1
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Kabala AM, Binko K, Godard F, Charles C, Dautant A, Baranowska E, Skoczen N, Gombeau K, Bouhier M, Becker HD, Ackerman SH, Steinmetz LM, Tribouillard-Tanvier D, Kucharczyk R, di Rago JP. Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 2022; 220:iyac007. [PMID: 35100419 PMCID: PMC8893259 DOI: 10.1093/genetics/iyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Collapse
Affiliation(s)
- Anna M Kabala
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krystyna Binko
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - François Godard
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Camille Charles
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Natalia Skoczen
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kewin Gombeau
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Hubert D Becker
- UPR ‘Architecture et Réactivité de l’ARN’, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Jean-Paul di Rago
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
3
|
Singh AP, Salvatori R, Aftab W, Kohler A, Carlström A, Forne I, Imhof A, Ott M. Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Mol Cell 2020; 79:1051-1065.e10. [PMID: 32877643 DOI: 10.1016/j.molcel.2020.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.
Collapse
Affiliation(s)
- Abeer Prakash Singh
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Wasim Aftab
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; Graduate School for Quantitative Biosciences (QBM), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Andreas Kohler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ignasi Forne
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
4
|
Naumenko N, Morgenstern M, Rucktäschel R, Warscheid B, Rehling P. INA complex liaises the F 1F o-ATP synthase membrane motor modules. Nat Commun 2017; 8:1237. [PMID: 29093463 PMCID: PMC5665977 DOI: 10.1038/s41467-017-01437-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex’s membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step–motor module formation. The inner membrane assembly complex (INAC) interacts with components of the F1F0-ATP synthase but its function remains unclear. Here the authors show that INAC associates with two distinct complexes during F1F0-ATP synthase formation, which points towards a safeguarding role during proton-conducting channel assembly.
Collapse
Affiliation(s)
- Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Marcel Morgenstern
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany. .,Max Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany.
| |
Collapse
|
5
|
Ostojić J, Panozzo C, Bourand-Plantefol A, Herbert CJ, Dujardin G, Bonnefoy N. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res 2016; 44:5785-97. [PMID: 27257059 PMCID: PMC4937339 DOI: 10.1093/nar/gkw490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.
Collapse
Affiliation(s)
- Jelena Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Alexa Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
6
|
Rühle T, Leister D. Assembly of F1F0-ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:849-60. [PMID: 25667968 DOI: 10.1016/j.bbabio.2015.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Herbert CJ, Golik P, Bonnefoy N. Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol 2013; 10:1477-94. [PMID: 24184848 DOI: 10.4161/rna.25392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code.
Collapse
Affiliation(s)
- Christopher J Herbert
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| | - Pawel Golik
- Department of Genetics and Biotechnology; Faculty of Biology; University of Warsaw; Pawinskiego 5A; Warsaw, Poland
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| |
Collapse
|
8
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
9
|
Lipinski KA, Puchta O, Surendranath V, Kudla M, Golik P. Revisiting the yeast PPR proteins--application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 2011; 28:2935-48. [PMID: 21546354 DOI: 10.1093/molbev/msr120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are the largest known RNA-binding protein family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate organellar genome expression on the posttranscriptional level. Although the genomes of land plants encode hundreds of PPR proteins, only a few have been identified in Fungi and Metazoa. As the current PPR motif profiles are built mainly on the basis of the predominant plant sequences, they are unlikely to be optimal for detecting fungal and animal members of the family, and many putative PPR proteins in these genomes may remain undetected. In order to verify this hypothesis, we designed a hidden Markov model-based bioinformatic tool called Supervised Clustering-based Iterative Phylogenetic Hidden Markov Model algorithm for the Evaluation of tandem Repeat motif families (SCIPHER) using sequence data from orthologous clusters from available yeast genomes. This approach allowed us to assign 12 new proteins in Saccharomyces cerevisiae to the PPR family. Similarly, in other yeast species, we obtained a 5-fold increase in the detection of PPR motifs, compared with the previous tools. All the newly identified S. cerevisiae PPR proteins localize in the mitochondrion and are a part of the RNA processing interaction network. Furthermore, the yeast PPR proteins seem to undergo an accelerated divergent evolution. Analysis of single and double amino acid substitutions in the Dmr1 protein of S. cerevisiae suggests that cooperative interactions between motifs and pseudoreversion could be the force driving this rapid evolution.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
