1
|
Porter AJ, Pillidge K, Tsai YC, Dudley JA, Hunt SP, Peirson SN, Brown LA, Stanford SC. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice(1). GENES BRAIN AND BEHAVIOR 2015; 14:189-99. [PMID: 25558794 PMCID: PMC4415486 DOI: 10.1111/gbb.12195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 01/16/2023]
Abstract
Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: 'Hom') wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents ('Het', derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors.
Collapse
Affiliation(s)
- A J Porter
- Department of Neuroscience, Physiology and Pharmacology
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Karatsoreos IN, Silver R. Minireview: The neuroendocrinology of the suprachiasmatic nucleus as a conductor of body time in mammals. Endocrinology 2007; 148:5640-7. [PMID: 17901227 PMCID: PMC3423957 DOI: 10.1210/en.2007-1083] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circadian rhythms in physiology and behavior are regulated by a master clock resident in the suprachiasmatic nucleus (SCN) of the hypothalamus, and dysfunctions in the circadian system can lead to serious health effects. This paper reviews the organization of the SCN as the brain clock, how it regulates gonadal hormone secretion, and how androgens modulate aspects of circadian behavior known to be regulated by the SCN. We show that androgen receptors are restricted to a core SCN region that receives photic input as well as afferents from arousal systems in the brain. We suggest that androgens modulate circadian behavior directly via actions on the SCN and that both androgens and estrogens modulate circadian rhythms through an indirect route, by affecting overall activity and arousal levels. Thus, this system has multiple levels of regulation; the SCN regulates circadian rhythms in gonadal hormone secretion, and hormones feed back to influence SCN functions.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
3
|
Yan L, Karatsoreos I, Lesauter J, Welsh DK, Kay S, Foley D, Silver R. Exploring spatiotemporal organization of SCN circuits. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:527-41. [PMID: 18419312 PMCID: PMC3281753 DOI: 10.1101/sqb.2007.72.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Suprachiasmatic nucleus (SCN) neuroanatomy has been a subject of intense interest since the discovery of the SCN's function as a brain clock and subsequent studies revealing substantial heterogeneity of its component neurons. Understanding the network organization of the SCN has become increasingly relevant in the context of studies showing that its functional circuitry, evident in the spatial and temporal expression of clock genes, can be reorganized by inputs from the internal and external environment. Although multiple mechanisms have been proposed for coupling among SCN neurons, relatively little is known of the precise pattern of SCN circuitry. To explore SCN networks, we examine responses of the SCN to various photic conditions, using in vivo and in vitro studies with associated mathematical modeling to study spatiotemporal changes in SCN activity. We find an orderly and reproducible spatiotemporal pattern of oscillatory gene expression in the SCN, which requires the presence of the ventrolateral core region. Without the SCN core region, behavioral rhythmicity is abolished in vivo, whereas low-amplitude rhythmicity can be detected in SCN slices in vitro, but with loss of normal topographic organization. These studies reveal SCN circuit properties required to signal daily time.
Collapse
Affiliation(s)
- L Yan
- Department of Psychology, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Belekhova MG, Kenigfest NB, Gapanovich SO, Rio JP, Peperant J. Neurochemical organization of reptilian thalamus. Comparative analysis of amniote optical centers. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006060019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Samuels RE, Tavernier RJ, Castillo MR, Bult-Ito A, Piggins HD. Substance P and neurokinin-1 immunoreactivities in the neural circadian system of the Alaskan northern red-backed vole, Clethrionomys rutilus. Peptides 2006; 27:2976-92. [PMID: 16930773 DOI: 10.1016/j.peptides.2006.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/09/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.
