1
|
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Sci 2021; 30:2042-2056. [PMID: 34398513 PMCID: PMC8442966 DOI: 10.1002/pro.4171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Eduardo A. Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
- Yale Microbial Sciences InstituteWest HavenConnecticutUSA
| |
Collapse
|
2
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
4
|
Dorman CJ. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol 2019; 20:26. [PMID: 31319794 PMCID: PMC6639932 DOI: 10.1186/s12860-019-0211-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The processes of DNA supercoiling and transcription are interdependent because the movement of a transcription elongation complex simultaneously induces under- and overwinding of the DNA duplex and because the initiation, elongation and termination steps of transcription are all sensitive to the topological state of the DNA. RESULTS Policing of the local and global supercoiling of DNA by topoisomerases helps to sustain the major DNA-based transactions by eliminating barriers to the movement of transcription complexes and replisomes. Recent data from whole-genome and single-molecule studies have provided new insights into how interactions between transcription and the supercoiling of DNA influence the architecture of the chromosome and how they create cell-to-cell diversity at the level of gene expression through transcription bursting. CONCLUSIONS These insights into fundamental molecular processes reveal mechanisms by which bacteria can prevail in unpredictable and often hostile environments by becoming unpredictable themselves.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
5
|
Staphylococcus aureus Toxins: From Their Pathogenic Roles to Anti-virulence Therapy Using Natural Products. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:89-100. [PMID: 28510216 DOI: 10.1007/s12551-016-0238-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthew J Dorman
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
7
|
Bertram R. Complementation Plasmids, Inducible Gene-Expression Systems, and Reporters for Staphylococci. Methods Mol Biol 2016; 1373:25-32. [PMID: 25646605 DOI: 10.1007/7651_2014_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A cornucopia of methods and molecular tools is available for genetic modification of staphylococci, as shown for at least ten different species to date (Prax et al. Microbiology 159:421-435, 2013). This chapter reviews a number of frequently used vectors for complementation purposes that usually replicate in E. coli and staphylococci and differ in parameters including copy number, mode of replication, and sequence length. Systems for the artificial control of gene expression are described that are modulated by low-molecular-weight effectors such as metal cations, carbohydrates, and antibiotics. Finally, the usefulness of reporter proteins that exhibit enzymatic or autofluorescent characteristics in staphylococci is highlighted.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Waldhäuser Str. 70/8, 72076, Tübingen, Germany. .,, Ernst-Simon-Str. 2-4, 72072, Tübingen, Germany.
| |
Collapse
|
8
|
Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 2016; 32:135. [PMID: 27344438 DOI: 10.1007/s11274-016-2081-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.
Collapse
|
9
|
DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:209-220. [PMID: 28510224 DOI: 10.1007/s12551-016-0205-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
|
10
|
Dastgheyb SS, Otto M. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol 2015; 10:1981-95. [PMID: 26584249 DOI: 10.2217/fmb.15.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Host niches can differ strongly regarding, for example, oxygen tension, pH or nutrient availability. Staphylococcus aureus and other staphylococci are common colonizers of human epithelia as well as important human pathogens. The phenotypes that they show in different host environments, and the corresponding bacterial transcriptomes and proteomes, are currently under intense investigation. In this review, we examine the available literature describing staphylococcal phenotypes, such as expression of virulence factors, gross morphologic characteristics and growth patterns, in various physiological environments. Going forward, these studies will help researchers and clinicians to form an enhanced and more detailed picture of the interactions existing between the host and staphylococci as some of its most frequent colonizers and invaders.
Collapse
Affiliation(s)
- Sana S Dastgheyb
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laborartory of Bacteriology, National Institute of Allergy & Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
12
|
Wu X, Xu F. Dendritic cells during Staphylococcus aureus infection: subsets and roles. J Transl Med 2014; 12:358. [PMID: 25519813 PMCID: PMC4279898 DOI: 10.1186/s12967-014-0358-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play a crucial role in both innate and adaptive immune responses. DCs orient the immune responses by modulating the balance between protective immunity to pathogens and tolerance to self-antigens. Staphylococcus aureus (S. aureus) is a common member of human skin microbiota and can cause severe infections with significant morbidity and mortality. Protective immunity to pathogens by DCs is required for clearance of S. aureus. DCs sense the presence of the staphylococcal components using pattern recognition receptors (PRRs) and then orchestrate immune systems to resolve infections. This review summarizes the possible roles of DCs, in particular their Toll-like receptors (TLRs) involved in S. aureus infection and strategies by which the pathogen affects activation and function of DCs.
Collapse
Affiliation(s)
- Xuejie Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Schröder W, Bernhardt J, Marincola G, Klein-Hitpass L, Herbig A, Krupp G, Nieselt K, Wolz C. Altering gene expression by aminocoumarins: the role of DNA supercoiling in Staphylococcus aureus. BMC Genomics 2014; 15:291. [PMID: 24734910 PMCID: PMC4023603 DOI: 10.1186/1471-2164-15-291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background It has been shown previously that aminocoumarin antibiotics such as novobiocin lead to immediate downregulation of recA expression and thereby inhibit the SOS response, mutation frequency and recombination capacity in Staphylococcus aureus. Aminocoumarins function by inhibiting the ATPase activity of DNA gyrase subunit B with a severe impact on DNA supercoiling. Results Here, we have analysed the global impact of the DNA relaxing agent novobiocin on gene expression in S. aureus. Using a novobiocin-resistant mutant, it became evident that the change in recA expression is due to gyrase inhibition. Microarray analysis and northern blot hybridisation revealed that the expression levels of a distinct set of genes were increased (e.g., recF-gyrB-gyrA, the rib operon and the ure operon) or decreased (e.g., arlRS, recA, lukA, hlgC and fnbA) by novobiocin. The two-component ArlRS system was previously found to decrease the level of supercoiling in S. aureus. Thus, downregulation of arlRS might partially compensate for the relaxing effect of novobiocin. Global analysis and gene mapping of supercoiling-sensitive genes did not provide any indication that they are clustered in the genome. Promoter fusion assays confirmed that the responsiveness of a given gene is intrinsic to the promoter region but independent of the chromosomal location. Conclusions The results indicate that the molecular properties of a given promoter, rather than the chromosomal topology, dictate the responsiveness to changes in supercoiling in the pathogen Staphylococcus aureus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Abstract
The ability to genetically manipulate bacteria is essential to understanding gene/protein function in these organisms. While basic cloning has become routine in molecular biology, many still view the ability to make directed mutations as a daunting or intimidating task. To aid the staphylococcal research community, the goal of this treatise is to describe the method of allelic exchange using temperature-sensitive plasmids that we have used to successfully produce a variety of mutations including single nucleotide changes in the Staphylococcus aureus chromosome. In addition, this chapter provides extensive summaries to aid in the construction of mutations, complementation plasmids, as well as transcription and translation reporters.
