1
|
Belagal P. Genetic and molecular characterization of fit95 mutation of Escherichia coli: evidence that fit95 is an allele of pheT. Arch Microbiol 2024; 206:414. [PMID: 39316172 DOI: 10.1007/s00203-024-04127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
The originally identified transcription-defective fitA76 temperature-sensitive (Ts) mutation defined an allele of pheS. Both fitA/pheS and fitB/pheT were previously proposed to function as transcription factors. Sequencing pheS region of the fitA76 mutant revealed the same G293→A293 transition found in the translation-defective pheS5 mutant. It was subsequently found that fitA76 harbored a second mutation (fit95) in addition to pheS5 mutation. The fit95 was found to be Ts on -salt media but was found unstable. In this investigation, genetic, physiological and molecular characterization of the fit95 mutation was carried out. The fit95 was genetically re-separated from the pheS5 mutation present in the fitA76 mutant and the same was subsequently mobilized into multiple genetic backgrounds to study its phenotypic modulations by altering the medium and supplements. Based on genetic studies, the unstable -salt Ts phenotype of the fit95 could be stabilized by the presence of rpoB201 mutation. Addition of glucose enhanced Ts phenotype in the presence of rpoB201 mutation, but citrate completely alleviated the Ts phenotype. Further, by series of complementation analyses and molecular cloning, the identity of fit95 was revealed as pheT gene which is part of pheST operon.
Collapse
Affiliation(s)
- Praveen Belagal
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
2
|
Anwar AF, Cain CF, Garza MJ, Degen D, Ebright RH, Del Valle JR. Stabilizing Pseudouridimycin: Synthesis, RNA Polymerase Inhibitory Activity, and Antibacterial Activity of Dipeptide-Modified Analogues. ChemMedChem 2024; 19:e202300474. [PMID: 37751316 PMCID: PMC10843019 DOI: 10.1002/cmdc.202300474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Pseudouridimycin (PUM) is a microbially produced C-nucleoside dipeptide that selectively targets the nucleotide addition site of bacterial RNA polymerase (RNAP) and that has a lower rate of spontaneous resistance emergence relative to current drugs that target RNAP. Despite its promising biological profile, PUM undergoes relatively rapid decomposition in buffered aqueous solutions. Here, we describe the synthesis, RNAP-inhibitory activity, and antibacterial activity of chemically stabilized analogues of PUM. These analogues feature targeted modifications that mitigate guanidine-mediated hydroxamate bond scission. A subset of analogues in which the central hydroxamate is replaced with amide or hydrazide isosteres retain the antibacterial activity of the natural product.
Collapse
Affiliation(s)
- Avraz F Anwar
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher F Cain
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael J Garza
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Juan R Del Valle
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
3
|
Cutugno L, O'Byrne C, Pané‐Farré J, Boyd A. Rifampicin-resistant RpoB S522L Vibrio vulnificus exhibits disturbed stress response and hypervirulence traits. Microbiologyopen 2023; 12:e1379. [PMID: 37877661 PMCID: PMC10493491 DOI: 10.1002/mbo3.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural SciencesUniversity of GalwayGalwayIreland
| | - Conor O'Byrne
- School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Jan Pané‐Farré
- Centre for Synthetic Microbiology (SYNMIKRO) & Department of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Aoife Boyd
- School of Natural SciencesUniversity of GalwayGalwayIreland
| |
Collapse
|
4
|
Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res 2022; 50:5739-5756. [PMID: 35639764 PMCID: PMC9177976 DOI: 10.1093/nar/gkac406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by βQ513P and βT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.
Collapse
Affiliation(s)
- Natalia Kurepina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Maxim Chudaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vadim Nikiforov
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Arkady Mustaev
- Public Health Research Institute, and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Cai W, Arias CR. Deciphering the Molecular Basis for Attenuation of Flavobacterium columnare Strain Fc1723 Used as Modified Live Vaccine against Columnaris Disease. Vaccines (Basel) 2021; 9:vaccines9111370. [PMID: 34835301 PMCID: PMC8622145 DOI: 10.3390/vaccines9111370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-live vaccine against columnaris disease was developed by selecting mutants that were resistant to rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular basis for attenuation, a comparative genomic analysis was conducted to identify specific point mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed biofilm at a significantly lower rate than the parent strain. These observations suggested that the rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Correspondence:
| | - Covadonga R. Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36832, USA;
| |
Collapse
|
6
|
Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell 2021; 81:2201-2215.e9. [PMID: 34019789 PMCID: PMC8484514 DOI: 10.1016/j.molcel.2021.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.
Collapse
Affiliation(s)
- Anthony L Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter I Wu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Cutugno L, Mc Cafferty J, Pané-Farré J, O’Byrne C, Boyd A. rpoB mutations conferring rifampicin-resistance affect growth, stress response and motility in Vibrio vulnificus. MICROBIOLOGY (READING, ENGLAND) 2020; 166:1160-1170. [PMID: 33186092 PMCID: PMC7819355 DOI: 10.1099/mic.0.000991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Rifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encoding the β subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus, even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis protocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml-1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.
Collapse
Affiliation(s)
- Laura Cutugno
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jennifer Mc Cafferty
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jan Pané-Farré
- Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, C07, 35043 Marburg, Germany
| | - Conor O’Byrne
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Boyd
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
9
|
Abstract
Mycobacterial σB belongs to the group II family of sigma factors, which are widely considered to transcribe genes required for stationary-phase survival and the response to stress. Here we explored the mechanism underlying the observed hypersensitivity of ΔsigB deletion mutants of Mycobacterium smegmatis, M. abscessus, and M. tuberculosis to rifampin (RIF) and uncovered an additional constitutive role of σB during exponential growth of mycobacteria that complements the function of the primary sigma factor, σA Using chromatin immunoprecipitation sequencing (ChIP-Seq), we show that during exponential phase, σB binds to over 200 promoter regions, including those driving expression of essential housekeeping genes, like the rRNA gene. ChIP-Seq of ectopically expressed σA-FLAG demonstrated that at least 61 promoter sites are recognized by both σA and σB These results together suggest that RNA polymerase holoenzymes containing either σA or σB transcribe housekeeping genes in exponentially growing mycobacteria. The RIF sensitivity of the ΔsigB mutant possibly reflects a decrease in the effective housekeeping holoenzyme pool, which results in susceptibility of the mutant to lower doses of RIF. Consistent with this model, overexpression of σA restores the RIF tolerance of the ΔsigB mutant to that of the wild type, concomitantly ruling out a specialized role of σB in RIF tolerance. Although the properties of mycobacterial σB parallel those of Escherichia coli σ38 in its ability to transcribe a subset of housekeeping genes, σB presents a clear departure from the E. coli paradigm, wherein the cellular levels of σ38 are tightly controlled during exponential growth, such that the transcription of housekeeping genes is initiated exclusively by a holoenzyme containing σ70 (E.σ70).IMPORTANCE All mycobacteria encode a group II sigma factor, σB, closely related to the group I principal housekeeping sigma factor, σA Group II sigma factors are widely believed to play specialized roles in the general stress response and stationary-phase transition in the bacteria that encode them. Contrary to this widely accepted view, we show an additional housekeeping function of σB that complements the function of σA in logarithmically growing cells. These findings implicate a novel and dynamic partnership between σA and σB in maintaining the expression of housekeeping genes in mycobacteria and can perhaps be extended to other bacterial species that possess multiple group II sigma factors.
