outgrowth, respectively. Immunohistochemical and Western blot analyses demonstrated that axonal injury and acute unilateral pressure injection of 100 ng/μl of rrCNTF directly over the rat SON resulted in a rapid and transient increase in phosphorylated-STAT3 (pSTAT3) in astrocytes but not neurons in the SON in vivo. Utilizing rat hypothalamic organotypic explant cultures, we then demonstrated that administration of 25 ng/ml rrCNTF for 14days significantly increased the survival and process outgrowth of OT magnocellular neurons. In addition, pharmacological inhibition of the Jak-STAT pathway via AG490 and cucurbitacin I significantly reduced the survival of OT magnocellular neurons in the SON and PVN; however, the contribution of the Jak-STAT pathway to CNTF-mediated process outgrowth remains to be determined. Together, these data indicate that CNTF-induced survival of OT magnocellular neurons is mediated indirectly through astrocytes via the Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Anatomy & Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
7
|
Askvig JM, Leiphon LJ, Watt JA. Neuronal activity and axonal sprouting differentially regulate CNTF and CNTF receptor complex in the rat supraoptic nucleus. Exp Neurol 2011; 233:243-52. [PMID: 22037350 DOI: 10.1016/j.expneurol.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/11/2011] [Indexed: 01/16/2023]
Abstract
We demonstrated previously that the hypothalamic supraoptic nucleus (SON) undergoes a robust axonal sprouting response following unilateral transection of the hypothalamo-neurohypophysial tract. Concomitant with this response is an increase in ciliary neurotrophic factor (CNTF) and CNTF receptor alpha (CNTFRα) expression in the contralateral non-uninjured SON from which the axonal outgrowth occurs. While these findings suggest that CNTF may act as a growth factor in support of neuronal plasticity in the SON, it remained to be determined if the observed increase in neurotrophin expression was related to the sprouting response per se or more generally to the increased neurosecretory activity associated with the post-lesion response. Therefore we used immunocytochemistry and Western blot analysis to examine the expression of CNTF and the components of the CNTF receptor complex in sprouting versus osmotically-stimulated SON. Western blot analysis revealed a significant increase in CNTF, CNTFRα, and gp130, but not LIFRß, protein levels in the sprouting SON at 10days post lesion in the absence of neuronal loss. In contrast, osmotic stimulation of neurosecretory activity in the absence of injury resulted in a significant decrease in CNTF protein levels with no change in CNTFRα, gp130, or LIFRß protein levels. Immunocytochemical analysis further demonstrated gp130 localization on magnocellular neurons and astrocytes while the LIFRß receptor was found only on astrocytes in the SON. These results are consistent with the hypothesis that increased CNTF and CNTFR complex in the sprouting, metabolically active SON are related directly to the sprouting response and not the increase in neurosecretory activity.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Anatomy & Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
8
|
Xu JJ, Chen EY, Lu CL, He C. Recombinant ciliary neurotrophic factor promotes nerve regeneration and induces gene expression in silicon tube-bridged transected sciatic nerves in adult rats. J Clin Neurosci 2009; 16:812-7. [PMID: 19289286 DOI: 10.1016/j.jocn.2008.08.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/19/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
Abstract
Sciatic nerves in adult male rats were transected and reunited via a silicone chamber. This was followed by a focal injection of recombinant ciliary neurotrophic factor (CNTF). To evaluate the effect of this therapeutic approach and to explore its possible mechanisms, nerve regeneration was traced by horseradish peroxidase retrograde labeling. Functional recovery was evaluated by functional assessment of the hind feet and the expression of a number of proteins was detected using immunohistochemistry. The results showed that a single administration of CNTF could promote regeneration of motor axons, with improved functional recovery in adult rats. Growth associated protein (GAP)-43, S100, CD68 and major histocompatibility complex class II immunoreactivity in the regenerative and distal nerves suggested that CNTF could promote axon regeneration, Schwann cell migration, monocyte infiltration and activation. CNTF might also indirectly promote axonal regeneration by further activating the JAK-STAT3 pathway and subsequently upregulating phosphotyrosine, GAP-43 and S100 expression to enhance proliferation, growth and migration of Schwann cells. CNTF has suggested important targets for pharmacological intervention in peripheral nerve disease and injury.