Collapse
Affiliation(s)
- Jeffrey L Bose
- Department of Pathology and Microbiology, Center for Staphylococcal Research, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins--their functions and genetics. INFECTION GENETICS AND EVOLUTION 2013; 21:583-92. [PMID: 23541411 DOI: 10.1016/j.meegid.2013.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
The outcome of encounters between Staphylococcus (S.) aureus and its human host ranges from life-threatening infection through allergic reactions to symptom-free colonization. The pan-genome of this bacterial species encodes numerous toxins, known or strongly suspected to cause specific diseases or symptoms. Three toxin families are in the focus of this review, namely (i) pore-forming toxins, (ii) exfoliative toxins and (iii) superantigens. The majority of toxin-encoding genes are located on mobile genetic elements (MGEs), resulting in a pronounced heterogeneity in the endowment with toxin genes of individual S. aureus strains. Recent population genomic analysis have provided a framework for an improved understanding of the temporal and spatial scales of the motility of MGEs and their associated toxin genes. The distribution of toxin genes among clonal lineages within the species S. aureus is not random, and phylogenetic (sub-)lineages within clonal complexes feature characteristic toxin signatures. When studying pathogenesis, this lineage association, which is caused by the clonal nature of S. aureus makes it difficult to discriminate effects of specific toxins from contributions of the genetic background and/or other associated genetic factors.
Collapse
Affiliation(s)
- Dorothee Grumann
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany
| | | | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
17
|
Prax M, Lee CY, Bertram R. An update on the molecular genetics toolbox for staphylococci. MICROBIOLOGY-SGM 2013; 159:421-435. [PMID: 23378573 PMCID: PMC3709823 DOI: 10.1099/mic.0.061705-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococci are Gram-positive spherical bacteria of enormous clinical and biotechnological relevance. Staphylococcus aureus has been extensively studied as a model pathogen. A plethora of methods and molecular tools has been developed for genetic modification of at least ten different staphylococcal species to date. Here we review recent developments of various genetic tools and molecular methods for staphylococcal research, which include reporter systems and vectors for controllable gene expression, gene inactivation, gene essentiality testing, chromosomal integration and transposon delivery. It is furthermore illustrated how mutant strain construction by homologous or site-specific recombination benefits from sophisticated counterselection methods. The underlying genetic components have been shown to operate in wild-type staphylococci or modified chassis strains. Finally, possible future developments in the field of applied Staphylococcus genetics are highlighted.
Collapse
Affiliation(s)
- Marcel Prax
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Ralph Bertram
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
19
|
Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2010; 111:117-51. [PMID: 21174435 DOI: 10.1021/cr100370n] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
20
|
Bukowski M, Wladyka B, Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2010; 2:1148-65. [PMID: 22069631 PMCID: PMC3153237 DOI: 10.3390/toxins2051148] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1), enterotoxins, and exfoliative toxins (ETs). The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS), a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.
Collapse
Affiliation(s)
- Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; (M.B.); (B.W.)
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; (M.B.); (B.W.)
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Author to whom correspondence should be addressed; ; Tel.: +48-12-664-63-62; Fax: +48-12-664-69-02
| |
Collapse
|
21
|
Wirtz C, Witte W, Wolz C, Goerke C. Transcription of the phage-encoded Panton-Valentine leukocidin of Staphylococcus aureus is dependent on the phage life-cycle and on the host background. MICROBIOLOGY-SGM 2009; 155:3491-3499. [PMID: 19661179 DOI: 10.1099/mic.0.032466-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Panton-Valentine leukocidin (PVL) is a pore-forming, bi-component toxin secreted by Staphylococcus aureus strains epidemiologically associated with diseases such as necrotizing pneumonia and skin and soft-tissue infections. Here we demonstrate that transcription of the phage-encoded PVL (encoded in the luk-PV operon) is dependent on two major determinants: the phage life-cycle and the host chromosomal background. Mitomycin C induction of PVL-encoding prophages from different community-acquired MRSA strains led to an increase in the amount of luk-PV mRNA as a result of read-through transcription from latent phage promoters and an increase in phage copy numbers. Failing prophage excision was reflected in a constant expression of luk-PV as in the case of strain USA300, suggesting that phi Sa2USA300 is a replication-defective prophage. Additionally, we could show that luk-PV transcription is influenced by the S. aureus global virulence regulators agr and sae. We found a strong impact of the host background on prophage induction and replication when analysing PVL phages in different S. aureus strains. For example phage phi Sa2mw was greatly induced by mitomycin C in its native host MW2 and in strain Newman but to a considerably lesser extent in strains 8325-4, RN6390 and ISP479c. This discrepancy was not linked to the SOS response of the bacteria since recA transcription did not vary between the strains. These results suggest a fine tuning between certain phages and their host, with major impact on the expression of phage-encoded virulence genes.