Collapse
|
10
|
Sun L, Alexander HK, Bogos B, Kiviet DJ, Ackermann M, Bonhoeffer S. Effective polyploidy causes phenotypic delay and influences bacterial evolvability. PLoS Biol 2018; 16:e2004644. [PMID: 29470493 PMCID: PMC5839593 DOI: 10.1371/journal.pbio.2004644] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
Whether mutations in bacteria exhibit a noticeable delay before expressing their corresponding mutant phenotype was discussed intensively in the 1940s to 1950s, but the discussion eventually waned for lack of supportive evidence and perceived incompatibility with observed mutant distributions in fluctuation tests. Phenotypic delay in bacteria is widely assumed to be negligible, despite the lack of direct evidence. Here, we revisited the question using recombineering to introduce antibiotic resistance mutations into E. coli at defined time points and then tracking expression of the corresponding mutant phenotype over time. Contrary to previous assumptions, we found a substantial median phenotypic delay of three to four generations. We provided evidence that the primary source of this delay is multifork replication causing cells to be effectively polyploid, whereby wild-type gene copies transiently mask the phenotype of recessive mutant gene copies in the same cell. Using modeling and simulation methods, we explored the consequences of effective polyploidy for mutation rate estimation by fluctuation tests and sequencing-based methods. For recessive mutations, despite the substantial phenotypic delay, the per-copy or per-genome mutation rate is accurately estimated. However, the per-cell rate cannot be estimated by existing methods. Finally, with a mathematical model, we showed that effective polyploidy increases the frequency of costly recessive mutations in the standing genetic variation (SGV), and thus their potential contribution to evolutionary adaptation, while drastically reducing the chance that de novo recessive mutations can rescue populations facing a harsh environmental change such as antibiotic treatment. Overall, we have identified phenotypic delay and effective polyploidy as previously overlooked but essential components in bacterial evolvability, including antibiotic resistance evolution. What is the time delay between the occurrence of a genetic mutation in a bacterial cell and manifestation of its phenotypic effect? We show that antibiotic resistance mutations in Escherichia coli show a remarkably long phenotypic delay of three to four bacterial generations. The primary underlying mechanism of this delay is effective polyploidy. If a mutation arises on one of the multiple chromosomes in a polyploid cell, the presence of nonmutated, wild-type gene copies on other chromosomes may mask the phenotype of the mutation. We show here that mutation rate estimation needs to consider polyploidy, which influences the potential for bacterial adaptation. The fact that a new mutation may become useful only in the “great-great-grandchildren” suggests that preexisting mutations are more important for surviving sudden environmental catastrophes.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Balazs Bogos
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel J. Kiviet
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
11
|
Yurieva O, Nikiforov V, Nikiforov V, O'Donnell M, Mustaev A. Insights into RNA polymerase catalysis and adaptive evolution gained from mutational analysis of a locus conferring rifampicin resistance. Nucleic Acids Res 2017; 45:11327-11340. [PMID: 29036608 PMCID: PMC5737076 DOI: 10.1093/nar/gkx813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
S531 of Escherichia coli RNA polymerase (RNAP) β subunit is a part of RNA binding domain in transcription complex. While highly conserved, S531 is not involved in interactions within the transcription complex as suggested by X-ray analysis. To understand the basis for S531 conservation we performed systematic mutagenesis of this residue. We find that the most of the mutations significantly decreased initiation-to-elongation transition by RNAP. Surprisingly, some changes enhanced the production of full-size transcripts by suppressing abortive loss of short RNAs. S531-R increased transcript retention by establishing a salt bridge with RNA, thereby explaining the R substitution at the equivalent position in extremophilic organisms, in which short RNAs retention is likely to be an issue. Generally, the substitutions had the same effect on bacterial doubling time when measured at 20°. Raising growth temperature to 37° ablated the positive influence of some mutations on the growth rate in contrast to their in vitro action, reflecting secondary effects of cellular environment on transcription and complex involvement of 531 locus in the cell biology. The properties of generated RNAP variants revealed an RNA/protein interaction network that is crucial for transcription, thereby explaining the details of initiation-to-elongation transition on atomic level.
Collapse
Affiliation(s)
- Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA.,Institute of molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael O'Donnell
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Arkady Mustaev
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. Intrinsic rifamycin resistance ofMycobacterium abscessusis mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2016; 72:376-384. [DOI: 10.1093/jac/dkw466] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
|
13
|
Lloyd NA, Janssen SE, Reinfelder JR, Barkay T. Co-selection of Mercury and Multiple Antibiotic Resistances in Bacteria Exposed to Mercury in the Fundulus heteroclitus Gut Microbiome. Curr Microbiol 2016; 73:834-842. [DOI: 10.1007/s00284-016-1133-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
14
|
Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Structure 2015; 23:1470-1481. [PMID: 26190576 DOI: 10.1016/j.str.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinyue Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuang Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Deepankar Das
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Trevor Michalchuk
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
16
|
Abbrescia A, Martino PL, Panelli D, Sardanelli AM, Papa S, Alifano P, Palese LL, Gaballo A. The respiratory chains of four strains of the alkaliphilic Bacillus clausii. FEBS Open Bio 2014; 4:714-21. [PMID: 25161879 PMCID: PMC4141192 DOI: 10.1016/j.fob.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
It is important to understand how alkaliphilic prokaryotes thrive at high pH. An interesting issue is their ability to cope with bioenergetics at high pH. We show that four genetically similar strains adopt different biochemical behaviors. Two of the strains show a functional redundancy of the terminal part of the respiratory chain. Biochemical data correlate with the expression of cytochrome c oxidase and quinol oxidase genes (heme-copper types).
