1
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Anitua E, Zalduendo M, Tierno R, Alkhraisat MH. Plasma Rich in Growth Factors in Bone Regeneration: The Proximity to the Clot as a Differential Factor in Osteoblast Cell Behaviour. Dent J (Basel) 2024; 12:122. [PMID: 38786520 PMCID: PMC11119057 DOI: 10.3390/dj12050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The osteogenic differentiation process, by which bone marrow mesenchymal stem cells and osteoprogenitors transform into osteoblasts, is regulated by several growth factors, cytokines, and hormones. Plasma Rich in Growth Factors (PRGF) is a blood-derived preparation consisting of a plethora of bioactive molecules, also susceptible to containing epigenetic factors such as ncRNAs and EVs, that stimulates tissue regeneration. The aim of this study was to investigate the effect of the PRGF clot formulation on osteogenic differentiation. Firstly, osteoblast cells were isolated and characterised. The proliferation of bone cells cultured onto PRGF clots or treated with PRGF supernatant was determined. Moreover, the gene expression of Runx2 (ID: 860), SP7 (ID: 121340), and ALPL (ID: 249) was analysed by one-step real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, alkaline phosphatase (ALPL) activity determination was performed. The highest proliferative effect was achieved by the PRGF supernatant in all the study periods analysed. Concerning gene expression, the logRGE of Runx2 increased significantly in osteoblasts cultured with PRGF formulations compared with the control group, while that of SP7 increased significantly in osteoblasts grown on the PRGF clots. On the other hand, despite the fact that the PRGF supernatant induced ALPL up-regulation, significantly higher enzyme activity was detected for the PRGF clots in comparison with the supernatant formulation. According to our results, contact with the PRGF clot could promote a more advanced phase in the osteogenic process, associated to higher levels of ALPL activity. Furthermore, the PRGF clot releasate stimulated a higher proliferation rate in addition to reduced SP7 expression in the cells located at a distant ubication, leading to a less mature osteoblast stage. Thus, the spatial relationship between the PRGF clot and the osteoprogenitors cells could be a factor that influences regenerative outcomes.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
3
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
4
|
Hashimoto M, Takahashi H, Tabata-Okubo K, Nagaoka N, Tokunaga K, Matsumori H, Ishihara Y, Kaku M, Iimura T, Hara T, Kamioka H. Bundling of collagen fibrils influences osteocyte network formation during bone modeling. Sci Rep 2023; 13:22028. [PMID: 38086873 PMCID: PMC10716128 DOI: 10.1038/s41598-023-48786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown. As the early stage of osteocyte network formation occurs on the bone surface, we observed a newly formed trabecular bone surface by orthogonal focused ion beam-scanning electron microscopy. The embedding late osteoblast processes tended to avoid bundled collagen fibrils and elongate into sparse collagen fibrils. Then, we examined whether the inhibition of bundling of collagen fibrils using a potent lysyl oxidase inhibitor, β-aminopropionitrile (BAPN) changed the cellular network of the chick calvaria. The osteocyte shape of the control group was spindle-shape, while that of the BAPN group was sphere-shaped. In addition, the osteocyte processes of the control group were elongated vertically to the long axis of the cell body, whereas the osteocyte processes of the BAPN group were elongated radially. Therefore, it was suggested that the bundling of collagen fibrils influences normal osteocyte network formation during bone modeling.
Collapse
Affiliation(s)
- Mana Hashimoto
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Haruka Takahashi
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Kaori Tabata-Okubo
- Department of Orthodontics, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Kazuaki Tokunaga
- Nikon Corporation, 2-15-3 Konan, Minato-Ku, Tokyo, 108-6290, Japan
| | - Haruka Matsumori
- Nikon Corporation, 2-15-3 Konan, Minato-Ku, Tokyo, 108-6290, Japan
| | - Yoshihito Ishihara
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, Niigata, 951-8514, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Toru Hara
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan.
| |
Collapse
|
5
|
Gordon JAR, Tye CE, Banerjee B, Ghule PN, van Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 sustains human mesenchymal stem cell self-renewal and competency for osteogenic cell fate. Sci Rep 2023; 13:20314. [PMID: 37985890 PMCID: PMC10662126 DOI: 10.1038/s41598-023-46202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
- Jonathan A R Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Coralee E Tye
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | | - Prachi N Ghule
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Fleur S Kabala
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Natalie A Page
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Michelle M Falcone
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
6
|
Gordon J, Tye CE, Banerjee B, Ghule PN, Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 Sustains Human Mesenchymal Stem Cell Self-Renewal and Competency for Osteogenic Cell Fate. RESEARCH SQUARE 2023:rs.3.rs-3210911. [PMID: 37693373 PMCID: PMC10491330 DOI: 10.21203/rs.3.rs-3210911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC cell growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2,000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gary S Stein
- University of Vermont, Larner College of Medicine
| | - Jane B Lian
- University of Vermont, Larner College of Medicine
| |
Collapse
|
7
|
Skelton AM, Cohen DJ, Boyan BD, Schwartz Z. Osteoblast-Derived Matrix Vesicles Exhibit Exosomal Traits and a Unique Subset of microRNA: Their Caveolae-Dependent Endocytosis Results in Reduced Osteogenic Differentiation. Int J Mol Sci 2023; 24:12770. [PMID: 37628952 PMCID: PMC10454939 DOI: 10.3390/ijms241612770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Matrix vesicles (MVs) are nano-sized extracellular vesicles that are anchored in the extracellular matrix (ECM). In addition to playing a role in biomineralization, osteoblast-derived MVs were recently suggested to have regulatory duties. The aims of this study were to establish the characteristics of osteoblast-derived MVs in the context of extracellular vesicles like exosomes, assess their role in modulating osteoblast differentiation, and examine their mechanism of uptake. MVs were isolated from the ECM of MG63 human osteoblast-like cell cultures and characterized via enzyme activity, transmission electron microscopy, nanoparticle tracking analysis, Western blot, and small RNA sequencing. Osteoblasts were treated with MVs from two different culture conditions (growth media [GM]; osteogenic media [OM]) to evaluate their effects on the differentiation and production of inflammatory markers and on macrophage polarization. MV endocytosis was assessed using a lipophilic, fluorescent dye and confocal microscopy with the role of caveolae determined using methyl-β-cyclodextrin. MVs exhibited a four-fold enrichment in alkaline phosphatase specific activity compared to plasma membranes; were 50-150 nm in diameter; possessed exosomal markers CD63, CD81, and CD9 and endosomal markers ALIX, TSG101, and HSP70; and were selectively enriched in microRNA linked to an anti-osteogenic effect and to M2 macrophage polarization. Treatment with GM or OM MVs decreased osteoblast differentiation. Osteoblasts endocytosed MVs using a mechanism that involves caveolae. These results support the hypothesis that osteoblasts produce MVs that participate in the regulation of osteogenesis.
Collapse
Affiliation(s)
- Anne M. Skelton
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.S.); (B.D.B.)
| | - D. Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Barbara D. Boyan
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.S.); (B.D.B.)
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Yang Y, Zheng W, Tan W, Wu X, Dai Z, Li Z, Yan Z, Ji Y, Wang Y, Su W, Zhong S, Li Y, Sun Y, Li S, Huang W. Injectable MMP1-sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing. Acta Biomater 2023; 157:321-336. [PMID: 36481504 DOI: 10.1016/j.actbio.2022.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Bone marrow mesenchymal stromal cell-derived exosomes (BMSC-Exos) can recruit stem cells for bone repair, with neovessels serving as the main migratory channel for stem cells to the injury site. However, existing exosome (Exo) delivery strategies cannot reach the angiogenesis phase following bone injury. To that end, an enzyme-sensitive Exo delivery material that responds to neovessel formation during the angiogenesis phase was designed in the present study to achieve spatiotemporally controlled Exo release. Herein, matrix metalloproteinase-1 (MMP1) was found to be highly expressed in neovascularized bone; as a result, we proposed an injectable MMP1-sensitive hydrogel microspheres (KGE) made using a microfluidic chip prepared by mixing self-assembling peptide (KLDL-MMP1), GelMA, and BMSC-Exos. The results revealed that KGE microspheres had a uniform diameter of 50-70 µm, ideal for minimally invasive injection and could release exosomes in response to MMP1 expression. In vitro experiments demonstrated that KGE had less cytotoxicity and could promote the migration and osteodifferentiation of BMSCs. Furthermore, in vivo experiments confirmed that KGE could promote bone repair during angiogenesis by recruiting CD90+ stem cells via neovessels. Collectively, our results suggest that injectable enzyme-responsive KGE microspheres could be a promising Exo-secreting material for accelerating neovascularized bone healing. STATEMENT OF SIGNIFICANCE: Exosomes can spread through blood vessels and activate stem cells to participate in bone repair, but under normal circumstances, exosomes lacking sustained-release delivery materials cannot be maintained until the angiogenesis phase. In this study, we found that MMP1 was highly expressed in neovascularized bone, then we proposed an MMP1-sensitive injectable microsphere that carries exosomes and responds temporally and spatially to neovascularization, which maximizes the ability of exosomes to recruit stem cells. Different from previous strategies that focus on promoting angiogenesis to accelerate bone healing, this is a brand new delivery strategy that is stimuli-responsive to neovessel formation. In addition, the preparation of self-assembled peptide microspheres by a microfluidic chip is also proposed for the first time.