Collapse
Affiliation(s)
- Christiane Wirtz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Wolfgang Witte
- Robert-Koch-Institut Wernigerode, Burgstr. 37, 38855 Wernigerode, Germany
| | - Christiane Wolz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Christiane Goerke
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Abstract
The staphylococcal agr locus encodes a quorum sensing (QS) system that controls the expression of virulence and other accessory genes by a classical two-component signaling module. Like QS modalities in other Gram-positive bacteria, agr encodes an autoactivating peptide (AIP) that is the inducing ligand for AgrC, the agr signal receptor. Unlike other such systems, agr variants have arisen that show strong cross-inhibition in heterologous combinations, with important evolutionary implications. Also unlike other systems, the effector of global gene regulation in the agr system is a major regulatory RNA, RNAIII. In this review, we describe the functions of the agr system's elements, show how they interact to bring about the regulatory response, and discuss the role of QS in staphylococcal pathobiology. We conclude with the suggestion that agr autoactivation, unlike classical enzyme induction, can occur under suboptimal conditions and can distinguish self from non-self by inducing an exclusive and coordinated population wide response.
Collapse
Affiliation(s)
- Richard P Novick
- Kimmel Center for Biology and Medicine, New York University Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
23
|
Gardete S, de Lencastre H, Tomasz A. A link in transcription between the native pbpB and the acquired mecA gene in a strain of Staphylococcus aureus. MICROBIOLOGY-SGM 2006; 152:2549-2558. [PMID: 16946250 DOI: 10.1099/mic.0.29078-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conditional mutants of pbpB with an IPTG-inducible promoter were used to compare the effects of interrupted transcription of this gene in a meticillin-sensitive (MSSA) and a meticillin-resistant (MRSA) strain of Staphylococcus aureus. After 3 h growth following the removal of IPTG, multiplication of the MSSA strain stopped abruptly, cells began to lyse, and membrane preparations showed greatly decreased quantities of penicillin-binding protein (PBP) 2. In contrast, the MRSA strain continued to grow for at least 20 h in the IPTG-free medium, but with gradually increasing doubling times, which eventually reached 180 min. The peptidoglycan produced during this period of extremely slow growth showed only minor alterations, but cells with abnormal morphology accumulated in the culture, the abundance of mecA transcript gradually declined, and the cellular amounts of PBP2A were significantly decreased. Adding back the IPTG inducer caused rapid resumption in the transcription of pbpB, followed by an increase in the transcription of mecA. No changes were detected in the transcription of pbpA, C and D, the determinant of 16S rRNA or the housekeeping gene pta. Promoter fusion experiments suggested that the transcription of the resistance gene mecA may respond to some regulatory signal generated in the bacteria during changes in the transcription of pbpB.
Collapse
Affiliation(s)
- Susana Gardete
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, NY 10021, USA
- Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, 2780 Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, NY 10021, USA
- Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, 2780 Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, NY 10021, USA
| |
Collapse
|
24
|
Wu SW, de Lencastre H, Tomasz A. Expression of High-Level Methicillin Resistance inStaphylococcus aureusfrom theStaphylococcus sciuri mecAHomologue: Role of Mutation(s) in the Genetic Background and in the Coding Region ofmecA. Microb Drug Resist 2005; 11:215-24. [PMID: 16201923 DOI: 10.1089/mdr.2005.11.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A close homologue of the mec A gene, the primary drug resistance determinant in methicillin resistant Staphylococcus aureus (MRSA), is ubiquitous in the animal commensal species Staphylococcus sciuri, yet most isolates of this staphylococcal species are susceptible to beta-lactam antibiotics including methicillin. Recently, we showed that in a methicillin-resistant mutant of S. sciuri prepared in the laboratory, the mec A homologue is converted to an antibiotic resistance gene by a point mutation introduced into the -10 consensus of the promoter and such promoter-up mutants of the S. sciuri mec A can express a significant degree of methicillin resistance when introduced into an antibiotic-susceptible strain of S. aureus. We now demonstrate that in this system further increase of the drug resistance phenotype may be achieved under antibiotic pressure by at least two different mechanisms. The first one of these involves the introduction of a point mutation at nucleotide Nt 1889 in the coding region of the S. sciuri-derived mec A determinant, resulting in the replacement of an asparagine with a threonine residue downstream of the conserved SXXK motif which causes extensive reduction in the beta-lactam antibiotic binding capacity (affinity) of the penicillin binding protein (PBP) encoded by the S. sciuri mec A homologue. A second, distinct, mechanism causing increased methicillin resistance is associated with mutation(s) of unknown nature in the genetic background of the S. aureus host.
Collapse
Affiliation(s)
- Shang Wei Wu
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
25
|
Fournier B, Klier A. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. MICROBIOLOGY-SGM 2005; 150:3807-3819. [PMID: 15528666 DOI: 10.1099/mic.0.27194-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial pathogens such as Staphylococcus aureus undergo major physiological changes when they infect their hosts, requiring the coordinated regulation of gene expression in response to the stresses encountered. Several environmental factors modify the expression of S. aureus virulence genes. This report shows that the expression of spa (virulence gene encoding the cell-wall-associated protein A) is down-regulated by high osmolarity (1 M NaCl, 1 M KCl or 1 M sucrose) in the wild-type strain and upregulated by novobiocin (a DNA gyrase inhibitor that relaxes DNA). A gyrB142 allele corresponding to a double mutation in the B subunit of DNA gyrase relaxed DNA and consequently induced spa expression, confirming that spa expression is regulated by DNA topology. Furthermore, in the presence of novobiocin plus 1 M NaCl, a good correlation was observed between DNA supercoiling and spa expression. The ArlS-ArlR two-component system is involved in the expression of virulence genes such as spa. Presence of an arlRS deletion decreased the effect of DNA supercoiling modulators on spa expression, suggesting that active Arl proteins are necessary for the full effect of DNA gyrase inhibitors and high osmolarity on spa expression. Indeed, evidence is provided for a relationship between the arlRS deletion and topological changes in plasmid DNA.
