1
|
Rosales-Castro B, Bravo-Ontiveros I, Betanzos-Rau K, Nava-Aparicio K, Ramírez-González L, Undiano E, Flores-Pérez I, Vilanova E, Monroy-Noyola A. Neuroprotective effect of copper on neurotoxicity of TOCP in vivo. Chem Biol Interact 2025; 415:111527. [PMID: 40280383 DOI: 10.1016/j.cbi.2025.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
A single or repeated dose of tri-ortho-cresyl phosphate (TOCP) induces in humans and animals a known neuropathy as organophosphorus-induced delayed polyneuropathy (OPIDP). This syndrome is related to the inhibition of neuropathy target esterase (NTE), causing signs and symptoms in the nervous system, such as ataxia and paralysis. Currently, there is no antidotal treatment for OPIDP. In the present study, the neuroprotective effect of Cu(II) on the acute in vivo neurotoxicity of TOCP is characterized. Adult hens (27 and 65 weeks old) were administered a single dose of 380, 500, 750, or 1000 mg/kg of TOCP dissolved in vegetable oil. One hour before, the animals were administered a single dose of 160 mg/kg of Cu(II) or vehicle by the same route. Twenty-four hours later, half of the animals (n = 5) in each group were decapitated to obtain the brain and blood (serum) for measuring NTE, acetylcholinesterase (AChE), cholinesterases (ChEs), and kidney and hepatic biochemical parameters (ALT, AST, creatinine, urea). The other half of the animals in each group were kept under observation for 21 days for clinical evaluation of OPIDP using a scale from 1 to 4. The 24-h brain NTE residual activity of all TOCP-treated groups was around 5 % (∼95 % inhibition) compared to the control group (vehicles). However, the group of hens treated with 380 mg/kg TOCP (27 weeks old) pre-treated with Cu(II) presented significantly higher brain NTE activity (p < 0.05), which was around 55 %. This activity value correlated with the OPIDP clinical score over 21 days. Hens treated with TOCP showed an OPIDP score of 3, whereas those pre-treated with Cu(II) showed no signs of OPIDP. The protective effect of Cu(II) on brain NTE and serum ChEs inhibition levels was associated with the degree of OPIDP. The levels of both activities decreased with the increase in OPIDP score (1-4) due to higher TOCP doses and the age of the hens. Brain AChE inhibition ranged from 16 % to 43 %, and hens showed no cholinergic signs in any group. The dose of Cu(II) used in this in vivo study demonstrated a neuroprotective effect and did not induce adverse effects in the liver and kidneys. However, it will be necessary to carry out specific experimental studies to investigate the neuroprotective mechanism of Cu(II).
Collapse
Affiliation(s)
- Brenda Rosales-Castro
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Isabel Bravo-Ontiveros
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Keyla Betanzos-Rau
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Kenia Nava-Aparicio
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Laura Ramírez-González
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Elizabeth Undiano
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico
| | - Iván Flores-Pérez
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Mexico
| | - Eugenio Vilanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Antonio Monroy-Noyola
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico.
| |
Collapse
|
2
|
Tkachuk M, Matiytsiv N. Tricresylphosphate isomers: A review of toxicity pathways. Neurotoxicol Teratol 2025; 108:107432. [PMID: 39921116 DOI: 10.1016/j.ntt.2025.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
Synthetiс organophosphates are a large group of chemicals, annually produced by an industry with their further application as oil additives, flame retardants, plasticizers, warfare agents and insecticides for domestic use and in the control of vector-borne diseases. Consequently, organophosphates are often detected in the environment and human samples, which can have adverse effects on ecosystems and human health. This review aimed to summarize recent findings about different aspects of tricresyl phosphate mixture and separate isomers toxicity, including their impact on nervous, endocrine, and reproductive systems studied in animal models or in vitro. We also discuss the underlying molecular and cellular mechanisms involved in these processes, which comprise inhibition of neuropathy target esterase (NTE), overactivation of neuregulin1/ErbB and MAPK signaling pathways, impairment of glutamate signaling as well as interaction with nuclear hormone. Finally, we outline potential therapeutic targets and promising agents as important directions for future research.