Collapse
Affiliation(s)
- Yang Yang
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weihan Zheng
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Tan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Xiaoqi Wu
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Ziyue Li
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi Yan
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuelun Ji
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Yilin Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Su
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu Zhong
- Department of orthopedic, Dongguan People's Hospital, Dongguan 523058, China
| | - Yanbing Li
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China.
| | - Shiyu Li
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wenhua Huang
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Tye CE, Ghule PN, Gordon JAR, Kabala FS, Page NA, Falcone MM, Tracy KM, van Wijnen AJ, Stein JL, Lian JB, Stein GS. LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment. Sci Rep 2022; 12:7770. [PMID: 35546168 PMCID: PMC9095685 DOI: 10.1038/s41598-022-11814-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
Bone formation requires osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) and lineage progression of committed osteoblast precursors. Osteogenic phenotype commitment is epigenetically controlled by genomic (chromatin) and non-genomic (non-coding RNA) mechanisms. Control of osteogenesis by long non-coding RNAs remains a largely unexplored molecular frontier. Here, we performed comprehensive transcriptome analysis at early stages of osteogenic cell fate determination in human MSCs, focusing on expression of lncRNAs. We identified a chromatin-bound lncRNA (MIR181A1HG) that is highly expressed in self-renewing MSCs. MIR181A1HG is down-regulated when MSCs become osteogenic lineage committed and is retained during adipogenic differentiation, suggesting lineage-related molecular functions. Consistent with a key role in human MSC proliferation and survival, we demonstrate that knockdown of MIR181A1HG in the absence of osteogenic stimuli impedes cell cycle progression. Loss of MIR181A1HG enhances differentiation into osteo-chondroprogenitors that produce multiple extracellular matrix proteins. RNA-seq analysis shows that loss of chromatin-bound MIR181A1HG alters expression and BMP2 responsiveness of skeletal gene networks (e.g., SOX5 and DLX5). We propose that MIR181A1HG is a novel epigenetic regulator of early stages of mesenchymal lineage commitment towards osteo-chondroprogenitors. This discovery permits consideration of MIR181A1HG and its associated regulatory pathways as targets for promoting new bone formation in skeletal disorders.
Collapse
Affiliation(s)
- Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jonathan A R Gordon
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Fleur S Kabala
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Natalie A Page
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Michelle M Falcone
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andre J van Wijnen
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
10
|
Iwamoto R, Takahashi T, Yoshimi K, Imai Y, Koide T, Hara M, Ninomiya T, Nakamura H, Sayama K, Yukita A. Chemokine ligand 28 (CCL28) negatively regulates trabecular bone mass by suppressing osteoblast and osteoclast activities. J Bone Miner Metab 2021; 39:558-571. [PMID: 33721112 DOI: 10.1007/s00774-021-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bone metabolism imbalances cause bone metabolism diseases, like osteoporosis, through aging. Although some chemokines are known to be involved in bone mass regulation, many have not been investigated. Thus, the present study aimed to investigate the role of chemokine ligand 28 (CCL28) on bone metabolism. MATERIALS AND METHODS To investigate the role of CCL28 on bone metabolism, 10-week-old male wild-type and Ccl28 knockout (Ccl28 KO) mice were analyzed. Microcomputed tomography analysis and bone tissue morphometry were used to investigate the effect of Ccl28 deficiency on the bone. CCL28 localization in bone tissue was assumed by immunohistochemistry. Osteoblast and osteoclast markers were evaluated by enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction. Finally, in vitro experiments using MC3T3-E1 and bone marrow macrophages revealed the direct effect of CCL28 on osteoblast and osteoclast. RESULTS This study showed that Ccl28 deficiency significantly increased bone mass and the number of mature osteoblasts. Immunoreactivity for CCL28 was observed in osteoblasts and osteoclasts on bone tissue. Additionally, Ccl28 deficiency promoted osteoblast and osteoclast maturation. Moreover, CCL28 treatment decreased osteoblast and osteoclast activities but did not affect differentiation. CONCLUSION In summary, this study indicated that CCL28 is one of the negative regulators of bone mass by suppressing osteoblast and osteoclast activities. These results provide important insights into bone immunology and the selection of new osteoporosis treatments.
Collapse
Affiliation(s)
- Rina Iwamoto
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takumi Takahashi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kazuto Yoshimi
- Laboratory Animal Research Center, Division of Animal Genetics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuji Imai
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Miroku Hara
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Tadashi Ninomiya
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Kazutoshi Sayama
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akira Yukita
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Education (Sciences), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
Voelkner C, Wendt M, Lange R, Ulbrich M, Gruening M, Staehlke S, Nebe B, Barke I, Speller S. The nanomorphology of cell surfaces of adhered osteoblasts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:242-256. [PMID: 33777612 PMCID: PMC7961864 DOI: 10.3762/bjnano.12.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact. For osteoblasts, adhesion and spreading are crucial processes with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living, as well as fixed, osteoblastic cells using scanning ion conductance microscopy (SICM), which is a nanoprobing method that largely avoids mechanical perturbations. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall surface corrugation, which we systematically study by introducing the relative 3D excess area as a function of the projected adhesion area. A clear anticorrelation between the two parameters is found upon analysis of ca. 40 different cells on glass and on amine-covered surfaces. At the rim of lamellipodia, characteristic edge heights between 100 and 300 nm are observed. Power spectral densities of membrane fluctuations show frequency-dependent decay exponents with absolute values greater than 2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding the assessment of adhesion and migration properties on a single-cell basis.
Collapse
Affiliation(s)
- Christian Voelkner
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Mirco Wendt
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Regina Lange
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Max Ulbrich
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Barbara Nebe
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Ingo Barke
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Sylvia Speller
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| |
Collapse
|
12
|
Molecular Aspects of Thyroid Calcification. Int J Mol Sci 2020; 21:ijms21207718. [PMID: 33086487 PMCID: PMC7589718 DOI: 10.3390/ijms21207718] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
In thyroid cancer, calcification is mainly present in classical papillary thyroid carcinoma (PTC) and in medullary thyroid carcinoma (MTC), despite being described in benign lesions and in other subtypes of thyroid carcinomas. Thyroid calcifications are classified according to their diameter and location. At ultrasonography, microcalcifications appear as hyperechoic spots ≤ 1 mm in diameter and can be named as stromal calcification, bone formation, or psammoma bodies (PBs), whereas calcifications > 1 mm are macrocalcifications. The mechanism of their formation is still poorly understood. Microcalcifications are generally accepted as a reliable indicator of malignancy as they mostly represent PBs. In order to progress in terms of the understanding of the mechanisms behind calcification occurring in thyroid tumors in general, and in PTC in particular, we decided to use histopathology as the basis of the possible cellular and molecular mechanisms of calcification formation in thyroid cancer. We explored the involvement of molecules such as runt-related transcription factor-2 (Runx-2), osteonectin/secreted protein acidic and rich in cysteine (SPARC), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteopontin (OPN) in the formation of calcification. The present review offers a novel insight into the mechanisms underlying the development of calcification in thyroid cancer.
