1
|
Biswas S, Keightley A, Biswas I. Ribosomal protein L4 of Lactobacillus rhamnosus LRB alters resistance to macrolides and other antibiotics. Mol Oral Microbiol 2020; 35:106-119. [PMID: 32022979 DOI: 10.1111/omi.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/09/2023]
Abstract
Lactobacillus rhamnosus is an important lactic acid bacterium that is predominantly used as a probiotic supplement. This bacterium secretes immunomodulatory and antibacterial peptides that are necessary for the probiotic trait. This organism also occupies diverse ecological niches, such as gastrointestinal tracts and the oral cavity. Several studies have shown that L. rhamnosus is prone to spontaneous genome rearrangement irrespective of the ecological origins. We previously characterized an oral isolate of L. rhamnosus, LRB, which is genetically closely related to the widely used probiotic strain L. rhamnosus LGG. In this study, we isolated a nontargeted mutant that was particularly sensitive to acid stress. Using next generation sequencing, we further mapped the putative mutations in the genome and found that the mutant had acquired a deletion of 75 base pairs in the rplD gene that encodes the large ribosomal subunit L4. The mutant had a growth defect at 37°C and at ambient temperature. Further antibiotic sensitivity analyses indicated that the mutant is relatively more resistant to erythromycin and chloramphenicol; two antibiotics that target the 50S subunit. In contrast, the mutant was more sensitive to tetracycline, which targets the 30S subunit. Thus, it appears that nontargeted mutations could significantly alter the antibiotic resistance profile of L. rhamnosus. Our study raises concern that probiotic use of L. rhamnosus should be carefully monitored to avoid unintended consequences.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew Keightley
- Mass Spectrometry and Proteomics, UMKC School of Biological Sciences, Kansas City, MO, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Choi E, Jeon H, Oh JI, Hwang J. Overexpressed L20 Rescues 50S Ribosomal Subunit Assembly Defects of bipA-Deletion in Escherichia coli. Front Microbiol 2020; 10:2982. [PMID: 31998269 PMCID: PMC6962249 DOI: 10.3389/fmicb.2019.02982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is highly conserved in a large variety of bacteria and belongs to the translational GTPases, based on sequential and structural similarities. Despite its conservation in bacteria, bipA is not essential for cell growth under normal growth conditions. However, at 20°C, deletion of bipA causes not only severe growth defects but also several phenotypic changes such as capsule production, motility, and ribosome assembly, indicating that it has global regulatory properties. Our recent studies revealed that BipA is a novel ribosome-associating GTPase, whose expression is cold-shock-inducible and involved in the incorporation of the ribosomal protein (r-protein) L6. However, the precise mechanism of BipA in 50S ribosomal subunit assembly is not completely understood. In this study, to demonstrate the role of BipA in the 50S ribosomal subunit and possibly to find an interplaying partner(s), a genomic library was constructed and suppressor screening was conducted. Through screening, we found a suppressor gene, rplT, encoding r-protein L20, which is assembled at the early stage of ribosome assembly and negatively regulates its own expression at the translational level. We demonstrated that the exogenous expression of rplT restored the growth of bipA-deleted strain at low temperature by partially recovering the defects in ribosomal RNA processing and ribosome assembly. Our findings suggest that the function of BipA is pivotal for 50S ribosomal subunit biogenesis at a low temperature and imply that BipA and L20 may exert coordinated actions for proper ribosome assembly under cold-shock conditions.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
3
|
Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S, Hu P. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. PLANT MOLECULAR BIOLOGY 2014; 84:301-14. [PMID: 24132771 DOI: 10.1007/s11103-013-0134-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 09/23/2013] [Indexed: 05/22/2023]
Abstract
Plastidial ribosome proteins (PRPs) form the major component of the plastidial ribosome. Here we describe a rice mutant named wlp1 (white leaf and panicles 1) selected from a population of tissue culture regenerants. The early seedling leaves of the mutant were albino, as was the immature panicle at heading, and the phenotype was more strongly expressed in plants exposed to low temperature conditions. Changes in the leaf pigmentation of the mutant were due to altered chlorophyll content and chloroplast development. Positional cloning of WLP1, followed by complementation and knock-down experiments, showed that it encodes a 50S ribosome L13 protein. The WLP1 protein localized to the chloroplast. WLP1 was mainly transcribed in green tissues and particularly abundantly in the early seedling leaves. In addition, the expression level of WLP1 was induced by the low temperature. The transcription pattern of a number of genes involved in plastidial transcription/translation and in photosynthesis was altered in the wlp1 mutants. These results reveal that WLP1 is required for normal chloroplast development, especially under low temperature conditions. This is the first report on the function of PRPs in rice.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ohmayer U, Gamalinda M, Sauert M, Ossowski J, Pöll G, Linnemann J, Hierlmeier T, Perez-Fernandez J, Kumcuoglu B, Leger-Silvestre I, Faubladier M, Griesenbeck J, Woolford J, Tschochner H, Milkereit P. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 2013; 8:e68412. [PMID: 23874617 PMCID: PMC3707915 DOI: 10.1371/journal.pone.0068412] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Julius Ossowski
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Gisela Pöll
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jan Linnemann
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Thomas Hierlmeier
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | | | - Beril Kumcuoglu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Isabelle Leger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | - Marlène Faubladier
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | | | - John Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. BIOCHEMISTRY (MOSCOW) 2012; 77:562-74. [PMID: 22817455 DOI: 10.1134/s0006297912060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50-80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.