Collapse
Affiliation(s)
- Marta Tkachuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4/ Hrushevskoho St., Lviv 79005, Ukraine
| | - Nataliya Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4/ Hrushevskoho St., Lviv 79005, Ukraine.
| |
Collapse
|
3
|
Wu W, Wang P. Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules 2023; 28:7747. [PMID: 38067477 PMCID: PMC10708158 DOI: 10.3390/molecules28237747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Neuropathy target esterase (NTE) is a serine hydrolase with phospholipase B activity, which is involved in maintaining the homeostasis of phospholipids. It can be inhibited by aging inhibitors such as some organophosphorus (OP) compounds, which leads to delayed neurotoxicity with distal degeneration of axons. However, the detailed binding conformation of aging and non-aging inhibitors with NTE is not known. In this study, new computational models were constructed by using MODELLER 10.3 and AlphaFold2 to further investigate the inhibition mechanism of aging and non-aging compounds using molecular docking. The results show that the non-aging compounds bind the hydrophobic pocket much deeper than aging compounds and form the hydrophobic interaction with Phe1066. Therefore, the unique binding conformation of non-aging compounds may prevent the aging reaction. These important differences of the binding conformations of aging and non-aging inhibitors with NTE may help explain their different inhibition mechanism and the protection of non-aging NTE inhibitors against delayed neuropathy.
Collapse
Affiliation(s)
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Lian M, Lin C, Xin M, Gu X, Lu S, Wang B, Ouyang W, Liu X, He M. Organophosphate esters in surface waters of Shandong Peninsula in eastern China: Levels, profile, source, spatial distribution, and partitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118792. [PMID: 34998897 DOI: 10.1016/j.envpol.2022.118792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate ester (OPE) levels, profiles, sources, spatial distribution, and partitioning were firstly studied in the rivers of the Shandong Peninsula. A total of 53 water samples and 45 sediment samples were collected from the rivers and the sewage treatment plant in the peninsula to quantitate levels of 13 targeted OPEs. Total OPE concentrations ranged from 263 to 6676 ng L-1 in the water, and 39.3-360 ng g-1 in the sediment. TEP, TCPP, and TCEP together contributed more than 90% of total OPE content. TCEP and TCPP concentrations in the Xiaoqing River sediment were increased by approximately two and seven times from 2014 to 2019, respectively. Total OPE concentrations generally increased from upstream regions to the estuaries. The main OPE sources were municipal effluent in the Jiaozhou Bay (JZB) watershed and chemical industrial wastewater in the Laizhou Bay (LZB) watershed. TCPP, TEP, and TCEP were generally approaching equilibrium between sediment and overlying water, while TNBP, TIBP, and TBOEP effectively transferred from the overlying water to the sediment. The riverine OPE flux was 0.66 ton/year to JZB and 3.58 ton/year to the LZB. TCPP and TCEP in municipal effluent, and TEP in chemical industrial wastewater should be regulated to protect Shandong Peninsula waters.
Collapse
Affiliation(s)
- Maoshan Lian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuang Lu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Baraniuk JN. Review of the Midbrain Ascending Arousal Network Nuclei and Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Gulf War Illness (GWI) and Postexertional Malaise (PEM). Brain Sci 2022; 12:132. [PMID: 35203896 PMCID: PMC8870178 DOI: 10.3390/brainsci12020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS and Gulf War Illness (GWI) share features of post-exertional malaise (PEM), exertional exhaustion, or postexertional symptom exacerbation. In a two-day model of PEM, submaximal exercise induced significant changes in activation of the dorsal midbrain during a high cognitive load working memory task (Washington 2020) (Baraniuk this issue). Controls had no net change. However, ME/CFS had increased activity after exercise, while GWI had significantly reduced activity indicating differential responses to exercise and pathological mechanisms. These data plus findings of the midbrain and brainstem atrophy in GWI inspired a review of the anatomy and physiology of the dorsal midbrain and isthmus nuclei in order to infer dysfunctional mechanisms that may contribute to disease pathogenesis and postexertional malaise. The nuclei of the ascending arousal network were addressed. Midbrain and isthmus nuclei participate in threat assessment, awareness, attention, mood, cognition, pain, tenderness, sleep, thermoregulation, light and sound sensitivity, orthostatic symptoms, and autonomic dysfunction and are likely to contribute to the symptoms of postexertional malaise in ME/CFS and GWI.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
6
|
Baraniuk JN, Amar A, Pepermitwala H, Washington SD. Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Brain Sci 2022; 12:78. [PMID: 35053821 PMCID: PMC8774249 DOI: 10.3390/brainsci12010078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Gulf War Illness (GWI) and control subjects underwent fMRI during difficult cognitive tests performed before and after submaximal exercise provocation (Washington 2020). Exercise caused increased activation in ME/CFS but decreased activation for GWI in the dorsal midbrain, left Rolandic operculum and right middle insula. Midbrain and isthmus nuclei participate in threat assessment, attention, cognition, mood, pain, sleep, and autonomic dysfunction. METHODS Activated midbrain nuclei were inferred by a re-analysis of data from 31 control, 36 ME/CFS and 78 GWI subjects using a seed region approach and the Harvard Ascending Arousal Network. RESULTS Before exercise, control and GWI subjects showed greater activation during cognition than ME/CFS in the left pedunculotegmental nucleus. Post exercise, ME/CFS subjects showed greater activation than GWI ones for midline periaqueductal gray, dorsal and median raphe, and right midbrain reticular formation, parabrachial complex and locus coeruleus. The change between days (delta) was positive for ME/CFS but negative for GWI, indicating reciprocal patterns of activation. The controls had no changes. CONCLUSIONS Exercise caused the opposite effects with increased activation in ME/CFS but decreased activation in GWI, indicating different pathophysiological responses to exertion and mechanisms of disease. Midbrain and isthmus nuclei contribute to postexertional malaise in ME/CFS and GWI.