Collapse
|
13
|
Emami A, Talaei-Khozani T, Tavanafar S, Zareifard N, Azarpira N, Vojdani Z. Synergic effects of decellularized bone matrix, hydroxyapatite, and extracellular vesicles on repairing of the rabbit mandibular bone defect model. J Transl Med 2020; 18:361. [PMID: 32962683 PMCID: PMC7510292 DOI: 10.1186/s12967-020-02525-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. METHODS The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. RESULTS The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. CONCLUSIONS The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.
Collapse
Affiliation(s)
- Asrin Emami
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Tavanafar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zareifard
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Martineau C, Kaufmann M, Arabian A, Jones G, St-Arnaud R. Preclinical safety and efficacy of 24R,25-dihydroxyvitamin D 3 or lactosylceramide treatment to enhance fracture repair. J Orthop Translat 2020; 23:77-88. [PMID: 32518749 PMCID: PMC7270532 DOI: 10.1016/j.jot.2020.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 01/22/2023] Open
Abstract
Background/Objective Cyp24a1-null mice deficient in 24,25(OH)2D3 display impaired callus formation during the endochondral phase of bone fracture repair. The 24,25(OH)2D3 metabolite acted by binding to the TLC domain containing 3B isoform 2 (TLCD3B2, previously named FAM57B2) effector protein, which then synthesizes lactosylceramide (LacCer). Treatment with 24,25(OH)2D3 or LacCer restored callus size and mechanical properties in Cyp24a1-null mice. Methods To assess the safety of these molecules and test their efficacy for bone healing in wild-type, non-genetically modified mice, we treated 12-week-old, osteotomized C57BL/6 female mice with each compound for up to 21 days post-osteotomy. Control cohorts were injected with vehicle. Results Neither compound was found to exhibit any nephro- nor hepato-toxicity. Calcemia remained stable throughout the experiment and was unaffected by either treatment. Supplementation with 24,25(OH)2D3 increased circulating levels of this metabolite about 8-fold, decreased 1,25(OH)2D3 levels, and significantly increased circulating 1,24,25(OH)3D3 levels, suggesting 1?-hydroxylation of 24,25(OH)2D3. TLCD3B2 was found to be expressed in fracture callus at the surface of unmineralized or pre-mineralized cartilage on day 10 and day 12 post-osteotomy and to progressively recede to become undetectable by day 18. Treatment with 24,25(OH)2D3 or LacCer reduced the number of TLCD3B2-positive cells. Both treatments also significantly increased stiffness and elastic modulus of the healing bone callus. Conclusion Exogenous administration of 24,25(OH)2D3 or LacCer improved the biomechanical properties of repaired bones in wild-type animals without affecting circulating calcium levels or other blood parameters, demonstrating preclinical safety and efficacy. Translational potential Our data suggest the use of 24R,25-dihydroxyvitamin D3 or lactosylceramide for ameliorating fracture healing in clinical practice.
Collapse
Affiliation(s)
- Corine Martineau
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Alice Arabian
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Department of Surgery, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, H3H 2R9, Canada
- Corresponding author. Research Centre, Shriners Hospitals for Children – Canada, 1003 Decarie Boulevard, Montreal, Quebec, H4A 0A9, Canada.
| |
Collapse
|
15
|
Tokuhara CK, Santesso MR, Oliveira GSND, Ventura TMDS, Doyama JT, Zambuzzi WF, Oliveira RCD. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci 2019; 27:e20180596. [PMID: 31508793 DOI: 10.1590/1678-7757-2018-0596] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/22/2023] Open
Abstract
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Collapse
Affiliation(s)
- Cintia Kazuko Tokuhara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Mariana Rodrigues Santesso
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Gabriela Silva Neubern de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Talita Mendes da Silva Ventura
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Julio Toshimi Doyama
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Willian Fernando Zambuzzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| |
Collapse
|
16
|
Asmussen N, Lin Z, McClure MJ, Schwartz Z, Boyan BD. Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation. Steroids 2019; 142:43-47. [PMID: 29233620 DOI: 10.1016/j.steroids.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023]
Abstract
Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH)2D3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs.
Collapse
Affiliation(s)
- Niels Asmussen
- School of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zhao Lin
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael J McClure
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
18
|
Bone Regenerative Engineering Using a Protein Kinase A-Specific Cyclic AMP Analogue Administered for Short Term. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0063-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomater 2018; 71:37-48. [PMID: 29505890 DOI: 10.1016/j.actbio.2018.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. STATEMENT OF SIGNIFICANCE Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The impact of the FBR on encapsulated cells and their ability to synthesize tissue has not been well studied. This study utilizes thiol-ene click chemistry to create a biomimetic, enzymatically degradable hydrogel system with which to encapsulate MC3T3-E1 pre-osteoblasts. The osteogenic capabilities and differentiation of these cellswerestudied in co-culture with macrophages, known drivers of the FBR.This study demonstrates that macrophages reduce osteogenic capabilities of encapsulated cellsin vitroand suggestthat the FBR should be considered for in vivo tissue engineering.
Collapse
|
20
|
A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget 2018; 8:31612-31625. [PMID: 28404942 PMCID: PMC5458234 DOI: 10.18632/oncotarget.15779] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.
Collapse
|
21
|
Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Pikula JB, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 2018; 1862:532-546. [PMID: 29108957 PMCID: PMC5801150 DOI: 10.1016/j.bbagen.2017.11.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.
Collapse
Affiliation(s)
- Massimo Bottini
- University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, 00133 Roma, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Saida Mebarek
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Karen L Anderson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Agnieszka Strzelecka-Kiliszek
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Lukasz Bozycki
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Maria Sper Simão
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Joanna Bandorowicz Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - David Magne
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Niels Volkmann
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dorit Hanein
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France.
| |
Collapse
|
22
|
Azoidis I, Cox SC, Davies OG. The role of extracellular vesicles in biomineralisation: current perspective and application in regenerative medicine. J Tissue Eng 2018; 9:2041731418810130. [PMID: 30450187 PMCID: PMC6236483 DOI: 10.1177/2041731418810130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles comprise a heterogenous population of exosomes and microvesicles that have critical roles in intercellular signalling and tissue development. These complex particles have been implicated as mediators of the therapeutic effects of stem cells via the transfer of an assorted cargo of proteins and nucleic acids, which can modulate inflammation and enhance endogenous regeneration in a range of tissues. In addition, extracellular vesicles have the capacity to be loaded with therapeutic molecules for targeted delivery of pharmaceuticals. The versatility, biostability and biocompatibility of extracellular vesicles make them appealing for regenerative medicine and may endow considerable advantages over single molecule approaches. Furthermore, since production can be optimised and assessed ex vivo, extracellular vesicles present a decreased risk of neoplastic transformation when compared with cell-based methods. To date, the contribution of vesicles to tissue development has perhaps been most comprehensively defined within hard tissues, such as endochondral bone, where they were first identified in 1969 and henceforth referred to as matrix vesicles. Within developing bone, vesicles function as vehicles for the delivery of pro-osteogenic factors and initiate early nucleational events necessary for matrix mineralisation. However, advancement in our understanding of the biogenesis and characterisation of matrix vesicles has occurred largely in parallel to associated developments in wider extracellular vesicle biology. As such, there is a requirement to align current understanding of matrix vesicle-mediated mineralisation within the context of an evolving literature surrounding exosomes and microvesicles. In this review, we present an overview of current progress and opinion surrounding the application of vesicles in regenerative medicine with a primary focus on their potential as an acellular approach for enhancing hard tissue regeneration. This is balanced with an assessment of areas where further development is required to maximise their application for regenerative medicine.