Collapse
Affiliation(s)
- A V Korobeinikova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
6
|
Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012; 32:3228-41. [PMID: 22688513 DOI: 10.1128/mcb.00539-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.
Collapse
|
7
|
Yin T, Pan G, Liu H, Wu J, Li Y, Zhao Z, Fu T, Zhou Y. The chloroplast ribosomal protein L21 gene is essential for plastid development and embryogenesis in Arabidopsis. PLANTA 2012; 235:907-21. [PMID: 22105802 DOI: 10.1007/s00425-011-1547-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/31/2011] [Indexed: 05/22/2023]
Abstract
Embryogenesis in higher plants is controlled by a complex gene network. Identification and characterization of genes essential for embryogenesis will provide insights into the early events in embryo development. In this study, a novel mutant with aborted seed development (asd) was identified in Arabidopsis. The asd mutant produced about 25% of albino seeds at the early stage of silique development. The segregation of normal and albino seeds was inherited as a single recessive embryo-lethal trait. The gene disrupted in the asd mutant was isolated through map-based cloning. The mutated gene contains a single base change (A to C) in the coding region of RPL21C (At1g35680) that is predicted to encode the chloroplast 50S ribosomal protein L21. Allele test with other two T-DNA insertion lines in RPL21C and a complementation test demonstrated that the mutation in RPL21C was responsible for the asd phenotype. RPL21C exhibits higher expression in leaves and flowers compared with expression levels in roots and developing seeds. The RPL21C-GFP fusion protein was localized in chloroplasts. Cytological observations showed that the asd embryo development was arrested at the globular stage. There were no plastids with normal thylakoids and as a result no normal chloroplasts formed in mutant cells, indicating an indispensable role of the ASD gene in chloroplasts biogenesis. Our studies suggest that the chloroplast ribosomal protein L21 gene is required for chloroplast development and embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Tuanzhang Yin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wanschers BFJ, Szklarczyk R, Pajak A, van den Brand MAM, Gloerich J, Rodenburg RJT, Lightowlers RN, Nijtmans LG, Huynen MA. C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation. Nucleic Acids Res 2012; 40:4040-51. [PMID: 22238375 PMCID: PMC3351149 DOI: 10.1093/nar/gkr1271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30.
Collapse
Affiliation(s)
- Bas F J Wanschers
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The modern ribosome was largely formed at the time of the last common ancestor, LUCA. Hence its earliest origins likely lie in the RNA world. Central to its development were RNAs that spawned the modern tRNAs and a symmetrical region deep within the large ribosomal RNA, (rRNA), where the peptidyl transferase reaction occurs. To understand pre-LUCA developments, it is argued that events that are coupled in time are especially useful if one can infer a likely order in which they occurred. Using such timing events, the relative age of various proteins and individual regions within the large rRNA are inferred. An examination of the properties of modern ribosomes strongly suggests that the initial peptides made by the primitive ribosomes were likely enriched for l-amino acids, but did not completely exclude d-amino acids. This has implications for the nature of peptides made by the first ribosomes. From the perspective of ribosome origins, the immediate question regarding coding is when did it arise rather than how did the assignments evolve. The modern ribosome is very dynamic with tRNAs moving in and out and the mRNA moving relative to the ribosome. These movements may have become possible as a result of the addition of a template to hold the tRNAs. That template would subsequently become the mRNA, thereby allowing the evolution of the code and making an RNA genome useful. Finally, a highly speculative timeline of major events in ribosome history is presented and possible future directions discussed.