10
|
Godard F, Tetaud E, Duvezin-Caubet S, di Rago JP. A genetic screen targeted on the FO component of mitochondrial ATP synthase in Saccharomyces cerevisiae. J Biol Chem 2011; 286:18181-9. [PMID: 21454598 DOI: 10.1074/jbc.m110.214825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, the two main F(O) proton-translocating subunits of the ATP synthase (subunits 6/a and 9/c) are encoded by mitochondrial DNA (mtDNA). Unfortunately, mutations that inactivate the F(O) typically result in loss of mtDNA under the form of ρ(-)/ρ(0) cells. Thus, we have designed a novel genetic strategy to circumvent this problem. It exploits previous findings that a null mutation in the nuclear ATP16 gene encoding ATP synthase subunit δ results in massive and lethal F(O)-mediated protons leaks across the inner mitochondrial membrane. Mutations that inactivate the F(O) can thus, in these conditions, be selected positively as cell viability rescuing events. A first set of seven mutants was analyzed and all showed, as expected, very severe F(O) deficiencies. Two mutants carried nuclear mutations in known genes (AEP1, AEP2) required for subunit c expression. The five other mutations were located in mtDNA. Of these, three affect synthesis or stability of subunit a transcripts and the two last consisted in a single amino acid replacement in subunit c. One of the subunit c mutations is particularly interesting. It consists in an alanine to valine change at position 60 of subunit c adjacent to the essential glutamate of subunit c (at position 59) that interacts with the essential arginine 186 of subunit a. The properties of this mutant suggest that the contact zone between subunit a and the ten subunits c-ring structure only involves critical transient interactions confined to the region where protons are exchanged between the subunit a and the c-ring.
Collapse
Affiliation(s)
- François Godard
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS, Université Victor Segalen Bordeaux 2, 33077 Bordeaux, France
| | | | | | | |
Collapse
|
11
|
Rak M, Zeng X, Brière JJ, Tzagoloff A. Assembly of F0 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:108-16. [PMID: 18672007 DOI: 10.1016/j.bbamcr.2008.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
Respiratory deficient mutants of Saccharomyces cerevisiae have been instrumental in identifying an increasing number of nuclear gene products that promote pre- and post-translational steps of the pathway responsible for biogenesis of the mitochondrial ATP synthase. In this article we have attempted to marshal current information about the functions of such accessory factors and the roles they play in expression and assembly of the mitochondrially encoded subunits of the ATP synthase. We also discuss evidence that the ATP synthase may be built up from three separate modules corresponding to the F1 ATPase, the stator and F0.
Collapse
Affiliation(s)
- Malgorzata Rak
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | | | | | | |
Collapse
|
12
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
13
|
Zeng X, Barros MH, Shulman T, Tzagoloff A. ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase. Mol Biol Cell 2008; 19:1366-77. [PMID: 18216280 DOI: 10.1091/mbc.e07-08-0746] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F(0). Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
14
|
Zeng X, Neupert W, Tzagoloff A. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol Biol Cell 2006; 18:617-26. [PMID: 17135290 PMCID: PMC1783785 DOI: 10.1091/mbc.e06-09-0801] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study we have identified a new metalloprotease encoded by the nuclear ATP23 gene of Saccharomyces cerevisiae that is essential for expression of mitochondrial ATPase (F(1)-F(O) complex). Mutations in ATP23 cause the accumulation of the precursor form of subunit 6 and prevent assembly of F(O). Atp23p is associated with the mitochondrial inner membrane and is conserved from yeast to humans. A mutant harboring proteolytically inactive Atp23p accumulates the subunit 6 precursor but is nonetheless able to assemble a functional ATPase complex. These results indicate that removal of the subunit 6 presequence is not an essential event for ATPase biogenesis and that Atp23p, in addition to its processing activity, must provide another important function in F(O) assembly. The product of the yeast ATP10 gene was previously shown to interact with subunit 6 and to be required for its association with the subunit 9 ring. In this study one extra copy of ATP23 was found to be an effective suppressor of an atp10 null mutant, suggesting an overlap in the functions of Atp23p and Atp10p. Atp23p may, therefore, also be a chaperone, which in conjunction with Atp10p mediates the association of subunit 6 with the subunit 9 ring.