Collapse
Affiliation(s)
- Ioannis Azoidis
- School of Chemical Engineering,
University of Birmingham, Birmingham, UK
| | - Sophie C Cox
- School of Chemical Engineering,
University of Birmingham, Birmingham, UK
| | - Owen G Davies
- School of Chemical Engineering,
University of Birmingham, Birmingham, UK
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
23
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
24
|
Lin Z, Rodriguez NE, Zhao J, Ramey AN, Hyzy SL, Boyan BD, Schwartz Z. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 2016; 88:47-55. [PMID: 27080510 PMCID: PMC4899086 DOI: 10.1016/j.bone.2016.03.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
Matrix vesicles (MVs) are membrane organelles found in the extracellular matrix of calcifying cells, which contain matrix processing enzymes and regulate the extracellular environment via action of these enzymes. It is unknown whether MVs are also exosomic mediators of cell-cell communication via transfer of RNA material, and specifically, microRNA (miRNA). We investigated the presence of RNA in MVs isolated from cultures of costochondral growth zone chondrocytes. Our results showed that the average yield of MV RNA was 1.93±0.78ng RNA/10(4) cells, which was approximately 0.1% of the parent cell's total RNA. MV RNA was well-protected from RNase by the lipid membrane and was highly enriched in small RNA molecules compared to cells. Moreover, coding and non-coding small RNAs in MVs were in proportions that differed from parent cells. Enrichment of specific miRNAs was consistently observed in all three miRNA detection platforms that we used, suggesting that miRNAs are selectively packaged into MVs. MV-enriched miRNAs were related to different signaling pathways associated with bone formation. This study suggests a significant role for MVs as "matrisomes" in cell-cell communication in cartilage and bone development via transfer of specific miRNAs.
Collapse
Affiliation(s)
- Zhao Lin
- Department of Periodontics, Virginia Commonwealth University, Richmond, VA, United States; Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicholas E Rodriguez
- School of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Junjun Zhao
- Department of Periodontics, Virginia Commonwealth University, Richmond, VA, United States; Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States; General Dentistry, 9th People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Allison N Ramey
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Sharon L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
25
|
Barger A, Graca R, Bailey K, Messick J, de Lorimier LP, Fan T, Hoffmann W. Use of Alkaline Phosphatase Staining to Differentiate Canine Osteosarcoma from Other Vimentin-positive Tumors. Vet Pathol 2016; 42:161-5. [PMID: 15753469 DOI: 10.1354/vp.42-2-161] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspiration of lytic bone lesions is an excellent diagnostic test in the initial evaluation of primary bone neoplasia. However, cytologically, it can be difficult to differentiate osteosarcoma (OSA) from other bone neoplasms, including fibrosarcoma, chondrosarcoma, synovial cell sarcoma, and plasma cell myeloma. The purpose of this study is to determine the sensitivity and specificity of alkaline phosphatase (ALP) staining to differentiate OSA from other tumors that express vimentin by immunocytochemistry or immunohistochemistry. ALP is a hydrolytic enzyme present in multiple tissues including liver, kidney, intestine, placenta, and bone. Hypothetically, neoplasms actively producing bone should be specifically positive for ALP staining. Unstained, cytologic specimens were incubated for 8-10 minutes with nitroblue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate toluidine salt-phosphatase substrate. A positive reaction stains the membrane of the cells gray to black. Samples were counterstained with a Romanowsky's stain to determine whether the sample was of representative cellularity. A total of 61 vimentin-positive neoplasms have been evaluated and confirmed histopathologically. Tumors that expressed vimentin and were positive for ALP included 33 OSAs, one multilobular tumor of bone, one amelanotic melanoma, and one chondrosarcoma. Tumors that expressed vimentin and were negative for ALP included chondrosarcomas (three of four), multiple fibrosarcomas, and multiple synovial cell sarcomas. The sensitivity is 100%, and the specificity is 89%. In conclusion, ALP appears to be a highly sensitive and fairly specific marker in the diagnosis of OSA.
Collapse
Affiliation(s)
- A Barger
- Department of Venterinary Pathology, College of Veterinary Medicine, University of Illinois, 288 SAC, 1008 Hazelwood Drive, Urbana, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tai PWL, Wu H, Gordon JAR, Whitfield TW, Barutcu AR, van Wijnen AJ, Lian JB, Stein GS, Stein JL. Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene 2014; 550:1-9. [PMID: 24881813 DOI: 10.1016/j.gene.2014.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022]
Abstract
Runx2 is a developmentally regulated gene in vertebrates and is essential for bone formation and skeletal homeostasis. The induction of runx2-P1 isoform transcripts is a hallmark of early osteoblastogenesis. Although previous in vitro studies have defined a minimal Runx2-P1 promoter sequence with well-characterized functional elements, several lines of evidence suggest that transcription of the Runx2-P1 isoform relies on elements that extend beyond the previously defined P1 promoter boundaries. In this study, we examined Runx2-P1 transcriptional regulation in a cellular in vivo context during early osteoblastogenesis of MC3T3-E1 cultures and BMSCs induced towards the bone lineage by multi-layered analysis of the Runx2-P1 gene promoter using the following methodologies: 1) sequence homology among several mammalian species, 2) DNaseI hypersensitivity coupled with massively parallel sequencing (DNase-seq), and 3) chromatin immunoprecipitation of activating histone modifications coupled with massively parallel sequencing (ChIP-seq). These epigenetic features have allowed the demarcation of boundaries that redefine the minimal Runx2-P1 promoter to include a 336-bp sequence that mediates responsiveness to osteoblast differentiation. We also find that an additional level of control is contributed by a regulatory region in the 5'-UTR of Runx2-P1.
Collapse
Affiliation(s)
- Phillip W L Tai
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Hai Wu
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Jonathan A R Gordon
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Troy W Whitfield
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0002, USA.
| | - A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0002, USA.
| | | | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| |
Collapse
|
27
|
Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int 2013; 83:1042-51. [PMID: 23364520 DOI: 10.1038/ki.2012.482] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosphate. In an in vitro phosphate-induced calcification model of vascular smooth muscle cells (VSMCs) and in an in vivo model of chronic renal failure, autophagy was inhibited by the superoxide dismutase mimic MnTMPyP, superoxide dismutase-2 overexpression, and by knockdown of the sodium-dependent phosphate cotransporter Pit1. Although phosphate-induced VSMC apoptosis was reduced by an inhibitor of autophagy (3-methyladenine) and knockdown of autophagy protein 5, calcium deposition in VSMCs was increased during inhibition of autophagy, even with the apoptosis inhibitor Z-VAD-FMK. An inducer of autophagy, valproic acid, decreased calcification. Furthermore, 3-methyladenine significantly promoted phosphate-induced matrix vesicle release with increased alkaline phosphatase activity. Thus, autophagy may be an endogenous protective mechanism counteracting phosphate-induced vascular calcification by reducing matrix vesicle release. Therapeutic agents influencing the autophagic response may be of benefit to treat aging or disease-related vascular calcification and osteoporosis.
Collapse
|
28
|
Boyan BD, Chen J, Schwartz Z. Mechanism of Pdia3-dependent 1α,25-dihydroxy vitamin D3 signaling in musculoskeletal cells. Steroids 2012; 77:892-6. [PMID: 22569272 DOI: 10.1016/j.steroids.2012.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/14/2012] [Accepted: 04/25/2012] [Indexed: 12/29/2022]
Abstract
1α,25-Dihydroxy vitamin D3 [1,25(OH)2D3] acts on cells through traditional steroid hormone receptor-mediated gene transcription and by initiating rapid membrane-associated signaling pathways. Two receptors have been implicated in rapid signaling by 1,25(OH)2D3, the classical nuclear vitamin D receptor (VDR) and the more recently identified protein disulfide isomerase, family A, member 3 (Pdia3). Our lab along with other groups has established various tools to investigate the role of these two receptors, including gene knock-out, conditional knock-out, silencing, and over-expression in various model systems (growth plate chondrocytes, osteoblastic cells, chick intestinal epithelial cells, mouse embryoid bodies, extracellular matrix vesicles and isolated cell membranes). The data demonstrate the requirement for Pdia3 in 1,25(OH)2D3 induced phospholipase A2 (PLA2) and protein kinase C (PKC) activation and downstream responses. Pdia3+/- heterozygote mice also exhibit both cartilage and bone defects. VDR is present on the plasma membrane and one VDR-/- mouse strain lacks transcaltachia, although 1,25(OH)2D3 induced PKC activation and transcaltachia are not affected in another VDR-/- mouse strain. In the context of osteoblast differentiation, both receptors are expressed during osteogenic commitment of embryoid bodies and silencing of each causes a more mature osteoblast phenotype in MC3T3-E1 pre-osteoblasts. Pdia3 exists in caveolae, where it interacts with PLA2 activating protein (PLAA) and caveolin-1 to initiate rapid signaling via PLA2, phospholipase C (PLC), PKC, and ultimately the ERK1/2 family of mitogen activated protein kinases (MAPK). Using the growth plate chondrocyte and matrix vesicle models, we have demonstrated that Pdia3-dependent signaling in response to 1,25(OH)2D3 regulates growth plate physiology.