Collapse
Affiliation(s)
- Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
6
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
7
|
Gannon RL, Millan MJ. The selective tachykinin neurokinin 1 (NK1) receptor antagonist, GR 205,171, stereospecifically inhibits light-induced phase advances of hamster circadian activity rhythms. Eur J Pharmacol 2005; 527:86-93. [PMID: 16307740 DOI: 10.1016/j.ejphar.2005.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/27/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Circadian rhythms in mammals are generated by master pacemaker cells located within the suprachiasmatic nucleus of the hypothalamus. In hamsters, the suprachiasmatic nucleus contains a small collection of cells immunoreactive for substance P, the endogenous ligand of tachykinin neurokinin 1 (NK1) receptors. In addition, two other nuclei which form part of the circadian system, the intergeniculate leaflet of the thalamus and the raphe nuclei, also contain fibers and/or cell bodies immunoreactive for substance P. In light of these observations, we evaluated the influence of the selective tachykinin NK1 receptor antagonist, GR 205,171, upon circadian activity rhythms in the hamster. Systemic injection of GR 205,171 dose-dependently (2.5-40.0 mg/kg, i.p.) inhibited light-induced phase advances in hamster circadian wheel running activity rhythms by approximately 50%. In contrast, GR 226,206, the less active enantiomer of GR 205,171, failed to affect light-induced phase advances. In addition, we examined the potential ability of GR 205,171 to induce non-photic phase shifts in hamster wheel running rhythms when injected at mid-day to late night circadian times. However, GR 205,171 (40 mg/kg) did not elicit non-photic phase shifts at these times indicating that tachykinin NK1 receptor antagonists are only effective when a light stimulus is applied to the pacemaker. Although GR 205,171 may, in theory, activate several sites within the circadian system, we suggest that GR 205,171 acts in the raphe nuclei to increase inhibitory serotonergic input to pacemaker cells in the suprachiasmatic nuclei, thereby suppressing photic modulation of the pacemaker. These findings have important implications for the use of tachykinin NK1 receptor antagonists in the treatment of depression and other central nervous system disorders.
Collapse
Affiliation(s)
- Robert L Gannon
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | | |
Collapse
|
8
|
Piggins HD, Samuels RE, Coogan AN, Cutler DJ. Distribution of substance P and neurokinin-1 receptor immunoreactivity in the suprachiasmatic nuclei and intergeniculate leaflet of hamster, mouse, and rat. J Comp Neurol 2001; 438:50-65. [PMID: 11503152 DOI: 10.1002/cne.1301] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) receives photic information directly via the retinohypothalamic tract (RHT) and indirectly from retinally innervated cells in the thalamic intergeniculate leaflet (IGL) that project to the SCN. Using standard immunohistochemical methods, we examined the presence and distribution of substance P (SP) and the neurokinin-1 receptor (NK-1) in the SCN and IGL of rat and determined whether the patterns of immunostaining generalized to the SCN and IGL of Syrian hamster, Siberian hamster, and mouse. Terminals immunoreactive for SP were sparse within the SCN of Siberian and Syrian hamsters and mouse but were intense in the ventral, retinally innervated portion of the rat SCN. Immunostaining for the NK-1 receptor was mainly absent from the SCN of hamster and mouse. In contrast, a plexus of NK-1-ir cells and processes that was in close proximity to SP-ir terminals was found in the ventral SCN of the rat. Substance P-ir terminals were observed in the IGL of all four species, as were NK-1-ir cells and fibres. Double-labelled IGL sections of hamster or rat revealed SP-ir terminals in close apposition to NK-1-immunostained cells and/or fibres. These data indicate that SP could be a neurotransmitter of the RHT in rat, but not in hamster or in mouse, and they highlight potential species differences in the role of SP within the SCN circadian pacemaker. Such species differences do not appear to exist at the level of the IGL, where SP-ir and NK-1-ir were similar in all species studied.