Collapse
Affiliation(s)
- Xiaomei Zeng
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Walter Neupert
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - Alexander Tzagoloff
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| |
Collapse
|
15
|
Zeng X, Hourset A, Tzagoloff A. The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor. Genetics 2006; 175:55-63. [PMID: 17110482 PMCID: PMC1775023 DOI: 10.1534/genetics.106.065821] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
16
|
Cardol P, González-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. PLANT PHYSIOLOGY 2005; 137:447-59. [PMID: 15710684 PMCID: PMC1065347 DOI: 10.1104/pp.104.054148] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/25/2004] [Accepted: 11/25/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms , Institute of Plant Biology B22, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Ackerman SH, Tzagoloff A. Function, structure, and biogenesis of mitochondrial ATP synthase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:95-133. [PMID: 16164973 DOI: 10.1016/s0079-6603(05)80003-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
18
|
Helfenbein KG, Ellis TP, Dieckmann CL, Tzagoloff A. ATP22, a nuclear gene required for expression of the F0 sector of mitochondrial ATPase in Saccharomyces cerevisiae. J Biol Chem 2003; 278:19751-6. [PMID: 12646576 DOI: 10.1074/jbc.m301679200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the mitochondrial proton-translocating ATPase of Saccharomyces cerevisiae has been shown to depend on chaperones that target the F1 and F0 sectors of this inner membrane complex. Here we report a new gene, designated ATP22 (reading frame YDR350C on chromosome IV), that provides an essential function in the assembly of F0. ATP22 was cloned by transformation of C208/L2, a strain previously assigned to complementation group G99 of a collection of respiration-defective nuclear pet mutants. C208/L2 and the other atp22 mutants have oligomycin-insensitive F1-ATPase, suggesting that the lesion is confined to F0. This is supported by the sedimentation properties of the mutant ATPase and results of immunochemical analysis of F0 subunit polypeptides. Northern analysis of ATPase transcripts and in vivo pulse labeling of the mitochondrial translation products in the mutant indicate normal expression of subunits 6, 8, and 9, the three mitochondrial gene products of F0. Atp22p therefore functions at a post-translational stage in assembly of F0. Localization studies indicate Atp22p to be a component of the mitochondrial inner membrane. Protease protection experiments further indicate that Atp22p faces the matrix side of the membrane where most of the ATPase proteins are located and assembled.
Collapse
Affiliation(s)
- Kevin G Helfenbein
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Studies of protein synthesis in the chloroplast compartment have revealed a unique combination of translational autoregulations and trans-regulations due to the delivery of a variety of nuclear factors that act post-transcriptionally. We show how these two characteristics concur to set the major step in the regulation of chloroplast gene expression at the translational level, leading to a surprisingly low sensitivity of chloroplast protein synthesis in response to extensive changes in plastome copy number and transcript concentration.