A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - S Papa
- Institute of Biomembranes and Bioenergetics (IBBE), Italian Research Council (CNR), Bari, Italy
| | - P Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy
| | | | - A Gaballo
- Nanoscience Institute-CNR, U.O.S. NNL, Lecce, Italy
| |
Collapse
|
17
|
Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 2014; 3:e02451. [PMID: 24843001 PMCID: PMC4029172 DOI: 10.7554/elife.02451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022] Open
Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap' comprising the 'bridge-helix N-terminal hinge', 'F-loop', and 'link region'. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.DOI: http://dx.doi.org/10.7554/eLife.02451.001.
Collapse
Affiliation(s)
- David Degen
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Feng
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | - Sukhendu Mandal
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
| | | |
Collapse
|
18
|
Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. eLife 2014; 3:e02450. [PMID: 24755292 PMCID: PMC3994528 DOI: 10.7554/elife.02450] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI:http://dx.doi.org/10.7554/eLife.02450.001 As increasing numbers of bacteria become resistant to antibiotics, new drugs are needed to fight bacterial infections. To develop new antibacterial drugs, researchers need to understand how existing antibiotics work. There are many ways to kill bacteria, but one of the most effective is to target an enzyme called bacterial RNA polymerase. If bacterial RNA polymerase is prevented from working, bacteria cannot synthesize RNA and cannot survive. GE23077 (GE for short) is an antibiotic produced by bacteria found in soil. Although GE stops bacterial RNA polymerase from working, and thereby kills bacteria, it does not affect mammalian RNA polymerases, and so does not kill mammalian cells. Understanding how GE works could help with the development of new antibacterial drugs. Zhang et al. present results gathered from a range of techniques to show how GE inhibits bacterial RNA polymerase. These show that GE works by binding to a site on RNA polymerase that is different from the binding sites of previously characterized antibacterial drugs. The mechanism used to inhibit the RNA polymerase is also different. The newly identified binding site has several features that make it an unusually attractive target for development of antibacterial compounds. Bacteria can become resistant to an antibiotic if genetic mutations lead to changes in the site the antibiotic binds to. However, the site that GE binds to on RNA polymerase is essential for RNA polymerase to function and so cannot readily be changed without crippling the enzyme. Therefore, this type of antibiotic resistance is less likely to develop. In addition, the newly identified binding site for GE on RNA polymerase is located next to the binding site for a current antibacterial drug, rifampin. Zhang et al. therefore linked GE and rifampin to form a two-part (‘bipartite’) compound designed to bind simultaneously to the GE and the rifampin binding sites. This compound was able to inhibit drug-resistant RNA polymerases tens to thousands of times more potently than GE or rifampin alone. DOI:http://dx.doi.org/10.7554/eLife.02450.002
Collapse
Affiliation(s)
- Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bandyopadhyay N, Gautam S, Sharma A. Suppression of SOS repair inE. coli: possible mechanism of antimutagenicity and protective effects of common vegetables. Int J Food Sci Nutr 2013; 65:251-8. [DOI: 10.3109/09637486.2013.854740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Petrova M, Shcherbatova N, Gorlenko Z, Mindlin S. A new subgroup of the IS3 family and properties of its representative member ISPpy1. MICROBIOLOGY-SGM 2013; 159:1900-1910. [PMID: 23832000 DOI: 10.1099/mic.0.068676-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, we described a novel insertion element, ISPpy1, isolated from a permafrost strain of Psychrobacter maritimus. In this work, we demonstrated that ISPpy1 is a member of a novel subgroup of the IS3 family of insertion sequences (ISs) that was not identified and characterized previously. IS elements of this subgroup termed the ISPpy1 subgroup are broadly distributed among different taxa of Eubacteria, including Geobacteraceae, Chlorobiaceae, Desulfobacteraceae, Methylobacteriaceae, Nitrosomonadaceae and Cyanobacteria. While displaying characteristic features of the IS3-family elements, ISPpy1 subgroup elements exhibit some unusual features. In particular, most of them have longer terminal repeats with unconventional ends and frameshifting box with an atypical organization, and, unlike many other IS3-family elements, do not exhibit any distinct IS specificity. We studied the transposition and mutagenic properties of a representative member of this subgroup, ISPpy1 and showed that in contrast to the original P. maritimus host, in a heterologous host, Escherichia coli K-12, it is able to translocate with extremely high efficiency into the chromosome, either by itself or as a part of a composite transposon containing two ISPpy1 copies. The majority of transposants carry multiple chromosomal copies (up to 12) of ISPpy1. It was discovered that ISPpy1 is characterized by a marked mutagenic activity in E. coli: its chromosomal insertions generate various types of mutations, including auxotrophic, pleiotropic and rifampicin-resistance mutations. The distribution of IS elements of the novel subgroup among different bacteria, their role in the formation of composite transposons and the horizontal transfer of genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Zhosephine Gorlenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
21
|
Kozlov M, Nudler E, Nikiforov V, Mustaev A. Reactive rifampicin derivative able to damage transcription complex. Bioconjug Chem 2013; 24:443-7. [PMID: 23425196 DOI: 10.1021/bc3005667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rifampicin (Rif) is powerful broad spectrum antibiotic that targets bacterial RNA polymerase (RNAP) by blocking the transcript exit channel. The performance of the drug can be further enhanced by tagging with active chemical groups that produce collateral damage. We explored this principle by tethering Rif to Fe(2+)-EDTA chelate. Modified drug retained high binding affinity to RNAP and caused localized cleavage of the enzyme and promoter DNA. Analysis of the degradation products revealed the cleavage of RNAP β subunit at the sites involved in the drug binding, while DNA was selectively seized in the vicinity of the transcription start site. The synthesized Rif derivative exemplifies "aggressive" types of drugs that can be especially useful for TB treatment by attacking the nongrowing dormant form of the mycobacterium, which is hardly susceptible to "passive" drugs.