Collapse
Affiliation(s)
- H D Piggins
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Substance p plays a critical role in photic resetting of the circadian pacemaker in the rat hypothalamus. J Neurosci 2001. [PMID: 11356889 DOI: 10.1523/jneurosci.21-11-04026.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate is considered to be the primary neurotransmitter in the retinohypothalamic tract (RHT), which delivers photic information from the retina to the suprachiasmatic nucleus (SCN), the locus of the mammalian circadian pacemaker. However, substance P (SP) also has been suggested to play a role in retinohypothalamic transmission. In this study, we sought evidence that SP from the RHT contributes to photic resetting of the circadian pacemaker and further explored the possible interaction of SP with glutamate in this process. In rat hypothalamic slices cut parasagittally, electrical stimulation of the optic nerve in early and late subjective night produced a phase delay (2.4 +/- 0.5 hr; mean +/- SEM) and advance (2.6 +/- 0.3 hr) of the circadian rhythm of SCN neuronal firing activity, respectively. The SP antagonist L-703,606 (10 microm) applied to the slices during the nerve stimulation completely blocked the phase shifts. Likewise, a cocktail of NMDA (2-amino-5-phosphonopentanoic acid, 50 microm) and non-NMDA (6,7-dinitroquinoxaline-2,3-dione, 10 microm) antagonists completely blocked the shifts. Exogenous application of SP (1 microm) or glutamate (100 microm) to the slices in early subjective night produced a phase delay ( approximately 3 hr) of the circadian firing activity rhythm of SCN neurons. Coapplication of the NMDA and non-NMDA antagonist cocktail (as well as L-703,606) resulted in a complete blockade of the SP-induced phase delay, whereas L-703,606 (10 microm) had no effect on the glutamate-induced delay. These results suggest that SP, as well as glutamate, has a critical role in photic resetting. Furthermore, the results suggest that the two agonists act in series, SP working upstream of glutamate.
Collapse
|
10
|
Challet E, Dugovic C, Turek FW. The selective neurokinin 1 receptor antagonist R116301 modulates photic responses of the hamster circadian system. Neuropharmacology 2001; 40:408-15. [PMID: 11166333 DOI: 10.1016/s0028-3908(00)00165-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The recent development of selective NK(1) receptor antagonists that are active in vivo provides an important research tool to examine the role of substance P in the regulation of circadian rhythmicity. First, we tested whether R116301 [(2R-trans)-4-[1-[3,5-bis(trifluoromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S) hydroxybutanedioate], a new selective NK(1) antagonist, alters the phase-shifting effects of light. Hamsters housed in constant darkness were injected with different doses of R116301, just before being exposed to a light pulse during the subjective night. The results were compared with those obtained with the NK(1) antagonist L-760,735 [2-(R)-(1-(R)-3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5-(dimethylaminomethyl)-1,2,3-trioazol-4-yl)methyl-3-(5)-phenyl)morpholine]. Second, the effects of the NK(1) antagonists R116301 or L-760,735 injected immediately after exposure to a light pulse were similarly determined. Third, we investigated whether R116301 or L-760,735 injected during the mid-subjective day or the late subjective night can phase-shift the circadian rhythm of locomotor activity in hamsters housed in constant light. Both compounds reduced, by more than 30%, the phase-advancing effects of a light pulse in hamsters otherwise maintained in constant darkness, only when the drugs were administered before the light pulse. Under constant light conditions, both NK(1) receptor antagonists induced significant phase-advances when injected during the subjective day, but not during the subjective night. The present results indicate that tachykinergic neurotransmission modulates the photic responses of the circadian system upstream of phase resetting mechanisms and suggest that an inhibition of the NK(1) receptor signals "darkness" to the circadian clock.