Collapse
Affiliation(s)
- Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | |
Collapse
|
29
|
Mahmood M, Li Z, Casciano D, Khodakovskaya MV, Chen T, Karmakar A, Dervishi E, Xu Y, Mustafa T, Watanabe F, Fejleh A, Whitlow M, Al-Adami M, Ghosh A, Biris AS. Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. J Cell Mol Med 2012; 15:2297-306. [PMID: 21143388 PMCID: PMC3822941 DOI: 10.1111/j.1582-4934.2010.01234.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report that several nanomaterials induced enhanced mineralization (increased numbers and larger areas of mineral nests) in MC3T3-E1 bone cells, with the highest response being induced by silver nanoparticles (AgNPs). We demonstrate that AgNPs altered microRNA expression resulting in specific gene expression associated with bone formation. We suggest that the identified essential transcriptional factors and bone morphogenetic proteins play an important role in activation of the process of mineralization in bone cells exposed to AgNPs.
Collapse
Affiliation(s)
- Meena Mahmood
- University of Arkansas at Little Rock, Nanotechnology Center, Applied Science Department, Little Rock, AR 72204, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yin G, Huang Z, Deng M, Zeng J, Gu J. Preparation and cell response of bio-mineralized Fe3O4 nanoparticles. J Colloid Interface Sci 2011; 363:393-402. [DOI: 10.1016/j.jcis.2011.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/30/2022]
|
31
|
Thouverey C, Malinowska A, Balcerzak M, Strzelecka-Kiliszek A, Buchet R, Dadlez M, Pikula S. Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. J Proteomics 2011; 74:1123-34. [PMID: 21515422 DOI: 10.1016/j.jprot.2011.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 02/07/2023]
Abstract
Matrix vesicles (MVs), released by budding from apical microvilli of osteoblasts during bone formation and development, are involved in the initiation of mineralization by promoting the formation of hydroxyapatite in their lumen. To gain additional insights into MV biogenesis and functions, MVs and apical microvilli were co-isolated from mineralizing osteoblast-like Saos-2 cells and their proteomes were characterized using LC-ESI-MS/MS and compared. In total, 282 MV and 451 microvillar proteins were identified. Of those, 262 were common in both preparations, confirming that MVs originate from apical microvilli. The occurrence of vesicular trafficking molecules (e.g. Rab proteins) and of the on-site protein synthetic machinery suggests that cell polarization and apical targeting are required for the incorporation of specific lipids and proteins at the site of MV formation. MV release from microvilli may be driven by actions of actin-severing proteins (gelsolin, cofilin 1) and contractile motor proteins (myosins). In addition to the already known proteins involved in MV-mediated mineralization, new MV residents were detected, such as inorganic pyrophosphatase 1, SLC4A7 sodium bicarbonate cotransporter or sphingomyelin phosphodiesterase 3, providing additional insights into MV functions.
Collapse
Affiliation(s)
- Cyril Thouverey
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
32
|
Lo KWH, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 2011; 6:40-8. [PMID: 21312339 DOI: 10.1002/term.395] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022]
Abstract
Osteoblastic differentiation is an important landmark for bone formation, bone repair and regeneration; however, it is a very complex process controlled by different signalling mechanisms. Several groups have reported that the cyclic adenosine monophosphate (cAMP) signalling system is responsible for regulating osteoblast cell differentiation. Nonetheless, to date, the principle role of the cAMP molecules related to this process remains controversial. Moreover, the underlying cAMP-dependent signalling cascade governing the osteoblastic differentiation has not been clarified. In this study we investigated the roles of the cAMP-dependent protein kinase A (PKA) signalling in proliferation, differentiation and mineralization of osteoblast-like MC3T3-E1 cells, using the PKA-specific small molecule cAMP analogue, 6-Bnz-cAMP, at 100 µM. Alkaline phosphatase (ALP) activity, runt transcription factor 2 (Runx2), osteopontin (OPN) and osteocalcin (OCN) protein expressions were used as osteoblast-specific markers to demonstrate osteoblastic differentiation. Further, calcium measurement of the extracellular matrix was employed as the hallmark of matrix mineralization or calcification. We report here that activation of PKA by the small molecule 6-Bnz-cAMP induces osteoblastic differentiation and matrix mineralization of osteoblast-like MC3T3-E1 cells. Moreover, 6-Bnz-cAMP does not induce cytotoxicity to the cells, as revealed by our cell proliferation studies. Therefore, based on these findings, we propose that the PKA-specific small molecule 6-Bnz-cAMP may serve as a novel bone-inducing growth factor for repairing and regenerating bone tissues during bone-regenerative engineering.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Department of Orthopaedic Surgery, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta Gen Subj 2009; 1790:1592-8. [PMID: 19786074 DOI: 10.1016/j.bbagen.2009.09.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND Matrix vesicles have been implicated in the mineralization of calcified cartilage, bone and dentin for more than 40 years. During this period, their exact role, if any in the nucleation of hydroxyapatite mineral, and its subsequent association with the collagen fibrils in the organic matrix has been debated and remains controversial. SCOPE OF REVIEW This review summarizes studies spanning the whole history of matrix vesicles, but emphasizes recent findings and several hypotheses which have been recently introduced to explain in greater detail how matrix vesicles function in biomineralization. MAJOR CONCLUSIONS It is now generally accepted that matrix vesicles have some role(s) in mineralization; that they are the initial site of mineral formation; that MV bud from the plasma membrane of mineral forming cells, but that they take with them only a subset of the materials found in the parent membrane; that the three proteins, alkaline phosphatase, nucleotide pyrophosphatase phosphodiesterase and annexin V have important roles in the process and that matrix vesicles participate in regulating the concentration of PPi in the matrix. In contrast, many open questions remain to be answered. GENERAL SIGNIFICANCE Understanding the role of matrix vesicles in biomineralization will increase our knowledge of this important process.
Collapse
Affiliation(s)
- Ellis E Golub
- Biochemistry Department, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
The effect of odontoblast conditioned media and dentin non-collagenous proteins on the differentiation and mineralization of cementoblasts in vitro. Arch Oral Biol 2009; 54:71-9. [DOI: 10.1016/j.archoralbio.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/19/2008] [Accepted: 09/21/2008] [Indexed: 11/23/2022]
|
36
|
Analysis of the extracellular matrix and secreted vesicle proteomes by mass spectrometry. Methods Mol Biol 2008; 428:231-44. [PMID: 18287777 DOI: 10.1007/978-1-59745-117-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The extracellular matrix (ECM) and secreted vesicles are unique structures outside of cells that carry out dynamic biological functions. ECM is created by most cell types and is responsible for the three-dimensional structure of the tissue or organ in which they are originated. Many cells also produce or secrete specialized vesicles into the ECM, which are thought to influence the extracellular environment. ECM is not s a physical structure to connect cells in a tissue or organ. The proteins in ECM and secreted vesicles are critical to cell function, differentiation, motility, and cell-to-cell interaction. Although a number of major structural proteins of ECM and secreted vesicles have long been known, an appreciation of the role of less-abundant non-collagenous proteins has just begun to emerge. This chapter outlines a series of methods used to isolate and enrich ECM constituents and secreted vesicles from bone-forming osteoblast cells, enabling comprehensive profiles of their proteomes to be obtained by mass spectrometry. These methods can be easily adapted to study ECM and secreted vesicles in other cell types, primary cell cultures derived from animal models, or tissue specimens.