Collapse
Affiliation(s)
- George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.
| |
Collapse
|
10
|
Abstract
The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.
Collapse
|
11
|
Li S, Xiao X, Li J, Luo J, Wang F. Identification of genes regulated by changing salinity in the deep-sea bacterium Shewanella sp. WP3 using RNA arbitrarily primed PCR. Extremophiles 2005; 10:97-104. [PMID: 16133656 DOI: 10.1007/s00792-005-0476-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Accepted: 07/25/2005] [Indexed: 11/30/2022]
Abstract
The differential gene transcription of a deep-sea bacterium Shewanella sp. WP3 in response to changing salinity was analyzed by RNA fingerprinting using arbitrarily primed PCR (RAP-PCR). Ninety primer sets were used to scan two different RNA pools derived from cultures of 1% and 7% NaCl concentrations. Forty-three putative differential-expressed fragments were identified, cloned, and sequenced. Six out of the 43 fragments were confirmed to be truly differentially transcribed in terms of changing salinity. The deduced amino acid sequences of the six gene fragments showed highest identities (66-96%) with ribosomal protein L24, ATP binding protein, and chaperon protein HscA of Shewanella oneidensis MR-1 (Y6, Y9, and Y29); isocitrate lyase of Pseudomonas aeruginosa (Y15); peptidylprolyl cis-trans isomerase of Shewanella sp. SIB1 (Y21), glutamine synthetase of Shewanella violacea (Y25), respectively. Four genes (Y6, Y15, Y21, and Y25) were up regulated in 7% NaCl, while the other two (Y9 and Y29) contained more abundant transcripts in 1% NaCl. The data suggested that strategies involved in controlling protein synthesis, protein folding and/or trafficking, glutamate concentration, fatty acid metabolism, and substance transporting were used for salt adaptation in Shewanella sp. WP3. The expression patterns of the six genes in response to transient stress shocks including salt shock (3% NaCl shift to 12%), cold shock (15 degrees C shift to 0 degrees C), and high-hydrostatic pressure shock (0.1 MPa shift to 50 MPa) were further examined. Y29 encoding the putative HscA chaperon protein was indicated to be involved in adaptation of all the stresses tested.
Collapse
Affiliation(s)
- Shengkang Li
- College of Life Science, Zhongshan University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Datta K, Skidmore JM, Pu K, Maddock JR. The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels. Mol Microbiol 2005; 54:1379-92. [PMID: 15554976 DOI: 10.1111/j.1365-2958.2004.04354.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene (cgtAC) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus, a P168V mutant is not activating in vivo, although in vitro, the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtAC, we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtAC is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E cells rapidly lose viability and yet do not display an additional ribosome defect. Thus, the essential nature of the cgtAC gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtAC is necessary for DNA replication and progression through the cell cycle.
Collapse
Affiliation(s)
- Kaustuv Datta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
13
|
Morita-Yamamuro C, Tsutsui T, Tanaka A, Yamaguchi J. Knock-out of the plastid ribosomal protein S21 causes impaired photosynthesis and sugar-response during germination and seedling development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2004; 45:781-8. [PMID: 15215513 DOI: 10.1093/pcp/pch093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To clarify the mechanism of sugar-response of higher plants, the ghs1 (glucose hypersensitive) mutant of Arabidopsis was isolated and characterized. The ghs1 mutant had an increased sensitivity to glucose, showing a dramatic inhibition of chlorophyll synthesis and developmental arrest of leaves when grown on medium containing more than 5% glucose; the wild type required exposure to 7% glucose to show the same response. The ghs1 mutant is a single recessive loss-of-function mutation caused by a T-DNA insertion in the GHS1 gene (At3g27160), which encodes the plastid 30S ribosomal protein S21. The mutant showed: (1) reduction in the translation product but not the transcript for plastid-encoded rbcL, (2) reduction in photosynthetic activity monitored with pulse-amplitude modulated fluorometry, (3) impaired chloroplast development, as observed by electron microscopy. These results indicate that the deficiency of such chloroplast functions as photosynthetic activity observed in the ghs1 mutant is caused by impaired plastid protein synthesis associated with loss of ribosomal S21 protein. Relationships between the GHS1 gene and sugar-response are discussed.