Collapse
Affiliation(s)
- Bénédicte Fournier
- Laboratoire des Listeria, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - André Klier
- Université Paris 7, UFR de Biochimie, 2 place Jussieu, 75005 Paris, France
| |
Collapse
|
26
|
Bronner S, Monteil H, Prévost G. Regulation of virulence determinants inStaphylococcus aureus: complexity and applications. FEMS Microbiol Rev 2004; 28:183-200. [PMID: 15109784 DOI: 10.1016/j.femsre.2003.09.003] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 05/16/2003] [Accepted: 09/15/2003] [Indexed: 11/22/2022] Open
Abstract
The virulence of Staphylococcus aureus is essentially determined by cell wall associated proteins and secreted toxins that are regulated and expressed according to growth phases and/or growth conditions. Gene expression is regulated by specific and sensitive mechanisms, most of which act at the transcriptional level. Regulatory factors constitute numerous complex networks, driving specific interactions with target gene promoters. These factors are largely regulated by two-component regulatory systems, such as the agr, saeRS, srrAB, arlSR and lytRS systems. These systems are sensitive to environmental signals and consist of a sensor histidine kinase and a response regulator protein. DNA-binding proteins, such as SarA and the recently identified SarA homologues (SarR, Rot, SarS, SarT, SarU), also regulate virulence factor expression. These homologues might be intermediates in the regulatory networks. The multiple pathways generated by these factors allow the bacterium to adapt to environmental conditions rapidly and specifically, and to develop infection. Precise knowledge of these regulatory mechanisms and how they control virulence factor expression would open up new perspectives for antimicrobial chemotherapy using key inhibitors of these systems.
Collapse
Affiliation(s)
- Stéphane Bronner
- Institut de Bactériologie, Faculté de Médecine, Université Louis Pasteur - Hôpitaux, Universitaires de Strasbourg, 3, rue Koeberlé, F-67000 Strasbourg, France
| | | | | |
Collapse
|
27
|
Abstract
The accessory genes of Staphylococcus aureus, including those involved in pathogenesis, are controlled by a complex regulatory network that includes at least four two-component systems, one of which, agr, is a quorum sensor, an alternative sigma factor and a large set of transcription factors, including at least two of the superantigen genes, tst and seb. These regulatory genes are hypothesized to act in a time- and population density-dependent manner to integrate signals received from the external environment with the internal metabolic machinery of the cell, in order to achieve the production of particular subsets of accessory/virulence factors at the time and in quantities that are appropriate to the needs of the organism at any given location. From the standpoint of pathogenesis, the regulatory agenda is presumably tuned to particular sites in the host organism. To address this hypothesis, it will be necessary to understand in considerable detail the regulatory interactions among the organism's numerous controlling systems. This review is an attempt to integrate a large body of data into the beginnings of a model that will hopefully help to guide research towards a full-scale test.
Collapse
Affiliation(s)
- Richard P Novick
- Program in Molecular Pathogenesis, Skirball Institute, Department of Microbiology, New York University School of Medicine, 10016, USA.
| |
Collapse
|
28
|
Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS. Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol 2003; 48:1665-77. [PMID: 12791146 DOI: 10.1046/j.1365-2958.2003.03537.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OspA, OspB and OspC are the major outer surface proteins of Borrelia burgdorferi that are differentially synthesized in response to environmental conditions, including culture temperature. We found that DNA was more negatively supercoiled in B. burgdorferi cultures grown at 23 degrees C compared with cultures grown at 35-37 degrees C. We examined the regulation of ospAB and ospC transcription by temperature and DNA supercoiling. DNA supercoiling was relaxed by adding coumermycin A1, an antibiotic that inhibits DNA gyrase. Syntheses of the major outer surface proteins, expression of the ospA and ospC genes and the activities of the ospAB operon and ospC gene promoters were assayed. ospA product levels decreased, whereas ospC product levels increased after shifting from 23 degrees C to 35 degrees C or after adding coumermycin A1. In addition, OspC synthesis was higher in a gyrB mutant than in wild-type B. burgdorferi. Promoter activity was quantified using cat reporter fusions. Increasing temperature or relaxing supercoiled DNA resulted in a decrease in ospAB promoter activity in B. burgdorferi, but not in Escherichia coli, as well as an increase in ospC promoter activity in both bacteria. ospC promoter activity was increased in an E. coli gyrB mutant with an attenuated DNA supercoiling phenotype. These results suggest that B. burgdorferi senses environmental changes in temperature by altering the level of DNA supercoiling, which then affects the expression of the ospAB operon and the ospC gene. This implies that DNA supercoiling acts as a signal transducer for environmental regulation of outer surface protein synthesis.
Collapse
Affiliation(s)
- Janet Alverson
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. # 4824, Missoula 59812-4824, USA
| | | | | | | | | |
Collapse
|
29
|
Ladhani S, Cameron J, Chapple DS, Garratt RC, Joannou CL, Evans RW. A novel method for rapid production and purification of exfoliative toxin A of Staphylococcus aureus. FEMS Microbiol Lett 2002; 212:35-9. [PMID: 12076784 DOI: 10.1111/j.1574-6968.2002.tb11241.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The exfoliative toxins of Staphylococcus aureus are the causative agents of the scalded-skin syndrome. Previously described methods of toxin production and purification require large quantities of culture medium, take a long time and often produce low yields of toxin. A novel method of toxin production and purification using a dialysis sac to separate the culture medium from the staphylococci is described. This method produces up to 12 mg of crude toxin per ml of bacterial cell culture bathing the surface of the dialysis sac within 36 h and almost 10 mg of purified toxin per ml of cell culture within 3 days, in contrast to previous procedures that took over a week to produce 0.1-1.0 mg ml(-1) crude toxin and less than 0.01 mg ml(-1) purified toxin. This rapid method of toxin production should speed up future research into the pathogenesis of the staphylococcal scalded-skin syndrome.