Collapse
Affiliation(s)
- Yves Choquet
- UPR-CNRS 1261, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | |
Collapse
|
20
|
Paul MF, Barrientos A, Tzagoloff A. A single amino acid change in subunit 6 of the yeast mitochondrial ATPase suppresses a null mutation in ATP10. J Biol Chem 2000; 275:29238-43. [PMID: 10867012 DOI: 10.1074/jbc.m004546200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an earlier study, the ATP10 gene of Saccharomyces cerevisiae was shown to code for an inner membrane protein required for assembly of the F(0) sector of the mitochondrial ATPase complex (Ackerman, S., and Tzagoloff, A. (1990) J. Biol. Chem. 265, 9952-9959). To gain additional insights into the function of Atp10p, we have analyzed a revertant of an atp10 null mutant that displays partial recovery of oligomycin-sensitive ATPase and of respiratory competence. The suppressor mutation in the revertant has been mapped to the OLI2 locus in mitochondrial DNA and shown to be a single base change in the C-terminal coding region of the gene. The mutation results in the substitution of a valine for an alanine at residue 249 of subunit 6 of the ATPase. The ability of the subunit 6 mutation to compensate for the absence of Atp10p implies a functional interaction between the two proteins. Such an interaction is consistent with evidence indicating that the C-terminal region with the site of the mutation and the extramembrane domain of Atp10p are both on the matrix side of the inner membrane. Subunit 6 has been purified from the parental wild type strain, from the atp10 null mutant, and from the revertant. The N-terminal sequences of the three proteins indicated that they all start at Ser(11), the normal processing site of the subunit 6 precursor. Mass spectral analysis of the wild type and mutants subunit 6 failed to reveal any substantive difference of the wild type and mutant proteins when the mass of the latter was corrected for Ala --> Val mutation. These data argue against a role of Atp10p in post-translational modification of subunit 6. Although post-translational modification of another ATPase subunit interacting with subunit 6 cannot be excluded, a more likely function for Atp10p is that it acts as a subunit 6 chaperone during F(0) assembly.
Collapse
Affiliation(s)
- M F Paul
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
21
|
Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000; 64:281-315. [PMID: 10839818 PMCID: PMC98995 DOI: 10.1128/mmbr.64.2.281-315.2000] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
22
|
Ellis TP, Lukins HB, Nagley P, Corner BE. Suppression of a nuclear aep2 mutation in Saccharomyces cerevisiae by a base substitution in the 5'-untranslated region of the mitochondrial oli1 gene encoding subunit 9 of ATP synthase. Genetics 1999; 151:1353-63. [PMID: 10101162 PMCID: PMC1460560 DOI: 10.1093/genetics/151.4.1353] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.
Collapse
Affiliation(s)
- T P Ellis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
23
|
Assembly of Multisubunit Complexes in Mitochondria. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(09)60019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Finnegan PM, Ellis TP, Nagley P, Lukins HB. The mature AEP2 gene product of Saccharomyces cerevisiae, required for the expression of subunit 9 of ATP synthase, is a 58 kDa mitochondrial protein. FEBS Lett 1995; 368:505-8. [PMID: 7635208 DOI: 10.1016/0014-5793(95)00727-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nucleotide sequence of the yeast nuclear AEP2 gene, required for the expression of the mitochondrial DNA-encoded subunit 9 of ATP synthase, predicts a primary translation product of 67.5 kDa. The ATP13 gene is allelic to AEP2 but was reported to encode a protein of about 42 kDa in size. We thus investigated genetically and biochemically the size of the AEP2 gene product. Genetic complementation assays using 3' truncated AEP2 genes, here shows that function is abolished by the removal of only 32 amino acids from the C-terminus of the predicted protein product. Cell-free translation of AEP2 produces a 64 kDa polypeptide (consistent with the AEP2 sequence) which is imported into mitochondria and processed to a 58 kDa product by the removal of a presequence of about 50 amino acids.