Collapse
|
37
|
Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 2008; 8:192-205. [PMID: 18095356 DOI: 10.1002/pmic.200700612] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix vesicles (MVs) are extracellular organelles that initiate mineral formation, accumulating inorganic phosphate (P(i)) and calcium leading to the formation of hydroxyapatite (HA) crystals, the main mineral component of bones. MVs are produced during bone formation, as well as during the endochondral calcification of cartilage. MVs are released into the extracellular matrix from osseous cells such as osteoblasts and hypertrophic chondrocytes. In this report, using 1-D SDS-PAGE, in-gel tryptic digestion and an LC-MS-MS/MS protein identification protocol, we characterized the proteome of MVs isolated from chicken embryo (Gallus gallus) bones and cartilage. We identified 126 gene products, including proteins related to the extracellular matrix and ion transport, as well as enzymes, cytoskeletal, and regulatory proteins. Among the proteins recognized for the first time in MVs were aquaporin 1, annexin A1 (AnxA1), AnxA11, glycoprotein HT7, G(i) protein alpha2, and scavenger receptor type B. The pathways for targeting the identified proteins into MVs and their particular functions in the biomineralization process are discussed. Obtaining a knowledge of the functions and roles of these proteins during embryonic mineralization is a prerequisite for the overall understanding of the initial mineral formation mechanisms.
Collapse
Affiliation(s)
- Marcin Balcerzak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
38
|
Jang HO, Park YS, Lee JH, Seo JB, Koo KI, Jeong SC, Jin SD, Lee YH, Eom HS, Yun I. Effect of extracts from safflower seeds on osteoblast differentiation and intracellular calcium ion concentration in MC3T3-E1 cells. Nat Prod Res 2007; 21:787-97. [PMID: 17654282 DOI: 10.1080/14786410601133475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although safflower seeds have long been used in Korea as herbal medicines, very little research has been published on the effects of safflower seed on bone formation or bone density. The study reported here therefore examined bone nodule formation, calcium uptake, alkaline phosphatase activity, and intracellular concentration of calcium ion [Ca(2+)](i) in murine osteoblastic cells of the MC3T3-E1 line that were cultured on modified Eagle's minimal essential medium alone (controls) or with addition of 0.1% crude extract of safflower seed (experimental group I) or 0.1% aqueous fraction of safflower seed (experimental group II). Fluorescence spectrometry measurement of ([Ca(2+)](i)) showed significantly accelerated rates of osteoblast differentiation in experimental group I (3 microL of crude extract in 8 x 10(4) cells) and experimental group II (2 microL of aqueous fraction in 8 x 10(4) cells) compared to the control group.
Collapse
Affiliation(s)
- Hye-Ock Jang
- Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 2007; 210:325-35. [PMID: 17096383 DOI: 10.1002/jcp.20826] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many key processes central to bone formation and homeostasis require the involvement of osteoblasts, cells responsible for accumulation and mineralization of the extracellular matrix (ECM). During this complex and only partially understood process, osteoblasts generate and secrete matrix vesicles (MVs) into the ECM to initiate mineralization. Although they are considered an important component of mineralization process, MVs still remain a mystery. To better understand their function and biogenesis, a proteomic analysis of MVs has been conducted. MVs were harvested by two sample preparation approaches and mass spectrometry was utilized for protein identification. A total of 133 proteins were identified in common from the two MV preparations, among which were previously known proteins, such as annexins and peptidases, along with many novel proteins including a variety of enzymes, osteoblast-specific factors, ion channels, and signal transduction molecules, such as 14-3-3 family members and Rab-related proteins. To compare the proteome of MV with that of the ECM we conducted a large-scale proteomic analysis of collagenase digested mineralizing osteoblast matrix. This analysis resulted in the identification of 1,327 unique proteins. A comparison of the proteins identified from the two MV preparations with the ECM analysis revealed 83 unique, non-redundant proteins identified in all three samples. This investigation represents the first systematic proteomic analysis of MVs and provides insights into both the function and origin of these important mineralization-regulating vesicles.
Collapse
Affiliation(s)
- Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barragan-Adjemian C, Nicolella D, Dusevich V, Dallas MR, Eick JD, Bonewald LF. Mechanism by which MLO-A5 late osteoblasts/early osteocytes mineralize in culture: similarities with mineralization of lamellar bone. Calcif Tissue Int 2006; 79:340-53. [PMID: 17115241 PMCID: PMC1802097 DOI: 10.1007/s00223-006-0107-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 07/25/2006] [Indexed: 12/13/2022]
Abstract
The mechanisms whereby bone mineralizes are unclear. To study this process, we used a cell line, MLO-A5, which has highly elevated expression of markers of the late osteoblast such as alkaline phosphatase, bone sialoprotein, parathyroid hormone type 1 receptor, and osteocalcin and will mineralize in sheets, not nodules. In culture, markers of osteocytes and dendricity increase with time, features of differentiation from a late osteoblast to an early osteocyte. Mineral formation was examined using transmission electron microscopy, scanning electron microscopy with energy-dispersive X-ray analysis, and atomic force microscopy. At 3-4 days of culture, spheres of approximately 20-50 nm containing calcium and phosphorus were observed budding from and associated with developing cellular projections. By 5-6 days, these calcified spheres were associated with collagen fibrils, where over time they continued to enlarge and to engulf the collagen network. Coalescence of these mineralized spheres and collagen-mediated mineralization were responsible for the mineralization of the matrix. Similar calcified spheres were observed in cultured fetal rat calvarial cells and in murine lamellar bone. We propose that osteoid-osteocytes generate spherical structures that calcify during the budding process and are fully mineralized on their developing cellular processes. As the cellular process narrows in diameter, these mineralized structures become associated with and initiate collagen-mediated mineralization.
Collapse
Affiliation(s)
- C Barragan-Adjemian
- Department of Oral Biology, University of Missouri at Kansas City, 650 East 25th Street, Kansas City, MO 64108-2784, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hamlin NJ, Price PA. Mineralization of decalcified bone occurs under cell culture conditions and requires bovine serum but not cells. Calcif Tissue Int 2004; 75:231-42. [PMID: 15164149 DOI: 10.1007/s00223-004-0190-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to develop an in vitro model system for bone matrix mineralization in the absence of cells. For this model, we utilized EDTA-decalcified new-born rat tibias with the cartilaginous ends intact, allowing us to visually determine the specificity of mineralization within the bone. Our results show that supplementation of DMEM culture medium with 10mM beta-glycerophosphate and 15% fetal bovine serum (FBS) results in non-physiological mineral percipitation in the tibia because of the generation of supraphysiological (5mM) levels of inorganic phosphate in the medium. The same medium supplemented only with inorganic phosphate to a final concentration of 2mM failed to mineralize a decalcified tibia matrix. However, additional supplementation of this medium with as little as 5% FBS resulted in mineralization of those regions of the type I collagen where mineral was found prior to decalcification, with no evidence for mineralization in the cartilage at the bone ends or in the periosteum. Analysis of the mineral by Fourier-transform infrared spectroscopy and powder X-ray diffraction shows that tibias that have been decalcified and then remineralized contain an apatitic mineral that is strikingly similar to the mineral in normal bone. Tendon, a type I collagen matrix not normally mineralized in vivo, also mineralizes when incubated in DMEM containing 2mM Pi and as little as 1.5% FBS, but not when incubated in DMEM without serum. These data indicate that serum contains a nucleator of type I collagen matrix mineralization, and that mineralization of type I collagen under cell culture conditions requires serum but not living cells.
Collapse
Affiliation(s)
- N J Hamlin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
42
|
Burns DM, Stehno-Bittel L, Kawase T. Calcitonin gene-related peptide elevates calcium and polarizes membrane potential in MG-63 cells by both cAMP-independent and -dependent mechanisms. Am J Physiol Cell Physiol 2004; 287:C457-67. [PMID: 15238361 DOI: 10.1152/ajpcell.00274.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Published data suggest that the neuropeptide calcitonin gene-related peptide (CGRP) can stimulate osteoblastic bone formation; however, interest has focused on activation of cAMP-dependent signaling pathways in osteogenic cells without full consideration of the importance of cAMP-independent signaling. We have now examined the effects of CGRP on intracellular Ca(2+) concentration ([Ca(2+)](int)) and membrane potential (E(m)) in preosteoblastic human MG-63 cells by single-cell fluorescent confocal analysis using fluo 4-AM-fura red-AM and bis(1,3-dibarbituric acid)-trimethine oxanol [DiBAC(4)(3)] bis-oxonol assays. CGRP produced a two-stage change in [Ca(2+)](int): a rapid transient peak and a secondary sustained increase. Both responses were dose dependent with an EC(50) of approximately 0.30 nM, and the maximal effect (initially approximately 3-fold over basal levels) was observed at 20 nM. The initial phase was sensitive to inhibition of Ca(2+) mobilization with thapsigargin, whereas the secondary phase was eliminated only by blocking transmembrane Ca(2+) influx with verapamil or inhibiting cAMP-dependent signaling with the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). These data suggest that CGRP initially stimulates Ca(2+) discharge from intracellular stores by a cAMP-independent mechanism and subsequently stimulates Ca(2+) influx through L-type voltage-dependent Ca(2+) channels by a cAMP-dependent mechanism. In addition, CGRP dose-dependently polarized cellular E(m), with maximal effect at 20 nM and an EC(50) of 0.30 nM. This effect was attenuated with charybdotoxin (-20%) or glyburide (glibenclamide; -80%), suggesting that E(m) hyperpolarization is induced by both Ca(2+)-activated and ATP-sensitive K(+) channels. Thus CGRP signals strongly by both cAMP-dependent and cAMP-independent signaling pathways in preosteoblastic human MG-63 cells.