Collapse
Affiliation(s)
- Shamez Ladhani
- Metalloprotein Research Group, Division of Biomolecular Sciences, The Randall Centre, King's College London, Guy's Campus, New Hunt's House, London Bridge, London SE1 1UL, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Ali N, Herron PR, Evans MC, Dyson PJ. Osmotic regulation of the Streptomyces lividans thiostrepton-inducible promoter, ptipA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:381-390. [PMID: 11832502 DOI: 10.1099/00221287-148-2-381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional activation of the thiostrepton-inducible promoter, ptipA, in Streptomyces lividans is mediated by TipAL. This transcriptional activator belongs to the MerR/SoxR family that characteristically binds an operator sequence located between the -10 and -35 hexamers normally occupied by RNA polymerase. As for the Escherichia coli merT promoter, the ptipA hexamers are separated by a long 19 bp spacer and hence a topological transition of the DNA is likely to be a requisite for alignment with RNA polymerase. Growth conditions that could facilitate this conformational change were investigated using transcriptional fusions of ptipA with reporter genes. Adjustment of growth medium osmolarity led to increased and prolonged TipAL-dependent expression, both with and without the inducer, thiostrepton. These effects correlated with increases in negative DNA supercoiling. Moreover, an inability to induce the promoter with thiostrepton in strain TK64 was corrected by increasing the concentration of osmolyte, compensating for an apparent reduced level of negative DNA supercoiling in the strain. Prolonging the time of activation of tipA in the wild-type by manipulating growth conditions revealed that mycelial autolysis could be induced by thiostrepton in 4-d-old cultures.
Collapse
Affiliation(s)
- Nasima Ali
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK1
| | - Paul R Herron
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK1
| | - Meirwyn C Evans
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK1
| | - Paul J Dyson
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK1
| |
Collapse
|
31
|
Ladhani S, Robbie S, Garratt RC, Chapple DS, Joannou CL, Evans RW. Development and evaluation of detection systems for staphylococcal exfoliative toxin A responsible for scalded-skin syndrome. J Clin Microbiol 2001; 39:2050-4. [PMID: 11376033 PMCID: PMC88087 DOI: 10.1128/jcm.39.6.2050-2054.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/11/2001] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal scalded-skin syndrome is usually diagnosed clinically by its characteristic exfoliating rash. Isolation of Staphylococcus aureus from the patient further supports the diagnosis. Several detection systems have been developed to determine whether the isolated strain produces exfoliative toxin, but none are routinely available in hospital laboratories. In a novel approach, we used computer models to predict the structure of the exfoliative toxins based on other serine proteases and to identify surface epitopes for the production of antibodies that specifically bound the exfoliative toxin A (ETA) serotype. Several rapid immunologically based diagnostic tests for ETA were developed with these antibodies and compared with existing systems. Our results showed that Western blot analysis using these antibodies was in complete correlation with PCR, which has been validated against the "gold standard" mouse model. On the other hand, the double-antibody enzyme-linked immunosorbent assay (ELISA) and Ouchterlony immunodiffusion assay gave unacceptably high false-positive results due to interference by staphylococcal protein A. This problem was successfully overcome by the development of a F(ab')(2) fragment ELISA, which was rapid and reproducible and was as sensitive and specific as PCR and Western blot analysis. The F(ab')(2) fragment ELISA is superior to existing diagnostic systems because it is quantitative, which may be related to the severity of the condition, and can detect amounts of exfoliative toxin in the picogram range directly from serum. This is the first detection system with the potential to confirm the diagnosis of staphylococcal scalded-skin syndrome from a routine blood test within 3 h of presentation.
Collapse
Affiliation(s)
- S Ladhani
- Metalloprotein Research Group, Division of Biomolecular Sciences, Kings College London, London SE1 9RT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Arvidson S, Tegmark K. Regulation of virulence determinants in Staphylococcus aureus. Int J Med Microbiol 2001; 291:159-70. [PMID: 11437338 DOI: 10.1078/1438-4221-00112] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenicity of Staphylococcus aureus depends on the combined action of more than 40 different extracellular toxins, enzymes and cell surface proteins. A global regulator agr controls the production of many of these virulence factors by a regulating RNA molecule, RNAIII. Most of the virulence genes regulated by RNAIII are also regulated by SarA and a family of homologous proteins. The Sar proteins appear to repress transcription of individual virulence genes or sets of genes. As some Sar proteins also repress one or more sar homologous genes an increased production of a single Sar protein can result in decreased expression of some virulence genes, and an increased expression of others. Results are presented suggesting that RNAIII might function as an antirepressor, binding one or more of the Sar proteins.
Collapse
Affiliation(s)
- S Arvidson
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
33
|
Wu SW, de Lencastre H, Tomasz A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 2001; 183:2417-24. [PMID: 11274099 PMCID: PMC95156 DOI: 10.1128/jb.183.8.2417-2424.2001] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2000] [Accepted: 01/30/2001] [Indexed: 11/20/2022] Open
Abstract
Strains of methicillin-resistant Staphylococcus aureus (MRSA) have become the most important causative agents of hospital-acquired diseases worldwide. The genetic determinant of resistance, mecA, is not a gene native to S. aureus but was acquired from an extraspecies source by an unknown mechanism. We recently identified a close homologue of this gene in isolates of Staphylococcus sciuri, a taxonomically primitive staphylococcal species recovered most frequently from rodents and primitive mammals. In spite of the close sequence similarity between the mecA homologue of S. sciuri and the antibiotic resistance determinant mecA of S. aureus, S. sciuri strains were found to be uniformly susceptible to beta-lactam antibiotics. In an attempt to activate the apparently "silent" mecA gene of S. sciuri, a methicillin-resistant derivative, K1M200 (for which the MIC of methicillin is 200 microg/ml), was obtained through stepwise exposure of the parental strain S. sciuri K1 (methicillin MIC of 4 microg/ml) to increasing concentrations of methicillin. DNA sequencing of the mecA homologue from K1M200 revealed the introduction of a point mutation into the -10 consensus of the promoter: the replacement of a thymine residue at nucleotide 1577 in the susceptible strain K1 by adenine in the resistant strain K1M200, which was accompanied by a drastic increase in transcription rate and the appearance of a new protein that reacted with monoclonal antibody prepared against the penicillin-binding protein 2A (PBP2A), i.e., the gene product of S. aureus mecA. Transduction of mecA from K1M200 (cloned into a plasmid vector) into a methicillin-susceptible S. aureus mutant resulted in a significant increase of methicillin resistance (from a methicillin MIC of 4 micro/ml to 12 and up to 50 microg/ml), the appearance of a low-affinity PBP detectable by the fluorographic assay, and the production of a protein that reacted in a Western blot with monoclonal antibody to PBP2A. Antibiotic resistance and the protein products disappeared upon removal of the plasmid-borne mecA homologue. The observations support the proposition that the mecA homologue ubiquitous in the antibiotic-susceptible animal species S. sciuri may be an evolutionary precursor of the methicillin resistance gene mecA of the pathogenic strains of MRSA.