Collapse
Affiliation(s)
- P M Finnegan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
25
|
Pélissier P, Camougrand N, Velours G, Guérin M. NCA3, a nuclear gene involved in the mitochondrial expression of subunits 6 and 8 of the Fo-F1 ATP synthase of S. cerevisiae. Curr Genet 1995; 27:409-16. [PMID: 7586026 DOI: 10.1007/bf00311209] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Respiratory-competent nuclear mutants have been isolated which presented a cryosensitive phenotype on a non-fermentative carbon source, due to a dysfunctioning of the mitochondrial F1-Fo ATP synthase which results from a relative defect in subunits 6 and 8 of the Fo sector. Both proteins are mtDNA-encoded, but the defect is due to the simultaneous presence of a mutation in two unlinked nuclear genes (NCA2 and NCA3, for Nuclear Control of ATPase) promoting a modification of the expression of the ATP8-ATP6 co-transcript (formerly denoted AAP1-OLI2). This co-transcript matures at a unique site to give two cotranscripts of 5.2 and 4.6 kb in length: in the mutant, the 5.2-kb co-transcript was greatly lowered. NCA3 was isolated from a wild-type yeast genomic library by genetic complementation. The level of the 5.2-kb transcript, like the synthesis of subunits 6 and 8, was partly restored in the transformed strain. A 1011-nucleotide ORF was identified that encodes an hydrophilic protein of 35417 Da. Disruption of chromosomal DNA within the reading frame promoted a dramatic decrease of the 5.2-kb mRNA but did not abolish the respiratory competence of a wild-type strain. NCA3 is located on chromosome IV and produces a single 1780-b transcript.
Collapse
Affiliation(s)
- P Pélissier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux II, France
| | | | | | | |
Collapse
|
26
|
Wallis MG, Groudinsky O, Slonimski PP, Dujardin G. The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilisation, is located in the yeast mitochondrial matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:27-32. [PMID: 8200349 DOI: 10.1111/j.1432-1033.1994.tb18837.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NAM1 nuclear gene was shown to control the stability and/or processing of mitochondrial transcripts of the cytochrome b, cytochrome oxidase subunit I and ATP synthase subunit VI genes [Groudinsky O., Bousquet I., Wallis M. G., Slonimski, P. P. & Dujardin G. (1993) Mol. Gen. Genet. 240, 419-427]. In order to better understand the mode of action of the NAM1 gene product, we have examined its intracellular fate. A fusion plasmid enabling bacterial over-expression of the corresponding protein-A-NAM1 cognate was constructed and subsequently employed as an antigen to raise polyclonal antibodies. These antibodies specifically recognise a 50-kDa protein which purifies along with the mitochondria and corresponds to NAM1p. Submitochondrial localisation experiments show that NAM1p is a soluble protein, located interior to the mitoplasts. Matricial location is a strong argument in favour of a direct interaction of NAM1p with particular mitochondrial transcripts and leads us to propose a model in which NAM1p could be an RNA-convoying protein stabilising and directing mitochondrial transcripts towards the inner face of the inner membrane where translation and assembly seem to occur.
Collapse
Affiliation(s)
- M G Wallis
- Centre de Génétique Moléculaire du CNRS, Université Paris VI, Gif sur Yvette, France
| | | | | | | |
Collapse
|
27
|
Dieckmann CL, Staples RR. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 152:145-81. [PMID: 8206703 DOI: 10.1016/s0074-7696(08)62556-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C L Dieckmann
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
28
|
Suppression of a defect in the 5' untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol Cell Biol 1993. [PMID: 8393138 DOI: 10.1128/mcb.13.8.4806] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.
Collapse
|
29
|
Costanzo MC, Fox TD. Suppression of a defect in the 5' untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol Cell Biol 1993; 13:4806-13. [PMID: 8393138 PMCID: PMC360107 DOI: 10.1128/mcb.13.8.4806-4813.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.