Collapse
Affiliation(s)
- Jia-jun Xu
- Department of Anatomy, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | | | | | | |
Collapse
|
9
|
An Analysis of Time-Dependent Changes of Neurotrophic Factors (BDNF, CNTF) in Traumatic Facial Nerve Injury of a Nerve-Cut and Nerve-Crush Model in Rats. Otol Neurotol 2008; 29:392-6. [DOI: 10.1097/mao.0b013e318161ab3e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kirsch M, Terheggen U, Hofmann HD. Ciliary neurotrophic factor is an early lesion-induced retrograde signal for axotomized facial motoneurons. Mol Cell Neurosci 2003; 24:130-8. [PMID: 14550774 DOI: 10.1016/s1044-7431(03)00130-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate the involvement of ciliary neurotropic factor (CNTF) in the postlesional response of motoneurons, we studied the activation of STAT3 signaling, the main signal transduction pathway of CNTF-like cytokines, in the facial nucleus of wildtype and CNTF-deficient mice following peripheral nerve transection. As shown by immunocytochemistry and immunoblot analysis, phosphorylation and nuclear translocation of STAT3 was maximally induced within 12 h postlesion in motoneurons of the ipsilateral facial nucleus of wildtype mice and is maintained for at least 3 days. In CNTF(-/-) mouse mutants, activation of STAT3 signaling was delayed by 10-12 h. Application of CNTF to the transected nerve restored rapid STAT3 activation in CNTF-deficient animals, whereas application of colchicine suppressed STAT3 signaling in wildtype mice for at least 24 h. These results identify CNTF as an early retrograde signal in axotomized facial motoneurons by showing that CNTF released at the lesion site is responsible for the initial induction of STAT3 signaling. Other cytokines like leukemia inhibitory factor obviously become active at later time points.
Collapse
Affiliation(s)
- Matthias Kirsch
- Institute of Anatomy, University of Freiburg, P.O. Box 111, D-79001 Freiburg, Germany
| | | | | |
Collapse
|
11
|
Gardiner NJ, Cafferty WBJ, Slack SE, Thompson SWN. Expression of gp130 and leukaemia inhibitory factor receptor subunits in adult rat sensory neurones: regulation by nerve injury. J Neurochem 2002; 83:100-9. [PMID: 12358733 DOI: 10.1046/j.1471-4159.2002.01101.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Members of the interleukin-6 (IL-6) family of cytokines have been implicated as major mediators of the response of the adult nervous system to injury. The basis for an interaction of IL-6 cytokines with adult sensory neurones has been established by analysing the levels and distribution of the two signal-transducing receptor subunits, glycoprotein 130 (gp130) and leukaemia inhibitory factor receptor (LIFR), in the dorsal root ganglion (DRG) of male adult rats before and following nerve injury. All sensory neurones express gp130-immunoreactivity (IR) in the cytoplasm and on the plasma membrane. Levels of gp130 and its intracellular distribution remained unchanged up to 14 days following sciatic nerve axotomy. LIFR-IR was largely absent from the cytoplasm and plasma membrane of sensory neurones, but confined almost exclusively to the nuclear compartment. However, following axotomy, punctate cytoplasmic LIFR-IR was detected which persisted up to 28 days following axotomy. The expression of cytoplasmic LIFR 2 days post-axotomy was proportionally greater in a subset of small diameter sensory neurones which expressed either the sensory neuropeptide CGRP or the cell surface marker isolectin B4. The coexpression of gp130 and LIFR in the same intracellular compartment following axotomy conveys potential responsiveness of injured sensory neurones to members of the IL-6 family of cytokines.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Axotomy
- Blotting, Western
- Cell Compartmentation/physiology
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- Cytokine Receptor gp130
- Cytoplasm/metabolism
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Male
- Membrane Glycoproteins/biosynthesis
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Phenotype
- Protein Subunits
- Rats
- Rats, Wistar
- Receptors, Cytokine/biosynthesis
- Receptors, OSM-LIF
- Sciatic Nerve/injuries
- Sciatic Neuropathy/metabolism
Collapse
Affiliation(s)
- Natalie J Gardiner
- Centre for Neuroscience Research, Guy's, Kings and St. Thomas' School of Biomedical Science, Kings College London, Guy's Campus, London SE1 1UL, England, UK
| | | | | | | |
Collapse
|
12
|
Abstract