Collapse
Affiliation(s)
- Maxim Kozlov
- PHRI Center and New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
22
|
Bandyopadhyay N, Gautam S, Sharma A. Variety-based variation in the antimutagenic potential of various vegetables and lack of its correlation with their antioxidant capacity. Int J Food Sci Nutr 2013; 64:587-98. [DOI: 10.3109/09637486.2013.763913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:6250-5. [PMID: 23006749 DOI: 10.1128/aac.01060-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibiotic myxopyronin (Myx) functions by inhibiting bacterial RNA polymerase (RNAP). The binding site on RNAP for Myx-the RNAP "switch region SW1/SW2 subregion"-is different from the binding site on RNAP for the RNAP inhibitor currently used in broad-spectrum antibacterial therapy, rifampin (Rif). Here, we report the frequency, spectrum, and fitness costs of Myx resistance in Staphylococcus aureus. The resistance rate for Myx is 4 × 10(-8) to 7 × 10(-8) per generation, which is equal within error to the resistance rate for Rif (3 × 10(-8) to 10 × 10(-8) per generation). Substitutions conferring Myx resistance were obtained in the RNAP β subunit [six substitutions: V1080(1275)I, V1080(1275)L, E1084(1279)K, D1101(1296)E, S1127(1322)L, and S1127(1322)P] and the RNAP β' subunit [five substitutions: K334(345)N, T925(917)K, T925(917)R, G1172(1354)C, and G1172(1354)D] (residues numbered as in Staphylococcus aureus RNAP and, in parentheses, as in Escherichia coli RNAP). Sites of substitutions conferring Myx resistance map to the RNAP switch region SW1/SW2 subregion and do not overlap the binding site on RNAP for Rif, and, correspondingly, Myx-resistant mutants exhibit no cross-resistance to Rif. All substitutions conferring Myx resistance exhibit significant fitness costs (4 to 15% per generation). In contrast, at least three substitutions conferring Rif resistance exhibit no fitness costs (≤0% per generation). The observation that all Myx-resistant mutants have significant fitness costs whereas at least three Rif-resistant mutants have no fitness costs, together with the previously established inverse correlation between fitness cost and clinical prevalence, suggests that Myx resistance is likely to have lower clinical prevalence than Rif resistance.
Collapse
|
24
|
Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, Shi D. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother 2010; 16:225-54. [PMID: 20336341 PMCID: PMC7088255 DOI: 10.1007/s10156-010-0045-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described. CA-MRSA is likely able to survive in the community because of suitable SCCmec types (type IV or V), a clone-specific colonization/infection nature, toxin profiles (including Pantone-Valentine leucocidin, PVL), and narrow drug resistance patterns. CA-MRSA infections are generally seen in healthy children or young athletes, with unexpected cases of diseases, and also in elderly inpatients, occasionally surprising clinicians used to HA-MRSA infections. CA-MRSA spreads within families and close-contact groups or even through public transport, demonstrating transmission cores. Re-infection (including multifocal infection) frequently occurs, if the cores are not sought out and properly eradicated. Recently, attention has been given to CA-MRSA (USA300), which originated in the US, and is growing as HA-MRSA and also as a worldwide clone. CA-MRSA infection in influenza season has increasingly been noted as well. MRSA is also found in farm and companion animals, and has occasionally transferred to humans. As such, the epidemiological, clinical, and genetic behavior of CA-MRSA, a growing threat, is focused on in this study.
Collapse
Affiliation(s)
- Tatsuo Yamamoto
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Jatsenko T, Tover A, Tegova R, Kivisaar M. Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat Res 2010; 683:106-114. [PMID: 19887074 DOI: 10.1016/j.mrfmmm.2009.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/06/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
The rpoB gene encoding for beta subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rif(r)) phenotype of bacteria. Here we have characterized rpoB/Rif(r) system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rif(r) clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rif(r) mutations characterized for P. aeruginosa grown at 37 degrees C and that characterized for P. putida grown at 30 degrees C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 degrees C. The strong Rif(r) phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 degrees C and expressed weak Rif(r) phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 degrees C and 37 degrees C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rif(r) mutants from selective plates are critical when the rpoB/Rif(r) test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.
Collapse
Affiliation(s)
- Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | | | | | | |
Collapse
|
26
|
Ho MX, Hudson BP, Das K, Arnold E, Ebright RH. Structures of RNA polymerase-antibiotic complexes. Curr Opin Struct Biol 2009; 19:715-23. [PMID: 19926275 DOI: 10.1016/j.sbi.2009.10.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 01/22/2023]
Abstract
Inhibition of bacterial RNA polymerase (RNAP) is an established strategy for antituberculosis therapy and broad-spectrum antibacterial therapy. Crystal structures of RNAP-inhibitor complexes are available for four classes of antibiotics: rifamycins, sorangicin, streptolydigin, and myxopyronin. The structures define three different targets, and three different mechanisms, for inhibition of bacterial RNAP: (1) rifamycins and sorangicin bind near the RNAP active center and block extension of RNA products; (2) streptolydigin interacts with a target that overlaps the RNAP active center and inhibits conformational cycling of the RNAP active center; and (3) myxopyronin interacts with a target remote from the RNAP active center and functions by interfering with opening of the RNAP active-center cleft to permit entry and unwinding of DNA and/or by interfering with interactions between RNAP and the DNA template strand. The structures enable construction of homology models of pathogen RNAP-antibiotic complexes, enable in silico screening for new antibacterial agents, and enable rational design of improved antibacterial agents.
Collapse
Affiliation(s)
- Mary X Ho
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
27
|
Carata E, Peano C, Tredici SM, Ferrari F, Talà A, Corti G, Bicciato S, De Bellis G, Alifano P. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 2009; 8:18. [PMID: 19331655 PMCID: PMC2667423 DOI: 10.1186/1475-2859-8-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. RESULTS Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin production was strongly inhibited by ammonium. CONCLUSION Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif mutations on erythromycin production.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flåtten I, Morigen, Skarstad K. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol 2008; 71:1018-30. [PMID: 19170875 DOI: 10.1111/j.1365-2958.2008.06585.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Escherichia coli DnaA protein forms an oligomer at the origin and initiates chromosome replication with the aid of architectural elements and transcription by RNA polymerase. Rifampicin inhibits initiation of transcription by RNA polymerase and thus also initiation of replication. Here, we report that wild-type cells undergo rifampicin-resistant initiation of replication during slow growth in acetate medium. The rifampicin-resistant initiation was prevented by reducing the availability of DnaA. In vitro experiments showed that the DnaA protein interacted with RNA polymerase and that it afforded a partial protection from the negative effect of rifampicin. It is possible that rifampicin-resistant rounds of replication occur when a surplus of DnaA is available at the origin. In rich medium wild-type cells do not exhibit rifampicin-resistant rounds of replication, possibly indicating that there is no surplus DnaA, and that DnaA activity is the factor limiting the process of initiation. During growth in acetate medium, on the contrary, DnaA activity is not limiting in the same way because an initiation potential is present and can be turned into extra rounds of replication when rifampicin is added. The result suggests that regulation of replication initiation may differ at different growth rates.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
29
|
Trinh V, Langelier MF, Archambault J, Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70:12-36. [PMID: 16524917 PMCID: PMC1393249 DOI: 10.1128/mmbr.70.1.12-36.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High-resolution crystallographic structures of multisubunit RNA polymerases (RNAPs) have increased our understanding of transcriptional mechanisms. Based on a thorough review of the literature, we have compiled the mutations affecting the function of multisubunit RNA polymerases, many of which having been generated and studied prior to the publication of the first high-resolution structure, and highlighted the positions of the altered amino acids in the structures of both the prokaryotic and eukaryotic enzymes. The observations support many previous hypotheses on the transcriptional process, including the implication of the bridge helix and the trigger loop in the processivity of RNAP, the importance of contacts between the RNAP jaw-lobe module and the downstream DNA in the establishment of a transcription bubble and selection of the transcription start site, the destabilizing effects of ppGpp on the open promoter complex, and the link between RNAP processivity and termination. This study also revealed novel, remarkable features of the RNA polymerase catalytic mechanisms that will require additional investigation, including the putative roles of fork loop 2 in the establishment of a transcription bubble, the trigger loop in start site selection, and the uncharacterized funnel domain in RNAP processivity.