Collapse
Affiliation(s)
- James N. Baraniuk
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (A.A.); (H.P.); (S.D.W.)
| | | | | | | |
Collapse
|
7
|
Melentev PA, Ryabova EV, Sarantseva SV. A Private History of Neurogenetics: The swiss cheese Gene and Its Orthologs. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
High concentration of trichlorfon (1 mM) disrupts axonal cytoskeleton and decreases the expression of plasticity-related proteins in SH-SY5Y cells. Toxicol In Vitro 2017; 39:84-92. [DOI: 10.1016/j.tiv.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 11/18/2022]
|
10
|
García JA, Cantón GJ, García BL, Micheloud JF, Campero CM, Späth EJ, Odriozola ER. Retrospective analysis of cattle poisoning in Argentina (2000-2013). PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000300002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juan A. García
- Instituto Nacional de Tecnología Agropecuaria, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Freudenthal RI, Rausch L, Gerhart JM, Barth ML, Mackerer CR, Bisinger EC. Subchronic Neurotoxicity of Oil Formulations Containing Either Tricresyl Phosphate or Tri-Orthocresyl Phosphate. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/109158189301200410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to determine the threshold concentration of tricresyl phosphate (TCP) in aviation engine oil able to cause delayed peripheral neuropathy in adult hens after repeated exposure. The study also evaluated the predictive value of endpoints usually used to measure acute peripheral neurotoxicity (neurotoxic esterase [NTE] inhibition, ataxia, and histopathologic changes), as measures of neurotoxicity in a subchronic study. Animals that received oil containing 3% TCP showed significant neurotoxicity that could not be accounted for by the small amount of TOCP present. Oil containing 1% TCP was without neurotoxic activity. There was an excellent correlation between percentage inhibition of NTE and development of neuropathy. An association was also seen for ataxia and neuropathology. Further study is needed to determine the phosphate ester isomers responsible for the significant neurotoxic potency demonstrated by the aviation engine oil containing 3% TCP.
Collapse
|
12
|
Mutch E, Blain PG, Williams FM. Interindividual Variations in Enzymes Controlling Organophosphate Toxicity in Man. Hum Exp Toxicol 2016; 11:109-16. [PMID: 1349216 DOI: 10.1177/096032719201100209] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1 Interindividual variations in an unexposed population have been defined for five enzymes involved in organophosphate (OP) toxicity. The enzymes measured were: red blood cell acetylcholinesterase (AChE), lymphocyte neuropathy target esterase (NTE), serum cholinesterase (ChE), serum paraoxonase and serum arylesterase. 2 AChE and arylesterase were normally distributed in the population whilst the distribution of NTE, ChE and paraoxonase deviated significantly from normal. 3 Assay precision and intra-individual variability were measured for each of the enzymes; the effect on interindividual variation was assessed. 4 Variations in enzyme activities between individuals could have profound effects on susceptibility to OP toxicity. Prior determination of these enzymes may be predictive of susceptibility. 5 Lymphocyte NTE has some limitations as an indicator of exposure to neurotoxic OPs.