Collapse
Affiliation(s)
- M C Costanzo
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703
| | | |
Collapse
|
30
|
Payne MJ, Finnegan PM, Smooker PM, Lukins HB. Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae. Curr Genet 1993; 24:126-35. [PMID: 8358819 DOI: 10.1007/bf00324676] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to mutation in a single nuclear locus, AEP1, the temperature-conditional pet mutant ts1860 of Saccharomyces cerevisiae fails to synthesize mitochondrial ATP synthase subunit 9 at the restrictive temperature of 36 degrees C. The presence at this temperature of near-normal levels of the cognate oli1 mRNA in mutant ts1860 indicates that, as previously shown, the product of the AEP1 gene is required for translation of the mitochondrial oli1 transcript. In this study the AEP1 gene has been cloned from a wild-type yeast genomic library by genetic complementation of a temperature-conditional aep1 strain at the restrictive temperature. A 2,330-bp genomic fragment which restores subunit 9 synthesis in aep1 mutant strains was characterized. This fragment encoded five open reading frames: the longest of these, at 1,554 nucleotides, was identified as the AEP1 gene, since disruption of this reading frame generated a non-conditional pet strain unable to synthesize subunit 9. The predicted product of AEP1 is a basic, hydrophilic protein of 59,571 Da which possesses a putative mitochondrial address sequence. Hybridization studies with AEP1-specific probes indicate that the gene is located on chromosome XIII and produces several poly(A)+ transcripts ranging in size from 0.9 to 2.7 kb. None of the identified reading frames share significant homologies with entries of several data bases.
Collapse
Affiliation(s)
- M J Payne
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Bolotin-Fukuhara M, Grivell LA. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie Van Leeuwenhoek 1992; 62:131-53. [PMID: 1444332 DOI: 10.1007/bf00584467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.
Collapse
Affiliation(s)
- M Bolotin-Fukuhara
- Laboratoire de Génétique Moléculaire, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
32
|
Dekker PJ, Stuurman J, van Oosterum K, Grivell LA. Determinants for binding of a 40 kDa protein to the leaders of yeast mitochondrial mRNAs. Nucleic Acids Res 1992; 20:2647-55. [PMID: 1377379 PMCID: PMC336903 DOI: 10.1093/nar/20.11.2647] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An abundant yeast mitochondrial 40 kDa protein (p40) binds with high specificity to the 5'-untranslated region of cytochrome c oxidase subunit II (COX2) mRNA. Using mobility shift and competition assays, we show here that purified p40 complexes with the leaders of all eight mitochondrial mRNAs of Saccharomyces cerevisiae. The location of the protein binding site on the different leaders is not conserved with respect to the AUG start codon. In vitro RNA footprint and deletion experiments have been used to define the p40-binding site on the leaders of COX1 and ATP9 mRNAs. Nucleotides at, and near, a single stranded region are protected or exposed for DEPC modification by binding of p40 to these leaders. Removal of this region from the COX1 messenger shows that it is essential for the protein-RNA interaction. While no obvious sequence similarity can be detected between the single stranded regions in different leaders, a nearby helical segment is conserved. A consensus model for p40-RNA interactions is presented and the possible biological function of p40 is discussed.
Collapse
Affiliation(s)
- P J Dekker
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Regulation by nuclear genes of the mitochondrial synthesis of subunits 6 and 8 of the ATP synthase of Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45902-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Cox G, Devenish R, Gibson F, Howitt S, Nagley P. Chapter 12 The structure and assembly of ATP synthase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Dekker PJ, Papadopoulou B, Grivell LA. Properties of an abundant RNA-binding protein in yeast mitochondria. Biochimie 1991; 73:1487-92. [PMID: 1725260 DOI: 10.1016/0300-9084(91)90182-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously identified a protein with Mr approximately 40,000 (p40) that binds with high specificity and affinity to the 5'-untranslated leaders of mitochondrial mRNAs in yeast. Here we show that this protein is abundant, comprising about 0.4% of total mitochondrial protein. p40 is present in a cytoplasmic (rho degree) petite mutant that lacks mitochondrial protein synthesis and is therefore nuclear encoded. p40 can be detected by immunological techniques in cell lysates of several different pet mutants, specifically disturbed in the translation of individual mitochondrial mRNAs. It is thus not one of the translation factors defined by any of these mutations. In the case of a pet111 mutant, which is specifically blocked in the translation of COX2 mRNA, extracts still display COX2 mRNA binding activity, indicating that p40 complex formation in vitro is not dependent on the presence of PET111.
Collapse
Affiliation(s)
- P J Dekker
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|