OBJECT Although the use of multiple agents is efficacious in animal models of peripheral nerve injury, translation to clinical applications remains wanting. Previous agents used in trials in humans either engendered severe side effects or were ineffective. Because the blood-central nervous system barrier exists in nerves as it does in the brain, limited drug delivery poses a problem for translation of basic science advances into clinical applications. Convection-enhanced delivery (CED) is a promising adjunct to current therapies for peripheral nerve injury. In the present study the authors assessed the capacity of convection to ferry macromolecules across sites of nerve injury in rat and primate models, examined the functional effects of convection on the intact nerve, and investigated the possibility of delivering a macromolecule to the spinal cord via retrograde convection from a peripherally introduced catheter. METHODS The authors developed a rodent model of convective delivery to lesioned sciatic nerves (injury due to crush or laceration in 76 nerves) and compared the results to a smaller series of five primates with similar injuries. In the intact nerve, convective delivery of vehicle generated only a transient neurapraxic deficit. Early after injury (postinjury Days 1, 3, 7, and 10), infusion failed to cross the site of injury in crushed or lacerated nerves. Fourteen days after crush injury, CED of radioactively-labeled albumin resulted in perfusion through the site of injury to distal growing neurites. In primates, successful convection through the site of crush injury occurred by postinjury Day 28. In contrast, in laceration models there was complete occlusion of the extracellular space to convective distribution at the site of laceration and repair, and convective distribution in the extracellular space crossed the site of injury only after there was histological evidence of completion of nerve regeneration. Finally, in two primates, retrograde infusion into the spinal cord through a peripheral nerve was achieved. CONCLUSIONS Convection provides a safe and effective means to deliver macromolecules to regenerating neurites in crush-injured peripheral nerves. Convection block in lacerated and suture-repaired nerves indicates a significant intraneural obstruction of the extracellular space. a disruption that suggests an anatomical obstruction to extracellular and, possibly, intraaxonal flow, which may impair nerve regeneration. Through peripheral retrograde infusion, convection can be used for delivery to spinal cord gray matter. Convection-enhanced delivery provides a promising approach to distribute therapeutic agents to targeted sites for treatment of disorders of the nerve and spinal cord.
Collapse
Affiliation(s)
- J K Ratliff
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
13
|
Abstract
Conditioning injury to adult mammalian sensory neurons enhances their regeneration potential. Here we show that leukemia inhibitory factor (LIF) is a fundamental component of the conditioning response. Conditioning injury in vivo significantly increases the intrinsic growth capacity of sensory neurons in vitro from LIF+/+ mice. This conditioning effect is significantly blunted in sensory neurons from LIF-/- mice. Enhanced growth is rescued in vitro in LIF-/- mice by the addition of exogenous LIF, and the effect blocked by human LIF-05, an LIF receptor antagonist. Furthermore, we demonstrate that LIF promotes elongating but not arborizing neurite outgrowth in vitro and is required for normal regeneration of injured adult sensory neurons in vivo. LIF is also functionally protective to peptidergic sensory neurons after nerve damage in vivo. Our results indicate that the alteration in intrinsic growth status of injured sensory neurons depends, at least in part, on LIF.
Collapse
|
14
|
Kami K, Morikawa Y, Sekimoto M, Senba E. Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscles. J Histochem Cytochem 2000; 48:1203-13. [PMID: 10950877 DOI: 10.1177/002215540004800904] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Contusions/metabolism
- Cytokine Receptor gp130
- Growth Inhibitors/metabolism
- In Situ Hybridization
- Interleukin-6
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lymphokines/metabolism
- Membrane Glycoproteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Ciliary Neurotrophic Factor/genetics
- Receptor, Ciliary Neurotrophic Factor/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- Receptors, OSM-LIF
- Regeneration
- Signal Transduction
Collapse
Affiliation(s)
- K Kami
- Department of Health Science, Osaka University of Health and Sport Sciences,Osaka, Japan.