Collapse
Affiliation(s)
- S W Wu
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
34
|
Jarraud S, Lyon GJ, Figueiredo AM, Lina G, Gérard L, Vandenesch F, Etienne J, Muir TW, Novick RP. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 2000; 182:6517-22. [PMID: 11053400 PMCID: PMC94802 DOI: 10.1128/jb.182.22.6517-6522.2000] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The staphylococcal virulon is activated by the density-sensing agr system, which is autoinduced by a short peptide (autoinducing peptide [AIP]) processed from a propeptide encoded by agrD. A central segment of the agr locus, consisting of the C-terminal two-thirds of AgrB (the putative processing enzyme), AgrD, and the N-terminal half of AgrC (the receptor), shows striking interstrain variation. This finding has led to the division of Staphylococcus aureus isolates into three different agr specificity groups and to the division of non-aureus staphylococci into a number of others. The AIPs cross-inhibit the agr responses between groups. We have previously shown that most menstrual toxic shock strains belong to agr specificity group III but that no strong clinical identity has been associated with strains of the other two groups. In the present report, we demonstrate a fourth agr specificity group among S. aureus strains and show that most exfoliatin-producing strains belong to this group. A striking common feature of group IV strains is activation of the agr response early in exponential phase, at least 2 h earlier than in strains of the other groups. This finding raises the question of the biological significance of the agr autoinduction threshold.
Collapse
Affiliation(s)
- S Jarraud
- Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fujimoto DF, Brunskill EW, Bayles KW. Analysis of genetic elements controlling Staphylococcus aureus lrgAB expression: potential role of DNA topology in SarA regulation. J Bacteriol 2000; 182:4822-8. [PMID: 10940023 PMCID: PMC111359 DOI: 10.1128/jb.182.17.4822-4828.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-induced killing and murein hydrolase activity in Staphylococcus aureus are dependent on a variety of regulatory elements, including the LytSR two-component regulatory system and the virulence factor regulators Agr and Sar. The LytSR effects on these processes can be explained, in part, by the recent finding that a LytSR-regulated operon, designated lrgAB, affects murein hydrolase activity and penicillin tolerance. To examine the regulation of lrgAB expression in greater detail, we performed Northern blot and promoter fusion analyses. Both methods revealed that Agr and Sar, like LytSR, positively regulate lrgAB expression. A mutation in the agr locus reduced lrgAB expression approximately sixfold, while the sar mutation reduced lrgAB expression to undetectable levels. cis-acting regulatory elements involved in lrgAB expression were identified by fusing various fragments of the lrgAB promoter region to the xylE reporter gene and integrating these constructs into the chromosome. Catechol 2,3-dioxygenase assays identified DNA sequences, including an inverted repeat and intrinsic bend sites, that contribute to maximal lrgAB expression. Confirmation of the importance of the inverted repeat was achieved by demonstrating that multiple copies of the inverted repeat reduced lrgAB promoter activity, presumably by titrating out a positive regulatory factor. The results of this study demonstrate that lrgAB expression responds to a variety of positive regulatory factors and suggest that specific DNA topology requirements are important for optimal expression.
Collapse
Affiliation(s)
- D F Fujimoto
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | |
Collapse
|
36
|
Griffiths MW. How novel methods can help discover more information about foodborne pathogens. Can J Infect Dis 2000; 11:142-53. [PMID: 18159282 PMCID: PMC2094761 DOI: 10.1155/2000/364050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Considerable emphasis is being placed on quantitative risk assessment modelling as a basis for regulation of trade in food products. However, for models to be accurate, information about the behaviour of potential pathogens in foods needs to be available. The question is how to obtain this knowledge in a simple and cost effective way. One technique that has great potential is the use of reporter bacteria which have been genetically modified to express a phenotype that can be easily monitored, such as light production in luminescent organisms. Bacteria carrying these (lux) genes can easily be detected using simple luminometers or more sophisticated low light imaging equipment.By monitoring light output from these bacteria over time, it can easily be determined if the organism is growing (resulting in an increase in light emission), is dead (causing a decrease in light production) or is injured (light output remains constant). The use of imaging systems allows the response of bioluminescent bacteria to be studied directly on the food, making the technique even more useful. Applications of bioluminescence are discussed below and include use as reporters of gene expression; biocide efficacy and antibiotic susceptibility; sub-lethal injury; adhesion and biofilm formation; the microbial ecology of foods; pathogenesis; and as biosensors.
Collapse
Affiliation(s)
- M W Griffiths
- Department of Food Science, University of Guelph, Guelph, Ontario.
| |
Collapse
|
37
|
Affiliation(s)
- P Hill
- School of Biological sciences (SB), University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leics, LE12 5RD, UK
| | | |
Collapse
|
38
|
Timmins BS, Holland KT. Shift-down in growth rate rather than high cell density induces toxic shock syndrome toxin-1 gene expression in Staphylococcus aureus. FEMS Microbiol Lett 1999; 172:173-7. [PMID: 10188246 DOI: 10.1111/j.1574-6968.1999.tb13466.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A luciferase-based reporter system for the expression of the toxic shock syndrome toxin-1 gene (tst) of Staphylococcus aureus FRI 1187 was used in continuous culture to determine whether high cell density on transient shift-down or shift-up of specific growth rate (mu) induced expression of tst. Little expression occurred at steady state at a low dilution rate (D) and in a transient period of increasing mu. However, a rapid and approximately 130-fold increase in expression occurred during a transient shift-down of mu. These findings suggest reduction of mu is a key element in the control of tst expression.