Collapse
Affiliation(s)
- E Challet
- Center for Circadian Biology and Medicine, Department of Neurobiology and Physiology, Northwestern University, Evanston IL 60208, USA.
| | | | | |
Collapse
|
11
|
Kim YI, Kim SH, Kim DY, Lee HW, Shin HC, Chung JM, Han HC, Na HS, Hong SK. Electrophysiological evidence for the role of substance P in retinohypothalamic transmission in the rat. Neurosci Lett 1999; 274:99-102. [PMID: 10553947 DOI: 10.1016/s0304-3940(99)00681-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinohypothalamic tract (RHT) is a neural pathway through which photic time cues are delivered directly to the mammalian circadian pacemaker in the suprachiasmatic nucleus (SCN). Although the excitatory amino acid glutamate is the primary neurotransmitter in the RHT, other substances such as substance P (SPq also have been suggested to play a role. The present study tested the hypothesis that SP participates in retinohypothalamic transmission and selectively modulates either N-methyl-D-aspartate (NMDA) or non-NMDA receptor-mediated neurotransmission. The SP antagonist L-703,606 depressed the excitatory postsynaptic current (EPSC) evoked by optic nerve stimulation in SCN neurons in rat hypothalamic slices. The SP antagonist also had a similar depressive effect on the NMDA and non-NMDA receptor-mediated components of the EPSC. These results suggest that SP is an excitatory neuromodulator contributing to the expression of both the NMDA and non-NMDA receptor-mediated components of retinohypothalamic transmission.
Collapse
Affiliation(s)
- Y I Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Edelstein K, Amir S. Glutamatergic antagonists do not attenuate light-induced fos protein in rat intergeniculate leaflet. Brain Res 1998; 810:264-8. [PMID: 9813360 DOI: 10.1016/s0006-8993(98)00911-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photic information that entrains circadian rhythms is transmitted to the suprachiasmatic nucleus (SCN) from the retina and from the retinorecipient intergeniculate leaflet (IGL). Expression of light-induced Fos protein in SCN neurons is correlated with the effectiveness of such light to induce phase shifts, and is prevented by pretreatment with glutamate receptor antagonists that prevent phase shifts as well. In the present study we demonstrate that treatments with N-methyl-d-aspartate (NMDA) and non-NMDA receptor antagonists prior to light pulses during the subjective night have no effect on light-induced Fos immunoreactivity (Fos-IR) in IGL neurons despite attenuating Fos-IR in the SCN. Transmission of photic information along retinogeniculate and retinohypothalamic pathways appears to be mediated by different mechanisms.
Collapse
Affiliation(s)
- K Edelstein
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 1455 de Maisonneuve Blvd., West H-1013, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Abstract
Photic entrainment of circadian rhythms occurs as a consequence of daily, light-induced adjustments in the phase and period of the suprachiasmatic nuclei (SCN) circadian clock. Photic information is acquired by a unique population of retinal photoreceptors, processed by a distinct subset of retinal ganglion cells, and conveyed to the SCN through the retinohypothalamic tract (RHT). RHT neurotransmission is mediated by the release of the excitatory amino acid glutamate and appears to require the activation of both NMDA- and non-NMDA-type glutamate receptors, the expression of immediate early genes (IEGs), and the synthesis and release of nitric oxide. In addition, serotonin appears to regulate the response of the SCN circadian clock to light through postsynaptic 5-HT1A or 5-ht7 receptors, as well as presynaptic 5-HT1B heteroreceptors on RHT terminals.
Collapse
Affiliation(s)
- M A Rea
- Biological Rhythms and Integrative Neuroscience Institute, Air Force Research Laboratory, Brooks AFB, Texas, USA.