Collapse
Affiliation(s)
- Vincent Trinh
- Gene Transcription Laboratory, Institut de Recherches Cliniques de Montréal, 110 Ave. des Pins Ouest, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
30
|
Obata S, Zwolska Z, Toyota E, Kudo K, Nakamura A, Sawai T, Kuratsuji T, Kirikae T. Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int J Antimicrob Agents 2005; 27:32-9. [PMID: 16368226 DOI: 10.1016/j.ijantimicag.2005.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 09/02/2005] [Indexed: 11/29/2022]
Abstract
The susceptibility of clinical isolates of Mycobacterium avium to rifampicin (RIF) was examined. All 32 clinical isolates tested, including 18 from Japan, 13 from Poland and 1 from Thailand, were resistant to RIF (minimum inhibitory concentrations (MICs) > or =32 microg/mL for 17 isolates and 2-16 microg/mL for 15 isolates), whereas the type strain of M. avium ATCC 25291 was susceptible to RIF (MIC < or = 0.03 microg/mL). Mutations in nucleotides 1276-1356 of the rpoB gene, termed the 81 bp core region, are associated with RIF resistance in Mycobacterium tuberculosis. No mutations were found in this region in any of the M. avium clinical isolates tested. However, mutation of G-->A to give a Gly544-->Asp substitution was identified within the rpoB gene downstream of the 81 bp region in all clinical isolates. A RIF-resistant strain (ATCC 25291 Rif(r); MIC> or =32 microg/mL) obtained by culturing the type strain in RIF-containing broth possessed a mutation C-->T to give a His445-->Tyr substitution within the 81 bp region. When the rpoB gene of the ATCC 25291 Rif(r) strain and of a clinical isolate were inserted into Mycobacterium smegmatis, organisms with the ATCC 25291 Rif(r) sequence, but not those with the clinical isolate sequence, showed resistance to RIF. These results suggest that mutations of the 81 bp region of rpoB, as well as factors other than rpoB mutation, confer RIF resistance in M. avium.
Collapse
Affiliation(s)
- Saiko Obata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 2005; 122:351-63. [PMID: 16096056 DOI: 10.1016/j.cell.2005.07.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/15/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Rifamycins, the clinically important antibiotics, target bacterial RNA polymerase (RNAP). A proposed mechanism in which rifamycins sterically block the extension of nascent RNA beyond three nucleotides does not alone explain why certain RNAP mutations confer resistance to some but not other rifamycins. Here we show that unlike rifampicin and rifapentin, and contradictory to the steric model, rifabutin inhibits formation of the first and second phosphodiester bonds. We report 2.5 A resolution structures of rifabutin and rifapentin complexed with the Thermus thermophilus RNAP holoenzyme. The structures reveal functionally important distinct interactions of antibiotics with the initiation sigma factor. Strikingly, both complexes lack the catalytic Mg2+ ion observed in the apo-holoenzyme, whereas an increase in Mg2+ concentration confers resistance to rifamycins. We propose that a rifamycin-induced signal is transmitted over approximately 19 A to the RNAP active site to slow down catalysis. Based on structural predictions, we designed enzyme substitutions that apparently interrupt this allosteric signal.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu M, Zhou YN, Goldstein BP, Jin DJ. Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol 2005; 187:2783-92. [PMID: 15805525 PMCID: PMC1070395 DOI: 10.1128/jb.187.8.2783-2792.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we further defined the rifampin-binding sites in Escherichia coli RNA polymerase (RNAP) and determined the relationship between rifampin-binding sites and the binding sites of other antibiotics, including two rifamycin derivatives, rifabutin and rifapentine, and streptolydigin and sorangicin A, which are unrelated to rifampin, using a purified in vitro system. We found that there is almost a complete correlation between resistance to rifampin (Rif(r)) and reduced rifampin binding to 12 RNAPs purified from different rpoB Rif(r) mutants and a complete cross-resistance among the different rifamycin derivatives. Most Rif(r) RNAPs were sensitive to streptolydigin, although some exhibited weak resistance to this antibiotic. However, 5 out of the 12 Rif(r) RNAPs were partially resistant to sorangicin A, and one was completely cross-resistant to sorangicin A, indicating that the binding site(s) for these two antibiotics overlaps. Both rifampin and sorangicin A inhibited the transition step between transcription initiation and elongation; however, longer abortive initiation products were produced in the presence of the latter, indicating that the binding site for sorangicin A is within the rifampin-binding site. Competition experiments of different antibiotics with (3)H-labeled rifampin for binding to wild-type RNAP further confirmed that the binding sites for rifampin, rifabutin, rifapentine, and sorangicin A are shared, whereas the binding sites for rifampin and streptolydigin are distinct. Because Rif(r) mutations are highly conserved in eubacteria, our results indicate that this set of Rif(r) mutant RNAPs can be used to screen for new antibiotics that will inhibit the growth of Rif(r) pathogenic bacteria.
Collapse
Affiliation(s)
- Ming Xu
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institute of Health, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
33
|
Zenkin N, Kulbachinskiy A, Bass I, Nikiforov V. Different rifampin sensitivities of Escherichia coli and Mycobacterium tuberculosis RNA polymerases are not explained by the difference in the beta-subunit rifampin regions I and II. Antimicrob Agents Chemother 2005; 49:1587-90. [PMID: 15793146 PMCID: PMC1068591 DOI: 10.1128/aac.49.4.1587-1590.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis RNA polymerase is 1,000-fold more sensitive to rifampin than Escherichia coli RNA polymerase. Chimeric E. coli RNA polymerase in which the beta-subunit segment encompassing rifampin regions I and II (amino acids [aa] 463 through 590) was replaced with the corresponding region from M. tuberculosis (aa 382 through 509) did not show an increased sensitivity to the antibiotic. Thus, the difference in amino acid sequence between the rifampin regions I and II of the two species does not account for the difference in rifampin sensitivity of the two polymerases.