Collapse
Affiliation(s)
- Chizuko Morita-Yamamuro
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | | | | | | |
Collapse
|
14
|
Pesaresi P, Varotto C, Meurer J, Jahns P, Salamini F, Leister D. Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:179-89. [PMID: 11532164 DOI: 10.1046/j.1365-313x.2001.01076.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The prpl11-1 mutant of Arabidopsis thaliana was identified among a collection of T-DNA tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutation responsible was localized to Prpl11, a single-copy nuclear gene that encodes PRPL11, a component of the large subunit of the plastid ribosome. The amino acid sequence of Arabidopsis PRPL11 is very similar to those of L11 proteins from spinach and prokaryotes. In the prpl11-1 mutant, photosensitivity and chlorophyll fluorescence parameters are significantly altered owing to changes in the levels of thylakoid protein complexes and stromal proteins. The abundance of most plastome transcripts examined, such as those of genes coding for the photosystem II core complex and RbcL, is not decreased. Plastid ribosomal RNA accumulates in wild-type amounts, and the assembly of plastid polysomes on the transcripts of the rbcL, psbA and psbE genes remains mainly unchanged in mutant plants, indicating that lack of PRPL11 affects neither the abundance of plastid ribosomes nor their assembly into polysomes. However, in vivo translation assays demonstrate that the rate of translation of the large subunit of Rubisco (RbcL) is significantly reduced in prpl11-1 plastids. Our data suggest a major role for PRPL11 in plastid ribosome activity per se, consistent with its location near the GTPase-binding centre of the chloroplast 50S ribosomal subunit. Additional effects of the mutation, including the pale green colour of the leaves and a drastic reduction in growth rate under greenhouse conditions, are compatible with reduced levels of protein synthesis in plastids.
Collapse
Affiliation(s)
- P Pesaresi
- Zentrum zur Identifikation von Genfunktionen durch Insertionsmutagenese bei Arabidopsis thaliana (ZIGIA), Max-Planck-Institut für Zuchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Simitsopoulou M, Avila H, Franceschi F. Ribosomal gene disruption in the extreme thermophile Thermus thermophilus HB8. Generation of a mutant lacking ribosomal protein S17. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:524-32. [PMID: 10561594 DOI: 10.1046/j.1432-1327.1999.00887.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S17 is a primary rRNA-binding protein which has been implicated in ribosome assembly and translational fidelity. We describe the generation and biochemical characterization of an S17 minus ribosomal mutant, a ribosomal protein-lacking mutant obtained in Thermus thermophilus HB8. The S17 mutant was obtained by insertional inactivation of the target gene with the kanamycin adenyl transferase (kat) gene, making use of a Thermus-Escherichia shuttle vector and the natural ability of Thermus to transform. In the final construct used to transform Thermus cells, the S17 coding region was replaced with the kat gene cloned in-frame with the first three amino acids of S17. Hence, in vivo transcription of the kat gene was under the control of the ribosomal operon promoter. As in Escherichia coli, the Thermus S17 mutant exhibited a temperature-sensitive phenotype. Two-dimensional PAGE, Western blot, and ELISA confirmed the absence of S17 from the mutant ribosomes. Sucrose-gradient profiles of mutant cells showed a clear separation and normal proportions of 50S and 30S subunits and a normal ratio between them. In addition, the S17 mutant showed the presence of a 20S peak representing assembly-defective particles. The successful re-incorporation of protein S17 into the mutant ribosomes was demonstrated when reconstitution with isolated S17 was performed at 60 degrees C.