| |
Collapse
|
14
|
Challet E, Naylor E, Metzger JM, MacIntyre DE, Turek FW. An NK1 receptor antagonist affects the circadian regulation of locomotor activity in golden hamsters. Brain Res 1998; 800:32-9. [PMID: 9685577 DOI: 10.1016/s0006-8993(98)00491-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Substance P (SP) is a neuromodulator which may participate in the photic regulation of the circadian timing system in mammals. The biological effects of SP are mediated by interaction with specific receptors, designated as NK1, NK2, and NK3. The NK1 subtype receptor is expressed in the circadian system. Experiment 1 was designed to test whether an NK1 antagonist mimics the effects of dark pulses. Hamsters were housed in constant lighting conditions, either constant darkness or constant light (around 250 lx), and they received an i.p. injection of either the specific NK1 receptor antagonist, L-760,735 (5 mg/kg), or saline during the mid-subjective day, a time when dark pulses cause a phase-advance in circadian rhythm of locomotor activity. After treatment with the NK1 antagonist, significant phase-advances of wheel-running activity rhythm were found in constant light, but not in constant darkness. Experiment 2 was designed to test the ability of the NK1 antagonist to block the phase-delaying and/or the phase-advancing effects of light in animals kept in constant darkness. Phase-advances of locomotor activity rhythm that can normally be induced by light pulses given during the late subjective night were markedly reduced by pre-treatment with the NK1 antagonist. By contrast, phase-delays that can be induced by lights pulses given during the early subjective night were unaffected by the NK1 antagonist. These data support the hypothesis that SP within the circadian system may, by interacting with NK1 receptors, modulate photic responses of the SCN pacemaker.
Collapse
Affiliation(s)
- E Challet
- Center for Circadian Biology and Medicine, Department of Neurobiology and Physiology, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
15
|
Shigeyoshi Y, Maebayashi Y, Okamura H. Co-localization of preprosomatostatin mRNA and preprotachykinin A mRNA in neurons of the rat suprachiasmatic nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:159-63. [PMID: 9379838 DOI: 10.1016/s0169-328x(97)00153-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The suprachiasmatic nucleus (SCN), a circadian oscillator, contains various peptides arranged in the compartment-specific manner. Somatostatin (SS) and substance P (SP), a peptide derived from preprotachykinin A (PPT-A), are expressed in neurons in the intermediate zone, a narrow area between the major dorsomedial and ventrolateral subdivisions. In the present study, we examined the possibility of co-localization of SS and SP in the SCN by a double-labeling in situ hybridization method using 35S-labeled and digoxigenin-labeled cRNA probes. In the SCN, most of preprosomatostatin (PPSS) mRNA-containing neurons expressed PPT-A mRNA (86%) and, in turn, almost all preprotachykinin A (PPT-A) mRNA-expressing neurons expressed PPSS mRNA signals (97%). Both PPSS and PPT-A mRNAs were also detected in the cerebral cortex and the caudate-putamen, however, their co-existence was extremely rare (< 4%) in these regions. Since the pharmacological effects of SS and SP are similar to that of the light pulses exposed on animals under constant darkness, the co-release of peptides might be an important process for entraining the circadian clock in the SCN.
Collapse
Affiliation(s)
- Y Shigeyoshi
- Department of Anatomy and Brain Science, Kobe University School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Piggins HD, Rusak B. Effects of microinjections of substance P into the suprachiasmatic nucleus region on hamster wheel-running rhythms. Brain Res Bull 1997; 42:451-5. [PMID: 9128920 DOI: 10.1016/s0361-9230(96)00371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The suprachiasmatic nucleus (SCN) receives a direct retinal projection, which in rats includes substance P (SP)-immunoreactive retinal ganglion cells. While SP has been shown to have neurophysiological effects on SCN cells in Syrian hamsters and rats, it is not known what effects SP in the SCN has on circadian rhythms in hamsters. We examined this question using male Syrian hamsters that were implanted with cannulas aimed at the SCN region and maintained in constant dim red lighting conditions. Hamsters received 0.5 microl microinjections of saline or SP (500 pmol in saline) at a variety of circadian times (CT). Saline injections had little or no phase-shifting effects at any phase tested. SP had no significant effects at CT4-8, 16-20, or 20-24, but did cause small phase delays of -23.7 +/- 7 min (mean +/- sem) at CT12-16. In order to examine the dose-response relations of this effect, hamsters were also microinjected with 50 and 2500 pmol of SP at CT12-16. Both the 50 and 2500 pmol doses induced very small phase delays (-14.2 +/- 7 min and -18.2 +/- 5 min, respectively), indicating no obvious dose dependence within this range. These results do not suggest that SP alone in the SCN mimics light effects on circadian rhythms or is a key neurotransmitter involved in photic entrainment. It remains to be determined whether SP interacts with other transmitters in the SCN to modulate their effects on rhythm phase.