Collapse
Affiliation(s)
- N Zenkin
- Institute of Molecular Genetics, Kurchatov Sq. 2, Moscow 123182, Russia
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Heinz G Floss
- Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
35
|
Yu J, Wu J, Francis KP, Purchio TF, Kadurugamuwa JL. Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. J Antimicrob Chemother 2005; 55:528-34. [PMID: 15743898 DOI: 10.1093/jac/dki053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm model using bioluminescence imaging. MATERIALS AND METHODS S. aureus was engineered with a luciferase operon to emit bioluminescence that can be detected in vivo using an IVIS imaging system. Two rifampicin-resistant strains of S. aureus that were previously isolated from animals undergoing rifampicin treatment, S464P (resistant to low concentrations of rifampicin) and H481Y (resistant to high concentrations of rifampicin), were characterized and then compared with their parental strain for in vivo fitness to form biofilm infections in the absence of rifampicin. RESULTS The mutant S464P showed better adaptation to in vivo growth than either the parental strain or H481Y without selective pressure. Six days after implanting pre-colonized catheters, bioluminescent signals were seen from 100% of the catheters coated by the mutant S464P. In comparison, only 83% and 61% of the catheters coated by the parental strain and H481Y, respectively, maintained a signal in vivo. Rifampicin treatment of S464P biofilms in vivo resulted in a slight decline, but earlier rebound in bioluminescence from these catheters compared with the parental signal, whereas rifampicin had no affect on bioluminescence in mice infected with mutant H481Y. CONCLUSIONS The mutant with low-level rifampicin resistance appears to be better adapted to in vivo growth than the mutant that has high-level rifampicin resistance. Moreover, the former mutant may actually have a slight competitive advantage over the rifampicin-susceptible strain (parental), raising awareness for the occurrence of such strains in clinical environments.
Collapse
Affiliation(s)
- Jun Yu
- Xenogen Corporation, 860 Atlantic Avenue, Alameda, CA 94501, USA.
| | | | | | | | | |
Collapse
|
36
|
Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 2005; 24:674-82. [PMID: 15692574 PMCID: PMC549610 DOI: 10.1038/sj.emboj.7600499] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 11/08/2004] [Indexed: 11/09/2022] Open
Abstract
A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP beta subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive to mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.
Collapse
Affiliation(s)
| | - Olga Pavlova
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ, USA
- Department of Virology, Faculty of Biology, Moscow State University, Moscow, Russia
| | - Nikolay Zenkin
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Fred Leon
- The Rockefeller University, New York, NY, USA
| | - Herbert Irschik
- Department of Natural Products, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | - Rolf Jansen
- Department of Natural Products, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | - Konstantin Severinov
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Seth A Darst
- The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, Box 224, 1230 York Avenue, New York, NY 10021, USA. Tel.: +1 212 327 7479; Fax: +1 212 327 7477; E-mail: or
| |
Collapse
|
37
|
Vigliotta G, Tredici SM, Damiano F, Montinaro MR, Pulimeno R, di Summa R, Massardo DR, Gnoni GV, Alifano P. Natural merodiploidy involving duplicated rpoB alleles affects secondary metabolism in a producer actinomycete. Mol Microbiol 2004; 55:396-412. [PMID: 15659159 DOI: 10.1111/j.1365-2958.2004.04406.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Actinomadura sp. ATCC 39727 produces the glycopeptide antibiotic A40926, structurally similar to teicoplanin. Production of A40926 is governed by the stringent response at the transcriptional level. In fact, addition of an amino acid pool prevented the transcription of dbv cluster genes involved in the A40926 biosynthesis and the antibiotic production in chemically defined media, and a thiostrepton-resistant relaxed mutant was severely impaired in its ability to produce the antibiotic. The derivative strain rif19, highly resistant to rifampicin (minimal inhibitory concentration, MIC > 200 microg ml(-1)), was isolated from the wild type strain that exhibited low resistance to rifampicin (MIC < 25 microg ml(-1)). In this strain A40926 production started earlier than in the wild type, and reached higher final levels. Moreover, the antibiotic production was not subjected to the stringent control. Molecular analysis led to the identification of two distinct rpoB alleles, rpoBS and rpoBR, in both the wild type and the rif19. rpoBR harboured the H426N missense which is responsible for rifampicin-resistance in bacteria, in addition to other nucleotide substitutions affecting the primary structure of the RNA polymerase beta-chain. Transcript analysis revealed that rpoBR was expressed at a very low level in the wild type strain during the pseudo-exponential growth phase, and that the amount of rpoBR mRNA increased during the transition to the stationary phase. In contrast, expression of rpoBR was constitutive in the rif19. The results of mRNA half-life analysis did not support the hypothesis that post-transcriptional events are responsible for the different rpoB expression patterns in the two strains, suggesting a role of transcriptional mechanisms.
Collapse
Affiliation(s)
- Giovanni Vigliotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim M, Wolff E, Huang T, Garibyan L, Earl AM, Battista JR, Miller JH. Developing a genetic system in Deinococcus radiodurans for analyzing mutations. Genetics 2004; 166:661-8. [PMID: 15020457 PMCID: PMC1470732 DOI: 10.1534/genetics.166.2.661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have applied a genetic system for analyzing mutations in Escherichia coli to Deinococcus radiodurans, an extremeophile with an astonishingly high resistance to UV- and ionizing-radiation-induced mutagenesis. Taking advantage of the conservation of the beta-subunit of RNA polymerase among most prokaryotes, we derived again in D. radiodurans the rpoB/Rif(r) system that we developed in E. coli to monitor base substitutions, defining 33 base change substitutions at 22 different base pairs. We sequenced >250 mutations leading to Rif(r) in D. radiodurans derived spontaneously in wild-type and uvrD (mismatch-repair-deficient) backgrounds and after treatment with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and 5-azacytidine (5AZ). The specificities of NTG and 5AZ in D. radiodurans are the same as those found for E. coli and other organisms. There are prominent base substitution hotspots in rpoB in both D. radiodurans and E. coli. In several cases these are at different points in each organism, even though the DNA sequences surrounding the hotspots and their corresponding sites are very similar in both D. radiodurans and E. coli. In one case the hotspots occur at the same site in both organisms.