| | | | | | | |
Collapse
|
15
|
Abstract
This special issue on steroids and glia represents the intersection of two emerging themes in the neurosciences: (a) Glia actively modulate and participate in brain function throughout life, and (b) glia are sensitive to steroid hormones. This overview begins by reviewing some of the basic principles of steroid hormone action on the brain and introducing the various glia that inhabit the peripheral and central nervous system. A prominent theme among the articles that follow is that glia may be direct targets for steroid hormones since they possess steroid receptors and the promoter region of glial-specific genes such as glutamine synthetase contain hormone-responsive elements. The articles in this special issue discuss evidence that glia may mediate steroid action on the nervous system in the context of (a) steroid metabolism, which may control the hormonal microenvironment of neurons both in the normal and injured brain; (b) brain development including sexual differentiation; (c) synaptic plasticity which may underlie the cyclic release of luteinizing hormone releasing hormone in the female rodent brain; (d) neural repair and aging; and (e) brain immune function. Another theme among these articles is that glia influence neurons via specific secreted and cell-surface molecules, and that steroids affect this mode of communication by altering the level of glial production of these signaling molecules and/or the sensitivity of neurons to such signals.
Collapse
Affiliation(s)
- C L Jordan
- Department of Psychology, University of California, Berkeley, California 94720-1650, USA
| |
Collapse
|
16
|
Abstract
OBJECTIVES To determine the role of ciliary neurotrophic factor (CNTF) in the regeneration of the mouse sciatic nerve following injury by studying the CNTF knockout mouse in a blinded, randomized and controlled evaluation. STUDY DESIGN Fifty-eight wild-type and 57 CNTF knockout mice were randomly assigned to one of four treatment groups: sham surgery (sciatic nerve exposure), sciatic nerve crush, nerve transection without repair, and nerve transection followed by epineurial suture repair using 10-0 monofilament suture. Walking track analysis was performed before and after surgery at weekly intervals for 7 weeks, using a previously described formula. At the completion of walking track analysis, morphometric histological analysis of axon number and axon diameter in the distal sciatic nerves was performed. RESULTS The wild-type and knockout mice that underwent only sham surgery had no change in their walking tracks during the study interval (P = .30 on postoperative day 49). The wild-type mice that underwent sciatic nerve crush showed complete functional recovery (P = .66 on postoperative day 28), but the CNTF knockout mice whose sciatic nerves were crushed did not fully recover (P = .05 on postoperative day 49). The CNTF knockout and wild-type mice showed similar levels of recovery after transection without repair (P = .78), and the rate of contracture formation was not significantly different (P = .40). The CNTF knockout and wild-type mice showed similar levels of recovery after epineurial repair (P>.31), however the rate of severe contractures was greater in the CNTF knockout mice (6 of 13) than in the wild-type mice (2 of 12) (P = .11). CONCLUSION The absence of CNTF impairs the ability of mice to recover from a sciatic nerve crush injury. There is also a trend toward a greater rate of contracture formation after sciatic nerve transection and epineurial suture repair when CNTF is unavailable. These findings suggest that CNTF is important for recovery of neuronal function following crush and transection nerve injuries.
Collapse
Affiliation(s)
- M Yao
- Division of Otolaryngology/Head and Neck Surgery, Stanford University Medical Center, California 94305-5328, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies.
Collapse
Affiliation(s)
- G Terenghi
- Blond McIndoe Centre, Queen Victoria Hospital, East Grinstead, Sussex, UK.
| |
Collapse
|
18
|
Abstract
Ciliary neurotrophic factor receptor alpha (CNTFRalpha) is the ligand-binding component of the CNTF receptor. CNTFRalpha expression is essential for the normal development of spinal motoneurons and is required for the development of a sex difference in motoneuron number in androgen-sensitive perineal motoneurons. We used immunocytochemistry to examine the expression and hormone regulation of CNTFRalpha protein in the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus and retrodorsolateral nucleus of the lower lumbar spinal cord of adult rats. CNTFRalpha immunoreactivity (CNTFRalpha-IR) was observed in the somata and dendrites of virtually all motoneurons. In all three motor pools, the intensity of motoneuron soma labeling was greatest among gonadally intact males and was reduced in females and gonadectomized males. The density of CNTFRalpha-IR in neuropil also tended to be highest in intact males. Short-term (2 d) testosterone propionate treatment reversed the decline in the density of soma labeling in the SNB of castrated males but did not reverse any other effects of castration. Long-term hormone treatment, achieved by implanting males with testosterone capsules at the time of gonadectomy, prevented the decline in soma labeling in all motor pools and partially prevented the decline in neuropil label caused by castration. We conclude that expression of CNTFRalpha protein is androgen-regulated in spinal motoneurons.