Collapse
Affiliation(s)
- H D Piggins
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
17
|
Abe H, Honma S, Shinohara K, Honma K. Substance P receptor regulates the photic induction of Fos-like protein in the suprachiasmatic nucleus of Syrian hamsters. Brain Res 1996; 708:135-42. [PMID: 8720869 DOI: 10.1016/0006-8993(95)01298-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Substance P (SP) is a candidate neurotransmitter or neuromodulator for conveying light information from the retina to the hypothalamic suprachiasmatic nucleus (SCN) where a circadian oscillator(s) is located in mammals. Immediate early gene c-fos has been demonstrated to be induced in the SCN with a brief light exposure at the subjective night, and suggested to play an important role in the photic entrainment of the oscillator. To clarify the possibility of an involvement of the SP receptor in the photic-induction of c-fos in the SCN, we examined effects of a SP receptor antagonist, spantide, on the light-induced Fos-like protein immunoreactivity (Fos-lir) in the SCN of Syrian hamster. The light-induced Fos-lir was inhibited with the pretreatment of spantide in a dose-related manner and in an anatomically distinctive way. The higher dose of spantide (8 nmol) blocked light-induced Fos-lir substantially in the rostral and central areas of the SCN, and in the dorsal portion of the caudal SCN. However, it blocked Fos-lir only slightly in the ventral portion of the caudal SCN. These results suggest that the SP is involved in conveying light information to induce Fos protein in the hamster SCN, and that different neurotransmitter systems are involved in the light-induced Fos-lir in the different portions of hamster SCN.
Collapse
Affiliation(s)
- H Abe
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | |
Collapse
|
18
|
Nürnberger F. The neuroendocrine system in hibernating mammals: present knowledge and open questions. Cell Tissue Res 1995; 281:391-412. [PMID: 7553762 DOI: 10.1007/bf00417858] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present review describes the distribution and the function-dependent reactivity pattern of those peptidergic and aminergic components of the neuroendocrine system of hibernating mammals that have been studied by histological, pharmacological and physiological techniques. Particular attention has been paid to the intrinsic connectivity of the peptidergic apparatus and its input systems. Since the reactivity patterns of the neuroendocrine system show remarkable fluctuations in relation to the various stages of hibernation and euthermia, these fluctuations have been analyzed with respect to (1) their causative role in the regulation of hibernation and (2) their secondary response to physiological changes during hibernation. The author's investigations described in this review have mainly been performed in European hedgehogs (Erinaceus europaeus), European and golden hamsters (Cricetus cricetus, Mesocricetus auratus), dormice (Glis glis), and in Richardson's and Columbian ground squirrels (Spermophilus richardsonii, Spermophilus columbianus), by the use of light- and electron-microscopic immunocytochemistry and histochemistry, in situ hybridization, radioimmunoassays and stereotaxically guided application techniques. These experiments were also performed in hypothermic animals. The (partially published) results obtained by the author and his associates are reviewed with reference to the body of evidence found in the recent literature. With respect to their reactivity patterns, several neuropeptide and transmitter systems can be regarded as candidates for control systems of hibernation. Neuronal complexes immunoreactive for endogenous opiates, in particular enkephalin, and also for vasopressin, somatostatin, substance P, corticotropin-releasing factor and serotonin are probably involved in the neuroendocrine control of hibernation.
Collapse
Affiliation(s)
- F Nürnberger
- Zentrum der Morphologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| |
Collapse
|