Collapse
Affiliation(s)
- Mandy Kim
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Sarubbi E, Monti F, Corti E, Miele A, Selva E. Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase. ACTA ACUST UNITED AC 2004; 271:3146-54. [PMID: 15265034 DOI: 10.1111/j.1432-1033.2004.04244.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GE23077, a novel microbial metabolite recently isolated from Actinomadura sp. culture media, is a potent and selective inhibitor of bacterial RNA polymerase (RNAP). It inhibits Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) RNAPs with IC50 values (i.e. the concentration at which the enzyme activity is inhibited by 50%) in the 10(-8) m range, whereas it is not active on E. coli DNA polymerase or on eukaryotic (wheat germ) RNAP II (IC50 values > 10(-4) m in both cases). In spite of its potent activity on purified bacterial RNAPs, GE23077 shows a narrow spectrum of antimicrobial activity on Gram-positive and Gram-negative bacteria. To investigate the molecular basis of this behaviour, the effects of GE23077 on macromolecular biosynthesis were tested in E. coli cells permeabilized under different conditions. The addition of GE23077 to plasmolyzed cells resulted in an immediate and specific inhibition of intracellular RNA biosynthesis, in a dose-response manner, strongly suggesting that cell penetration is the main obstacle for effective antimicrobial activity of the antibiotic. Biochemical studies were also conducted with purified enzymes to obtain further insights into the mode of action of GE23077. Interestingly, the compound displays a behaviour similar to that of rifampicin, an antibiotic structurally unrelated to GE23077: both compounds act at the level of transcription initiation, but not on the sigma subunit and not on the formation of the promoter DNA-RNAP complex. Tests on different rifampicin-resistant E. coli RNAPs did not show any cross-resistance between the two compounds, indicating distinct binding sites on the target enzyme. In conclusion, GE23077 is an interesting new molecule for future mechanistic studies on bacterial RNAP and for its potential in anti-infective drug discovery.
Collapse
|
40
|
Kim M, Wolff E, Huang T, Garibyan L, Earl AM, Battista JR, Miller, JH. Developing a Genetic System in Deinococcus radiodurans for Analyzing Mutations. Genetics 2004. [DOI: 10.1093/genetics/166.2.661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We have applied a genetic system for analyzing mutations in Escherichia coli to Deinococcus radiodurans, an extremeophile with an astonishingly high resistance to UV- and ionizing-radiation-induced mutagenesis. Taking advantage of the conservation of the β-subunit of RNA polymerase among most prokaryotes, we derived again in D. radiodurans the rpoB/Rif r system that we developed in E. coli to monitor base substitutions, defining 33 base change substitutions at 22 different base pairs. We sequenced >250 mutations leading to Rif r in D. radiodurans derived spontaneously in wild-type and uvrD (mismatch-repair-deficient) backgrounds and after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and 5-azacytidine (5AZ). The specificities of NTG and 5AZ in D. radiodurans are the same as those found for E. coli and other organisms. There are prominent base substitution hotspots in rpoB in both D. radiodurans and E. coli. In several cases these are at different points in each organism, even though the DNA sequences surrounding the hotspots and their corresponding sites are very similar in both D. radiodurans and E. coli. In one case the hotspots occur at the same site in both organisms.
Collapse
Affiliation(s)
- Mandy Kim
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Erika Wolff
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Tiffany Huang
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Lilit Garibyan
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Ashlee M Earl
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John R Battista
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Jeffrey H Miller,
- Department of Microbiology, Immunology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
41
|
Abstract
We show that the MutY protein competes with the MutS-dependent mismatch repair system to process at least some A. C mispairs in vivo, converting them to G. C pairs. In the presence of an increased dCTP pool resulting from the loss of nucleotide diphosphate kinase, the frequency of A. T-->G. C transitions at a hot spot in the rpoB gene is 30-fold lower in a MutY-deficient derivative than in the wild type.
Collapse
Affiliation(s)
- Mandy Kim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
42
|
Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farias RN, Salomon R, Severinov K. Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J Biol Chem 2002; 277:50867-75. [PMID: 12401787 DOI: 10.1074/jbc.m209425200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the conserved segment of the rpoC gene, which codes for the largest RNA polymerase (RNAP) subunit, beta', was found to make Escherichia coli cells resistant to microcin J25 (MccJ25), a bactericidal 21-amino acid peptide active against Gram-negative bacteria (Delgado, M. A., Rintoul, M. R., Farias, R. N., and Salomon, R. A. (2001) J. Bacteriol. 183, 4543-4550). Here, we report that mutant RNAP prepared from MccJ25-resistant cells, but not the wild-type RNAP, is resistant to MccJ25 in vitro, thus establishing that RNAP is a true cellular target of MccJ25. We also report the isolation of additional rpoC mutations that lead to MccJ25 resistance in vivo and in vitro. The new mutations affect beta' amino acids in evolutionarily conserved segments G, G', and F and are exposed into the RNAP secondary channel, a narrow opening that connects the enzyme surface with the catalytic center. We also report that previously known rpoB (RNAP beta subunit) mutations that lead to streptolydigin resistance cause resistance to MccJ25. We hypothesize that MccJ25 inhibits transcription by binding in RNAP secondary channel and blocking substrate access to the catalytic center.
Collapse
Affiliation(s)
- Julia Yuzenkova
- Department of Genetics, Waksman Institute, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 2001; 104:901-12. [PMID: 11290327 DOI: 10.1016/s0092-8674(01)00286-0] [Citation(s) in RCA: 976] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rifampicin (Rif) is one of the most potent and broad spectrum antibiotics against bacterial pathogens and is a key component of anti-tuberculosis therapy, stemming from its inhibition of the bacterial RNA polymerase (RNAP). We determined the crystal structure of Thermus aquaticus core RNAP complexed with Rif. The inhibitor binds in a pocket of the RNAP beta subunit deep within the DNA/RNA channel, but more than 12 A away from the active site. The structure, combined with biochemical results, explains the effects of Rif on RNAP function and indicates that the inhibitor acts by directly blocking the path of the elongating RNA when the transcript becomes 2 to 3 nt in length.