Collapse
Affiliation(s)
- Douglas M Burns
- Medical Research Service (151), Kansas City Dept. of Veterans Affairs Medical Center, 4801 E. Linwood Blvd., Kansas City, MO 64128, USA.
| | | | | |
Collapse
|
43
|
Fanchon S, Bourd K, Septier D, Everts V, Beertsen W, Menashi S, Goldberg M. Involvement of matrix metalloproteinases in the onset of dentin mineralization. Eur J Oral Sci 2004; 112:171-6. [PMID: 15056115 DOI: 10.1111/j.1600-0722.2004.00120.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to study the involvement of matrix metalloproteinases (MMPs) on dentin formation and mineralization, day 18 embryonic mouse tooth germs were cultured for 10 d in the presence or absence of Marimastat, a general MMP inhibitor, or CT(1166), a more selective inhibitor of gelatinases (MMP-2 and MMP-9) and stromelysin-1 (MMP-3). With Marimastat a dose-dependent increase in thickness of the predentin layer and a decreased mineralization of dentin were observed. At the highest concentration of the inhibitor used, enamel formation had ceased. With CT(1166), these effects were already apparent at the lowest concentration used. Western blot analyses demonstrated that the two inhibitors inhibited the expression of enamelysin (MMP-20). These observations indicate that MMPs (possibly MMP-2, -3, -9 and/or -20) play a role in the onset of dentin mineralization. The lack of enamel formation was possibly due to diffusion of amelogenin from its normal site of apposition. The protein clearly was not retained at the surface of the non-mineralized dentin layer, and immunopositive amelogenin accumulated in the odontoblast compartment. The diffusion of enamel proteins and the accumulation revealed by immunolabeling of two small leucine-rich proteoglycans, decorin and biglycan, in the predentin may have contributed to impaired dentin mineralization.
Collapse
Affiliation(s)
- Stephanie Fanchon
- Groupe Matrice Extracellulaire et Biominéralizations (EA 2496). Faculté de Chirurgie Dentaire, Université Paris V, Montrouge, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Matsuzaka K, Walboomers XF, Yoshinari M, Inoue T, Jansen JA. The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials 2003; 24:2711-9. [PMID: 12711517 DOI: 10.1016/s0142-9612(03)00085-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In previous studies, we showed that the application of microgrooves on a surface can direct cellular morphology and the deposition of mineralized matrix of osteoblast-like cells (Biomaterials 20 (1999) 1293; Clin. Oral Impl Res. 11 (2000) 325). In this study, we evaluated the attachment and growth behavior of these cells, using scanning- and transmission electron microscopy (SEM/TEM). Smooth and microgrooved polystyrene substrates were made (groove depth 0.5-1.5 microm, groove- and ridge width 1-10 microm). On these substrates, osteoblast-like cells were cultured for periods up to 16 days. SEM showed that the cells, and their extensions, closely followed the surface on smooth and wider grooved (>5 microm) substrates. In contrast, narrow grooves (<2 microm) were bridged. After 16 days of incubation, the matrix showed extensive deposition of collagen fibrils, and the formation of calcified nodules. With TEM it was shown that on the smooth and wider grooved substrates, focal adhesions were spread throughout the surface. However, on narrow grooves focal adhesions were always positioned on the edges of surface ridges only. Apparently, most extracellular matrix (ECM) was produced by the cells that directly adhered to the substrate. Deposition of ECM was seen in the surface grooves, as well as in between the cell layers. On basis of the current study and previous experiments, we conclude that microgrooves are able to influence bone cell behavior by (1) determining the alignment of cells and cellular extensions, (2) altering the formation and placement of cell focal adhesions, and (3) altering ECM production. Therefore, microgrooved surfaces seem interesting to be applied on bone-anchored implants.
Collapse
Affiliation(s)
- Kenichi Matsuzaka
- Department of Clinical Pathophysiology, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | | | | | |
Collapse
|
45
|
Sakamoto Y, Takano Y. Morphological influence of ascorbic acid deficiency on endochondral ossification in osteogenic disorder Shionogi rat. THE ANATOMICAL RECORD 2002; 268:93-104. [PMID: 12221715 DOI: 10.1002/ar.10122] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influences of chronic deficiency of L-ascorbic acid (AsA) on the differentiation of osteo-chondrogenic cells and the process of endochondral ossification were examined in the mandibular condyle and the tibial epiphysis and metaphysis by using Osteogenic Disorder Shionogi (ODS) rats that bear an inborn deficiency of L-gulonolactone oxidase. Weanling male rats were kept on an AsA-free diet for up to 4 weeks, until the symptoms of scurvy became evident. The tibiae and condylar processes of scorbutic rats displayed undersized and distorted profiles with thin cortical and scanty cancellous bones. In these scorbutic bones, the osteoblasts showed characteristic expanded round profiles of rough endoplasmic reticulum, and lay on the bone surface where the osteoid layer was missing. Trabeculae formation was deadlocked, although calcification of the cartilage matrix proceeded in both types of bone. Scorbutic condylar cartilage showed severe disorganization of cell zones, such as unusual thickening of the calcification zone, whereas the tibial cartilage showed no particular alterations (except for a moderately decreased population of chondrocytes). In condylar cartilage, hypertrophic chondrocytes were encased in a thickened calcification zone, and groups of nonhypertrophic chondrocytes occasionally formed cell nests surrounded by a metachromatic matrix in the hypertrophic cell zone. These results indicate that during endochondral ossification, chronic AsA deficiency depresses osteoblast function and disturbs the differentiation pathway of chondrocytes. The influence of scurvy on mandibular condyle cartilage is different from that on articular and epiphyseal cartilage of the tibia, suggesting that AsA plays different roles in endochondral ossification in the mandibular condyle and long bones.
Collapse
Affiliation(s)
- Yujiro Sakamoto
- Biostructural Science, Department of Hard Tissue Engineering, Division of Bio-Matrix, Tokyo Medical and Dental University, 4-45 Yushima I-chome, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | |
Collapse
|
46
|
Rodríguez JP, Rosselot G. Sodium fluoride induces changes on proteoglycans synthesized by avian osteoblasts in culture. J Cell Biochem 2002; 83:607-16. [PMID: 11746504 DOI: 10.1002/jcb.1255] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The results reported here show that sodium fluoride (NaF) at low concentration (up to 10 microM) increased four times the proliferation rate of avian osteoblasts in culture. Also NaF increases, in a concentration dependent manner, 10 times the alkaline phosphatase activity. However, NaF decreased the incorporation of 35S-sulfate into proteoglycans (PGs) synthesized by osteoblasts (60-65%). Also, we observed that PGs synthesized in the presence of NaF (50 microM) exhibited a higher sensitivity to chondroitinase ABC than PGs synthesized by osteoblasts in the absence of NaF, suggesting an increase in the chondroitin sulfate moieties associated with the core protein of PGs. The modification of glycosaminoglycan (GAG) chains composition was evidenced also by change in the mean charge density of the PGs observed by ion exchange chromatography. Since the ratio of 35SO4/3H-glucosamine incorporated into PGs was similar in the presence and in the absence of NaF (8.2 and 7, respectively), it is not possible to explain differences in mean charge density by changes in the sulfation extent of PGs. No differences were observed in the hydrodynamic size of PG synthesized in the presence of NaF, nor in the hydrodynamic size of the GAG chains. According to these results, we speculate that the stimulatory effect of fluoride on bone mineralization may be mediated, in part, by the changes in the rate of synthesis or in the structural characteristics of bone PGs. The changes produced by fluoride in PGs suggest that these molecules play an inhibitory role in the bone mineralization process.