Collapse
Affiliation(s)
- M Simitsopoulou
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | | | |
Collapse
|
16
|
Maguire BA, Wild DG. Mutations in the rpmBG operon of Escherichia coli that affect ribosome assembly. J Bacteriol 1997; 179:2486-93. [PMID: 9098043 PMCID: PMC178994 DOI: 10.1128/jb.179.8.2486-2493.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rpmBG operon of Escherichia coli codes for ribosomal proteins L28 and L33. Two strains with mutations in the operon are AM81, whose ribosomes lack protein L28, and AM90, whose ribosomes are without protein L33. Neither strain showed major defects in ribosome assembly. However, when the mutations were transferred to other strains of E. coli, ribosome synthesis was greatly perturbed and precursor ribonucleoproteins accumulated. In the new backgrounds, the mutation in rpmB was complemented by synthesis of protein L28 from a plasmid; the rpmG mutation was not complemented by protein L33 because synthesis of protein L28 from the upstream rpmB gene was also greatly reduced. The results suggest that protein L33, in contrast to protein L28, has at best a minor role in ribosome assembly and function.
Collapse
Affiliation(s)
- B A Maguire
- Department of Biochemistry, University of Oxford, United Kingdom.
| | | |
Collapse
|
17
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
18
|
Theisen M, Potter AA. Cloning, sequencing, expression, and functional studies of a 15,000-molecular-weight Haemophilus somnus antigen similar to Escherichia coli ribosomal protein S9. J Bacteriol 1992; 174:17-23. [PMID: 1729207 PMCID: PMC205670 DOI: 10.1128/jb.174.1.17-23.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Haemophilus somnus is a gram-negative bacterium capable of causing a number of disease syndromes in cattle. This article describes the cloning and characterization of a gene coding for a 15,000-molecular-weight (15K) polypeptide which reacts strongly with antiserum against H. somnus. Analysis of plasmid-encoded polypeptides by polyacrylamide gel electrophoresis showed that the corresponding gene is the second in a transcriptional unit. The first gene codes for a protein with a molecular weight of approximately 17,000. Using antiserum against the two recombinant proteins, we could show that the natural proteins are predominantly present in purified ribosomes from H. somnus. The nucleotide sequence of both genes and flanking regions has been determined, and the deduced amino acid sequence of the two polypeptides was used to search for sequence homology in the GenBank data base. The 15K polypeptide showed 89% similarity to the Escherichia coli ribosomal protein S9, and the 17K polypeptide showed 94% similarity to the E. coli ribosomal protein L13. In E. coli, the corresponding genes constitute a bicistronic operon, with the same gene order as that found in H. somnus. A plasmid expressing the 15K protein was found to complement an E. coli rpsI mutation. When a frameshift mutation was introduced into the 15K protein gene, the resulting plasmid failed to complement this rpsI mutation, demonstrating functional homology between the 15K protein and S9 from E. coli. Downstream from the 15K protein gene is located another open reading frame, which could code for a polypeptide with a predicted molecular weight of 24,427. A protein with a similar molecular weight was detected in minicells containing the recombinant clone. This polypeptide is 69% similar to the stringent starvation protein (Ssp) of E. coli.
Collapse
Affiliation(s)
- M Theisen
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
19
|
Abstract
We have isolated and characterized mutants which lack one or two of sixteen of the proteins of the Escherichia coli ribosome. The mutation responsible in each case mapped close to, and probably in, the corresponding gene. A conditional lethal phenotype and a variable degree of impairment in growth was observed. The missing protein was readily restored to the organelle if E coli or other eubacterial ribosomal proteins were added to a suspension of the mutant particles. The mutants have been used to investigate the role of individual proteins in ribosome function and assembly. They have also aided in the topographic pinpointing of proteins on the surface of the organelle.
Collapse
Affiliation(s)
- E R Dabbs
- Department of Genetics, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Abstract
The targets of in vivo studies of the ribosomal assembly process are mainly the events of rRNA processing, whereas in vitro studies (total reconstitution) focus on principles of the assembly process such as assembly-initiation proteins, rate-limiting steps and a detailed sequence of assembly reactions (assembly map). The success of in vitro analyses is particularly remarkable in view of ionic and temperature requirements of the total reconstitution which differ significantly from the in vivo conditions. Features of the in vivo assembly are surveyed, however, the focal point is a description of experimental strategies and results concerning the in vitro assembly of ribosomes.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Abt Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
21
|
Franceschi FJ, Nierhaus KH. Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46274-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
|
23
|
Nowotny P, Nowotny V, Voss H, Nierhaus KH. Preparation and activity measurements of deuterated 50S subunits for neutron-scattering analysis. Methods Enzymol 1988; 164:131-47. [PMID: 3071658 DOI: 10.1016/s0076-6879(88)64039-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Herold M, Nierhaus KH. Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47489-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
|