Collapse
|
19
|
Novikov L, Novikova L, Kellerth JO. Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 1997; 79:765-74. [PMID: 9219940 DOI: 10.1016/s0306-4522(96)00665-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study shows that in adult rat spinal motoneurons brain-derived neurotrophic factor exerts a neuroprotective effect which extends several weeks beyond the duration of treatment. In addition, brain-derived neurotrophic factor strongly enhances regeneration of avulsed motor axons across the border between the central and peripheral nervous systems. Treatment with brain-derived neurotrophic factor is known to rescue adult rat spinal motoneurons from retrograde cell death induced by ventral root avulsion. The present experiments were designed to test whether this survival effect remains over an extended period of time following cessation of treatment and, also, whether brain-derived neurotrophic factor promotes regeneration of avulsed motor axons. After avulsion of a spinal ventral root, four weeks of treatment with brain-derived neurotrophic factor (10 microg/day) or vehicle was initiated. By using different retrograde tracers to obtain pre- and postoperative labelling of avulsed and regenerating motoneurons, respectively, the number of surviving motoneurons as well as the extent of motor axonal regeneration could be analysed. The expression of nitric oxide synthase in the lesioned motoneurons was also studied. In the vehicle-treated rats, only 10% of the avulsed motoneurons remained at 12 weeks postoperatively, 20-40% of which displayed nitric oxide synthase activity. Treatment with brain-derived neurotrophic factor during the initial four postoperative weeks resulted in 45% motoneuron survival and a complete blockage of nitric oxide synthase expression at 12 weeks postoperatively. Brain-derived neurotrophic factor also induced abundant regeneration of the avulsed motor axons, which formed extensive fibre bundles along the surface of the spinal cord and adjacent ventral roots. The long-term effect by brain-derived neurotrophic factor seemed to be even stronger on motor axonal regeneration than on motoneuron survival. The present results indicate a therapeutic potential for brain-derived neurotrophic factor in the early treatment of traumatic injuries to spinal nerves and roots.
Collapse
Affiliation(s)
- L Novikov
- Department of Anatomy, Umeå University, Sweden
| | | | | |
Collapse
|
20
|
Abstract
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such as N-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regenerations may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.
Collapse
Affiliation(s)
- S Y Fu
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
21
|
Ulenkate HJ, Gispen WH, Jennekens FG. Effects of ciliary neurotrophic factor on retrograde cell reaction after facial nerve crush in young adult rats. Brain Res 1996; 717:29-37. [PMID: 8738250 DOI: 10.1016/0006-8993(95)01512-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Locally applied ciliary neurotrophic factor (CNTF) has a powerful effect on retrograde axonal reaction following facial nerve crush in neonatal rats. We examined whether it also exerts a strong effect on retrograde axonal reaction in young adult rats when administered subcutaneously. The dose was 1 mg/kg body weight, three times a week, similar to that used in a previous experiment in which CNTF was reported to have an effect. We studied changes in the morphology of the motor nerve cell bodies, in the number of perineuronal microglial cells and in the expression of five proteins. It appeared that CNTF prevented swelling of the facial motoneuron cell bodies but it did not influence the swelling of the nucleus nor the shift of the nucleus towards the periphery. In saline-treated rats, facial nerve crush resulted from day two to day six in a marked increase in the number of perineuronal glial cells. This increase was neither diminished nor augmented by CNTF. Following facial nerve crush, the immunoreactivity of the proteins C3bi, GFAP, B-50 and CGRP increased in the glial cells and motoneuron cell bodies, whilst the immunoreactivity of synaptophysin at the membrane of the motoneuron cell bodies decreased. CNTF had no obvious effect on these changes. It was concluded that in young adult rats under the present conditions, CNTF had only a small effect on a specific aspect of the retrograde cell reaction. The small effects might be explained by the minor availability of CNTF to the motoneuron cell bodies. The gain in body weight of rats treated with CNTF was less than that of saline-treated rats.
Collapse
Affiliation(s)
- H J Ulenkate
- Laboratory for Neuromuscular Diseases, University Hospital Utrecht, The Netherlands
| | | | | |
Collapse
|