Collapse
Affiliation(s)
- B S Timmins
- Skin Research Centre, School of Biochemistry and Molecular Biology, Leeds University, UK
| | | |
Collapse
|
39
|
Pinho MG, de Lencastre H, Tomasz A. Transcriptional analysis of the Staphylococcus aureus penicillin binding protein 2 gene. J Bacteriol 1998; 180:6077-81. [PMID: 9829914 PMCID: PMC107690 DOI: 10.1128/jb.180.23.6077-6081.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequencing of the vicinity of the staphylococcal pbp2 gene and transcriptional analysis by primer extension and promoter fusions were used to show that pbp2 is part of an operon that also includes a gene with high homology to prfA of Bacillus subtilis. Two distinct promoters were identified directing transcription of pbp2 either alone or together with prfA. It was recently reported that transposon inactivation of pbp2 causes a reduction in methicillin resistance, but complementation experiments were not fully successful. We now show that introduction of the intact pbp2 gene with its two newly identified promoters into the chromosome of the transposon mutant resulted in the full recovery of high-level methicillin resistance.
Collapse
Affiliation(s)
- M G Pinho
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Chan PF, Foster SJ. The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2469-2479. [PMID: 9782494 DOI: 10.1099/00221287-144-9-2469] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which produces a variety of virulence determinants. To study environmental regulation of virulence-determinant production, several transcriptional reporter gene fusions were constructed. Chromosomal fusions were made with the staphylococcal accessory regulator (sarA), alpha-haemolysin (hla), surface protein A (spa) and toxic-shock syndrome toxin-1 (tst) genes. The effect of many different environmental conditions on the expression of the fusions was examined. Expression of hla, tst and spa was strongly repressed in the presence of sodium chloride (1 M) or sucrose (20 mM), but sarA was relatively unaffected. The global regulator of expression of virulence-determinant genes, agr (accessory gene regulator) was not involved in the salt or sucrose repression. Novobiocin, a DNA gyrase inhibitor, did not significantly increase the expression of tst in wild-type or agr backgrounds and failed to relieve the salt suppression. Expression of tst was strongly stimulated in several low-metal environments, independently of agr, whilst spa levels were significantly reduced by EGTA. The complex, interactive role of environmental factors in the control of expression of the virulence determinants is discussed.
Collapse
Affiliation(s)
- Pan F Chan
- Department of Molecular Biology and Biotechnology, University of SheffieldFirth Court, Western Bank, Sheffield S10 2TNUK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of SheffieldFirth Court, Western Bank, Sheffield S10 2TNUK
| |
Collapse
|
41
|
Billard P, DuBow MS. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem 1998; 31:1-14. [PMID: 9559218 DOI: 10.1016/s0009-9120(97)00136-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To survey recent advances in the application of bioluminescence to public health problems. The usefulness of bacterial (lux) and eucaryotic (luc) luciferase genes is presented, along with several examples that demonstrate their value as "reporters" of many endpoints of clinical concern. CONCLUSIONS The development of new technologies for monitoring biological and chemical contaminants is in continuous progress. Recent excitement in this area has come from the use of genes encoding enzymes for bioluminescence as reporter systems. Applications of the recombinant luciferase reporter phage concept now provide a sensitive approach for bacterial detection, their viability, and sensitivity to antimicrobial agents. Moreover, a number of fusions of the lux and luc genes to stress inducible genes in different bacteria can allow a real-time measurement of gene expression and determination of cellular viability, and also constitute a new tool to detect toxic chemicals and their bioavailability.
Collapse
Affiliation(s)
- P Billard
- Centre des Sciences de l'Environnement, Université de Metz, France
| | | |
Collapse
|
42
|
Ohlsen K, Koller KP, Hacker J. Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ gene fusion. Infect Immun 1997; 65:3606-14. [PMID: 9284126 PMCID: PMC175513 DOI: 10.1128/iai.65.9.3606-3614.1997] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The staphylococcal alpha-toxin (Hla) is a major virulence factor contributing to Staphylococcus aureus pathogenesis. To elucidate the conditions influencing hla expression, the determinant was fused to lacZ, the reporter gene coding for beta-galactosidase. The hla::lacZ fusion was integrated into the chromosome of the wild-type S. aureus strain Wood 46, leading to the variant Wood 46-3. Alpha-toxin expression was found to be dependent on temperature, showing a maximum at 42 degrees C. Furthermore, the indicator strain showed a growth phase-dependent hla regulation which was influenced by temperature. At 37 degrees C, induction of hla::lacZ expression occurred in the late exponential phase of growth, whereas at 42 degrees C, a strong induction was observed as early as the mid-exponential phase. These observations were verified by Northern blot analysis of hla mRNA and by Western blot (immunoblot) analysis of culture supernatants of strain Wood 46. It was additionally found that the induction of hla transcription at 42 degrees C was not coupled with higher concentrations of agr RNAIII, the effector molecule of the global regulator agr. Furthermore, expression of the alpha-toxin was repressed at a high osmolarity. It was also shown that oxygen is essential for hla expression and that cultivation of the S. aureus strain Wood 46-3 on solid medium and in the presence of carbon dioxide stimulated hla transcriptional activity.
Collapse
Affiliation(s)
- K Ohlsen
- Institut für Molekulare Infektionsbiologie der Universität Würzburg,Germany
| | | | | |
Collapse
|
43
|
Scovill WH, Schreier HJ, Bayles KW. Identification and characterization of the pckA gene from Staphylococcus aureus. J Bacteriol 1996; 178:3362-4. [PMID: 8655523 PMCID: PMC178095 DOI: 10.1128/jb.178.11.3362-3364.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Staphylococcus aureus pckA gene was identified and characterized. A pckA mutant lacked detectable phosphoenolpyruvate carboxykinase activity and grew poorly in the absence of glucose. Both enzymatic activity and pckA promoter activity in wild-type cells grown in the absence of glucose were at least 22-fold greater than activities in cells grown in the presence of glucose.