Collapse
Affiliation(s)
- J P Rodríguez
- Laboratorios de Biología Celular y de Biología Molecular, INTA, Universidad de Chile, Casilla 138-11, Santiago, Chile.
| | | |
Collapse
|
47
|
Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:331-49. [PMID: 11603505 DOI: 10.1177/10454411010120040401] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The predominant proteoglycans present in predentin and dentin are the chondroitin-sulphate-rich decorin and biglycan and the keratan-sulphate-rich lumican and fibromodulin. These are small, interstitial, leucine-rich proteoglycans which have recently been shown to exist in gradients across the predentin. Antibodies recognizing chondroitin sulphate show a decreasing gradient from the pulpal aspect toward the mineralizing front, the converse being true for keratan sulphate. Antidecorin shows an increase toward the mineralization front. Evidence from biochemical, autoradiographic, and immunohistochemical studies implies that such changes may be brought about by gradients of metalloproteinases. This offers the possibility that the proteoglycans organize the collagen network for receipt of phosphoproteins and phospholipids, the former being evident only at the onset of dentin formation. The suggestion is raised that glycosaminoglycan-depleted leucine-rich protein cores act as sequester points for receipt of phosphoproteins in particular. The rigid, spatially oriented glycosaminoglycan chains on decorin and biglycan are known to bind calcium and may feature directly in mineral initiation.
Collapse
Affiliation(s)
- G Embery
- Department of Basic Dental Science, Dental School, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
48
|
Rodríguez JP, Rosselot G. Effects of zinc on cell proliferation and proteoglycan characteristics of epiphyseal chondrocytes. J Cell Biochem 2001; 82:501-11. [PMID: 11500926 DOI: 10.1002/jcb.1178] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Zinc has been postulated as an important nutritional factor involved in growth promotion; however, the cellular mechanisms involved in the effects of zinc on linear growth remain to be elucidated. This study was conducted to evaluate the effects of zinc on the proliferation rate of epiphyseal growth plate chondrocytes and on the structural characteristics of the proteoglycans synthesized by these cells. For these purposes, hypertrophic and proliferating chondrocytes were isolated from the tibiae of 1- and 5-week-old chickens, respectively. Chondrocytes were cultured under serum-free conditions and primary cultures were used. The results showed that zinc stimulated proliferation by 40-50% above the baseline in the case of proliferating chondrocytes, but it had no effect on hypertrophic chondrocytes. Zinc had neither any effects on mean charge density of proteoglycans synthesized by hypertrophic chondrocytes nor in their hydrodynamic size. In contrast, zinc induced an increase in mean charge density and a decrease of hydrodynamic size of proteoglycans synthesized by proliferating chondrocytes. In both cell types zinc had no effect on the composition and hydrodynamic size of the glycosaminoglycan chains. The increased ability of proliferating chondrocytes cultured in the presence of zinc to synthesize 3'-phosphoadenosine 5'-phosphosulfate (PAPS) could be explained by the induction of enzymes participating in the sulfation pathway of proteoglycans. Therefore, the increase in mean charge density of proteoglycans observed in this study may be explained by an increase of the degree of sulfation of proteoglycan molecules. We speculate that the effect of zinc on linear growth may be explained at a cellular level by: a) an increase in proliferation rates of proliferating chondrocytes, and b) increased synthesis of highly charged proteoglycan molecules which decreases mineralization.
Collapse
Affiliation(s)
- J P Rodríguez
- Laboratorios de Biología Celular y Biología Molecular, INTA, Universidad de Chile, Casilla 138-11, Santiago, Chile.
| | | |
Collapse
|
49
|
Anh DJ, Eden A, Farley JR. Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin Chim Acta 2001; 311:137-48. [PMID: 11566173 DOI: 10.1016/s0009-8981(01)00584-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The current studies were intended to compare the circulating levels of total and anchorless (soluble) skeletal and hepatic ALP isoenzyme activities, and insoluble ALP anchor-hydrolase activity in serum of postmenopausal women. METHODS Preliminary studies of the insoluble ALP anchor-hydrolase activity in serum revealed a pH optimum of pH 5-6.5, a sensitivity to inactivation by heat at temperatures >45 degrees C (t(1/2)=8-9 min at 60 degrees C), and an apparent K(M) (at pH 7.5) of 40-45 mU/ml of insoluble skeletal ALP activity. RESULTS Serum analyses showed that 94.5+/-0.5% (mean+/-SEM) of the ALP activity in serum was in the anchorless, soluble form. The data were also consistent with the notion that the amount of insoluble ALP anchor-hydrolase activity in serum, 52.8+/-0.8 U/l (mean+/-SEM), was sufficient for the conversion of anchor-intact (insoluble) ALP into the anchorless, soluble form, assuming activation by serum lipids and/or bile salts. Distributions of results for total, skeletal, hepatic, and insoluble ALP anchor-hydrolase activity were skewed toward the higher range and leptokurtotic (p<0.01 for each). Total ALP activity ranged from 42% to 208% of the group mean value; skeletal, hepatic, and insoluble ALP anchor-hydrolase activities ranged from 5% to 306%, 33% to 277%, and 2% to 325%, respectively. In contrast, the soluble ALP fraction only ranged from 71% to 106% of the group mean value. CONCLUSIONS The correlations between the total and both skeletal (r=0.711, p<0.001) and hepatic (r=0.782, p<0.001) ALP isoform activities were predictive. Although correlations were also observed between insoluble ALP anchor-hydrolase activity and total (r=0.197, p<0.001), hepatic (r=0.184, p<0.001) and skeletal ALP activities (r=0.118, p<0.05), those relationships were not predictive (r(2)<0.04).
Collapse
Affiliation(s)
- D J Anh
- Jerry L. Pettis Memorial Veterans Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | | | | |
Collapse
|
50
|
Kato Y, Boskey A, Spevak L, Dallas M, Hori M, Bonewald LF. Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J Bone Miner Res 2001; 16:1622-33. [PMID: 11547831 DOI: 10.1359/jbmr.2001.16.9.1622] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms controlling the initiation of mineralization of bone matrix are not clear. To examine this process, we established a cell line called MLO-A5 that mineralizes in sheets, not nodules, within 3 days of culture in the presence of beta-glycerophosphate (beta-GP) and ascorbic acid and within 7 days in the absence of beta-GP and ascorbic acid. The mineral formed in both cases was shown to be bonelike apatite by Fourier transformed infrared (FTIR) spectroscopy. Mineral-to-matrix ratios (min/matrix) calculated from the FTIR data, which are related directly to ash weight, were approximately 0.4 in the absence of beta-GP and ascorbic acid and approximately 1.2 in the presence of beta-GP and ascorbic acid. By comparison, these ratios in fetal rat calvarial cells without beta-GP equal 0 and with beta-GP 1.9. This cell line and three others (MLO-A2, -D1, and -D6) were isolated from the long bones of transgenic mice expressing the large T-antigen driven by the osteocalcin promoter, the same mice from which the osteocyte-like cell line MLO-Y4 was isolated.(1) The cell lines were selected based on a dendritic or stellate morphology. MLO-A5 cells express high alkaline phosphatase, collagen type 1, parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) receptor, bone sialoprotein (BSP), and osteocalcin (767 ng/10(6) cells compared with <1-2.2 ng/10(6) cell for primary mouse osteoblasts and five osteoblast cell lines). The single unique feature of the MLO-A5 cells compared with the other three nonmineralizing cell lines is the high expression of messenger RNA (mRNA) for BSP. These cell lines may represent stages of osteocyte differentiation and the MLO-A5 cells represent the postosteoblast, preosteocyte responsible for triggering mineralization of osteoid.
Collapse
Affiliation(s)
- Y Kato
- Asahi Chemical Industry Co, Ltd, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|