Collapse
Affiliation(s)
- E A Campbell
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Gingeras TR, Ghandour G, Wang E, Berno A, Small PM, Drobniewski F, Alland D, Desmond E, Holodniy M, Drenkow J. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 1998; 8:435-48. [PMID: 9582189 DOI: 10.1101/gr.8.5.435] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-density oligonucleotide arrays can be used to rapidly examine large amounts of DNA sequence in a high throughput manner. An array designed to determine the specific nucleotide sequence of 705 bp of the rpoB gene of Mycobacterium tuberculosis accurately detected rifampin resistance associated with mutations of 44 clinical isolates of M. tuberculosis. The nucleotide sequence diversity in 121 Mycobacterial isolates (comprised of 10 species) was examined by both conventional dideoxynucleotide sequencing of the rpoB and 16S genes and by analysis of the rpoB oligonucleotide array hybridization patterns. Species identification for each of the isolates was similar irrespective of whether 16S sequence, rpoB sequence, or the pattern of rpoB hybridization was used. However, for several species, the number of alleles in the 16S and rpoB gene sequences provided discordant estimates of the genetic diversity within a species. In addition to confirming the array's intended utility for sequencing the region of M. tuberculosis that confers rifampin resistance, this work demonstrates that this array can identify the species of nontuberculous Mycobacteria. This demonstrates the general point that DNA microarrays that sequence important genomic regions (such as drug resistance or pathogenicity islands) can simultaneously identify species and provide some insight into the organism's population structure.
Collapse
|
45
|
Abstract
Borrelia burgdorferi rpoB, the gene encoding the beta-subunit of RNA polymerase, has been cloned and sequenced. The full-length gene encodes a protein of 1154 amino acids with a calculated molecular mass of 129.8 kDa. The amino-acid sequence is 49% identical to the corresponding protein from Escherichia coli. B. burgdorferi rpoB is a component of a gene cluster, which includes rplJ, rplL and rpoC. A temperature-sensitive E. coli rpoB mutant could be complemented by introduction of the B. burgdorferi gene, indicating that the B. burgdorferi rpoB is expressed in E. coli and the beta-subunit can be assembled into functional holoenzyme. The wild-type amino-acid sequence of the B. burgdorferi beta-subunit is consistent with those of spontaneously arising rifampicin-resistant mutants of E. coli and Mycobacterium tuberculosis at certain critical residues. This suggests that the natural resistance of B. burgdorferi to rifampicin may be due to the primary amino-acid sequence of its beta-subunit.
Collapse
Affiliation(s)
- M Alekshun
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
46
|
Abstract
It was previously shown that spontaneous reversion to His+ of the allele hisG46 Salmonella typhimurium occurs under the influence of histidine starvation. No pre-existing His+ revertants arisen in rich medium were observed. We have now shown that the pre-existing His+ revertants are seen under increased cell concentration (10(10) cells/ml). At the same time, it was established that the selection-induced His+ reversion events of hisG46 begin to occur after 2-3 h of incubation on histidine starvation plates, and this process continues for about 4 days. In parallel, considerable DNA synthesis was observed for the initial hours of starvation. Chloramphenicol and novobiocin inhibited this DNA synthesis, whereas the addition of trace of histidine as well as novobiocin produced the delay of adaptive His+ reversion. It was found that adaptive reversion of hisG46 is recA-independent, although it requires some activity of RecA on the mucAB genetic background. Based on these data, we suggest that the cause of adaptive His+ reversion is the DNA replication operating under histidine starvation. Using a number of mutation models, we showed that histidine starvation did not increase the general mutation rate. It was also demonstrated that intragenic revertants and extragenic ochre suppressors of the allele hisG428 arise under the influence of histidine deprivation.
Collapse
Affiliation(s)
- F S Gizatullin
- Department of Genetics, University of Kazan ul. Lenina 18, Russia.
| | | |
Collapse
|
47
|
Gaurivaud P, Laigret F, Bove JM. Insusceptibility of members of the class Mollicutes to rifampin: studies of the Spiroplasma citri RNA polymerase beta-subunit gene. Antimicrob Agents Chemother 1996; 40:858-62. [PMID: 8849240 PMCID: PMC163219 DOI: 10.1128/aac.40.4.858] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to study the mechanism of insusceptibility of Spiroplasma citri to rifampin, we have cloned and sequenced its rpoB gene, which encodes the beta subunit of RNA polymerase. By comparison of the deduced amino acid sequence with sequences of beta subunits from susceptible and resistant bacteria, it was possible to identify several differences in the so-called Rif region (encompassing rpoB codons 500 to 575 in the Escherichia coli sequence). We constructed a chimeric rpoB gene made of the E. coli rpoB gene in which the Rif region was replaced by the equivalent region from S. citri. E. coli cells harboring this chimeric gene were resistant to rifampin. Subsequent experiments involving site-directed mutagenesis demonstrated that a single amino acid substitution (asparagine at position 526) was able to provide high-level rifampin resistance in E. coli.
Collapse
Affiliation(s)
- P Gaurivaud
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique et Université de Bordeaux II, Villenave d'Ornon, France
| | | | | |
Collapse
|
48
|
Jin DJ, Zhou YN. Mutational analysis of structure-function relationship of RNA polymerase in Escherichia coli. Methods Enzymol 1996; 273:300-19. [PMID: 8791620 DOI: 10.1016/s0076-6879(96)73027-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D J Jin
- Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
49
|
Heym B, Philipp W, Cole ST. Mechanisms of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 1996; 215:49-69. [PMID: 8791709 DOI: 10.1007/978-3-642-80166-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B Heym
- Hôpital Ambroise Paré, Boulogne, France
| | | | | |
Collapse
|
50
|
Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 1995; 8:496-514. [PMID: 8665467 PMCID: PMC172873 DOI: 10.1128/cmr.8.4.496] [Citation(s) in RCA: 407] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The primary theme emerging from molecular genetic work conducted with Mycobacterium tuberculosis and several other mycobacterial species is that resistance is commonly associated with simple nucleotide alterations in target chromosomal genes rather than with acquisition of new genetic elements encoding antibiotic-altering enzymes. Mutations in an 81-bp region of the gene (rpoB) encoding the beta subunit of RNA polymerase account for rifampin resistance in 96% of M. tuberculosis and many Mycobacterium leprae isolates. Streptomycin resistance in about one-half of M. tuberculosis isolates is associated with missense mutations in the rpsL gene coding for ribosomal protein S12 or nucleotide substitutions in the 16S rRNA gene (rrs). Mutations in the katG gene resulting in catalase-peroxidase amino acid alterations nad nucleotide substitutions in the presumed regulatory region of the inhA locus are repeatedly associated with isoniazid-resistant M. tuberculosis isolates. A majority of fluoroquinolone-resistant M. tuberculosis isolates have amino acid substitutions in a region of the DNA gyrase A subunit homologous to a conserved fluoroquinolone resistance-determining region. Multidrug-resistant isolates of M. tuberculosis arise as a consequence of sequential accumulation of mutations conferring resistance to single therapeutic agents. Molecular strategies show considerable promise for rapid detection of mutations associated with antimicrobial resistance. These approaches are now amenable to utilization in an appropriately equipped clinical microbiology laboratory.
Collapse
Affiliation(s)
- J M Musser
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|