Collapse
Affiliation(s)
- W H Scovill
- Department of Biological Sciences, University of Maryland Baltimore County, 21228, USA
| | | | | |
Collapse
|
44
|
van Workum M, van Dooren SJ, Oldenburg N, Molenaar D, Jensen PR, Snoep JL, Westerhoff HV. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 1996; 20:351-60. [PMID: 8733233 DOI: 10.1111/j.1365-2958.1996.tb02622.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ ADP ratio was reduced by a shift to anaerobic conditions, by addition of a protonophore (dinitrophenol) or by potassium cyanide addition, DNA supercoiling decreased similarly with the ATP/ADP ratio. The experiments were performed under well-defined conditions, where oxidative phosphorylation was the dominant route for ATP synthesis, i.e. using a minimal salts medium with succinate as the sole free-energy and carbon source, and in the presence or absence of ammonia as the nitrogen source. The results of the different experiments were consistent with a single linear relationship between the log(ATP/ADP) and the change in linking number. The dependence of DNA supercoiling on the ATP/ADP ratio was not influenced by inhibitors of transcription or translation. Because the ATP/ADP ratio was modulated in different ways, the unique relationship suggests coupling between the phosphorylation potential and DNA supercoiling. This was most probably mediated by the DNA gyrase, independent of topoisomerase I or transcription.
Collapse
Affiliation(s)
- M van Workum
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Rees CE, Dodd CE, Gibson PT, Booth IR, Stewart GS. The significance of bacteria in stationary phase to food microbiology. Int J Food Microbiol 1995; 28:263-75. [PMID: 8750672 DOI: 10.1016/0168-1605(95)00062-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C E Rees
- Department of Applied Biochemistry and Food Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK.
| | | | | | | | | |
Collapse
|
46
|
Hill PJ, Stewart GS. Use of lux genes in applied biochemistry. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE 1994; 9:211-5. [PMID: 7942126 DOI: 10.1002/bio.1170090315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bioluminescence has emerged in the last decade as a major tool for the study of bacterial adaptation and survival. In addition to the advantages of sensitivity and the real-time, non-invasive nature of this reporter, the imaging potential of using low-light and photon-counting video cameras has been particularly influential in establishing its ascendancy-over more traditional reporter systems. This review provides a reflection of personal activity in this field through applications in Food Microbiology and collaboration with colleagues both in the UK and beyond.
Collapse
Affiliation(s)
- P J Hill
- Department of Applied Biochemistry and Food Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | | |
Collapse
|
47
|
Sutherland AD, Limond AM. Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J DAIRY RES 1993; 60:575-80. [PMID: 8294610 DOI: 10.1017/s0022029900027928] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Broth cultures supplemented with high levels of sugars, particularly glucose at > 50 milligrams, did not support diarrhoeagenic toxin production by psychrotrophic Bacillus cereus despite growth to high counts (approximately 10(7)/ml) over a 4 d period of incubation at 21 degrees C. In contrast, starch levels of 10 and 50 milligrams actually enhanced toxin production. Toxin production was also affected by pH levels of broth cultures, and was concomitant with alterations in bacterial growth. These findings help to explain variations in toxin levels previously found in some dairy desserts, which were thought to be associated with pH and sugar content (Sutherland, 1993).
Collapse
|
48
|
Abstract
The topology of bacterial DNA varies in response to extracellular environmental stimuli, providing a possible mechanism for environmental control of gene expression during bacterial pathogenesis. The contribution of DNA topology to the control of transcription is complex, but an appreciation of the distinction between local and global DNA topological effects is helping to clarify this complexity.
Collapse
Affiliation(s)
- C J Dorman
- Dept of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
49
|
Abstract
Pathogens have developed many strategies for survival in animals and humans which possess very effective defense mechanisms. Although there are many different ways, in which pathogenic bacteria solved the problem to overcome the host defense, some common features of virulence mechanisms can be detected even in phylogenetically very distant bacteria (Finlay and Falkow (1989) Microb. Rev. 6, 1375-1383). One important feature is that the regulation of expression of virulence factors and the exact timing of their expression is very important for many of the pathogenic bacteria, as most of them have to encounter different growth situations during an infection cycle, which require a fast adaptation to the new situation by the expression of different factors. This review gives an overview about the mechanisms used by pathogenic bacteria to accomplish the difficult task of regulation of their virulence potential in response to environmental changes. In addition, the relationship of these virulence regulatory systems with other signal transduction mechanisms not involved in pathogenicity is discussed.
Collapse
Affiliation(s)
- R Gross
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, FRG
| |
Collapse
|
50
|
Regassa LB, Betley MJ. High sodium chloride concentrations inhibit staphylococcal enterotoxin C gene (sec) expression at the level of sec mRNA. Infect Immun 1993; 61:1581-5. [PMID: 8454367 PMCID: PMC281406 DOI: 10.1128/iai.61.4.1581-1585.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Expression of the staphylococcal enterotoxin type C gene (sec) is regulated in response to both high NaCl concentrations (osmolarity) and the accessory gene regulator (agr). agr is a global regulator that alters the expression of many genes in Staphylococcus aureus. In this report, we have demonstrated that osmoregulation of sec occurs at the level of mRNA independently of an intact agr allele. Northern (RNA) and Western blot (immunoblot) analyses of samples from cultures grown in low- (0 M NaCl) and high-osmotic-strength (1.2 M NaCl) media revealed that the low-osmotic-strength culture contained approximately 16-fold more SEC and sec mRNA than the high-osmotic-strength culture. sec expression in high-osmotic-strength medium was enhanced when osmoprotective compounds were added. Osmoregulation of sec expression in Agr- strains was also examined; SEC and sec mRNA levels decreased in response to high osmolarity in a manner similar to that seen in the Agr+ strains.
Collapse
Affiliation(s)
- L B Regassa
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | |
Collapse
|