Collapse
Affiliation(s)
- E Mutch
- Toxicology Unit, Medical School, Newcastle University, UK
| | | | | |
Collapse
|
13
|
Schüürmann G, Ebert RU, Tluczkiewicz I, Escher SE, Kühne R. Inhalation threshold of toxicological concern (TTC) - Structural alerts discriminate high from low repeated-dose inhalation toxicity. ENVIRONMENT INTERNATIONAL 2016; 88:123-132. [PMID: 26735350 DOI: 10.1016/j.envint.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 05/08/2023]
Abstract
The threshold of toxicological concern (TTC) of a compound represents an exposure value below which the associated human health risk is considered negligible. As such, this approach offers assessing the risk of potential toxicants when little or no toxicological information is available. For the inhalation repeated-dose TTC, the goal was to derive structural alerts that discriminate between high- and low-toxic compounds. A further aim was to identify physicochemical parameters related to the inhalation-specific bioavailability of the compounds, and to explore their use as predictors of high vs low toxicity. 296 compounds with subacute, subchronic and chronic inhalation toxicity NOEC (no-observed effect concentration) values were subdivided into three almost equal-sized high-, medium- and low-toxic (HTox, MTox, LTox) potency classes. Whereas the derived 14 HTox and 7 LTox structural alerts yield an only moderate discrimination between these three groups, the high-toxic vs low-toxic mis-classification is very low: LTox-predicted compounds are not HTox to 97.5%, and HTox-predicted compounds not LTox to 88.6%. The probability of a compound being HTox vs LTox is triggered further by physicochemical properties encoding the tendency to evaporate from blood. The new structural alerts may aid in the predictive inhalation toxicity assessment of compounds as well as in designing low-toxicity chemicals, and provide a rationale for the chemistry underlying the toxicological outcome that can also be used for scoping targeted experimental studies.
Collapse
Affiliation(s)
- Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany.
| | - Ralf-Uwe Ebert
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Inga Tluczkiewicz
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Ralph Kühne
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Emerick GL, Fernandes LS, de Paula ES, Barbosa F, dos Santos NAG, dos Santos AC. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicol In Vitro 2015; 29:1079-87. [PMID: 25910916 DOI: 10.1016/j.tiv.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
Organophosphorus-induced delayed neuropathy (OPIDN) is a central-peripheral distal axonopathy that develops 8-14 days after poisoning by a neuropathic organophosphorus compound (OP). Several OPs that caused OPIDN were withdrawn from the agricultural market due to induction of serious delayed effects. Therefore, the development of in vitro screenings able to differentiate neuropathic from non-neuropathic OPs is of crucial importance. Thus, the aim of this study was to evaluate the differences in the neurotoxic effects of mipafox (neuropathic OP) and paraoxon (non-neuropathic OP) in SH-SY5Y human neuroblastoma cells, using the inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), activation of calpain, neurite outgrowth, cytotoxicity and intracellular calcium as indicators. Additionally, the potential of fenamiphos and profenofos to cause acute and/or delayed effects was also evaluated. Mipafox had the lowest IC50 and induced the highest percentage of aging of NTE among the OPs evaluated. Only mipafox was able to cause calpain activation after 24 h of incubation. Concentrations of mipafox and fenamiphos which inhibited at least 70% of NTE were also able to reduce neurite outgrowth. Cytotoxicity was higher in non-neuropathic than in neuropathic OPs while the intracellular calcium levels were higher in neuropathic than in non-neuropathic OPs. In conclusion, the SH-SY5Y cellular model was selective to differentiate neuropathic from non-neuropathic OPs; fenamiphos, but not profenofos presented results compatible with the induction of OPIDN.
Collapse
Affiliation(s)
- Guilherme L Emerick
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil; Departamento de Farmácia, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso - ICS/UFMT/CUS, Sinop, MT, Brazil.
| | - Laís S Fernandes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eloísa Silva de Paula
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, USP, Avenida do Café s/n, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Fernandes LS, Emerick GL, Santos NAGD, de Paula ES, Barbosa F, Santos ACD. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicol In Vitro 2015; 29:522-8. [DOI: 10.1016/j.tiv.2015.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/13/2014] [Accepted: 01/02/2015] [Indexed: 11/30/2022]
|
16
|
Muller M, Hess L, Tardivo A, Lajmanovich R, Attademo A, Poletta G, Simoniello MF, Yodice A, Lavarello S, Chialvo D, Scremin O. Neurologic dysfunction and genotoxicity induced by low levels of chlorpyrifos. Neurotoxicology 2014; 45:22-30. [PMID: 25196089 DOI: 10.1016/j.neuro.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus cholinesterase inhibitor widely used as an insecticide. Neuro and genotoxicity of this agent were evaluated following daily subcutaneous injections at 0.1, 1 and 10mg/kg or its vehicle to laboratory rats during one week, at the end of which somatosensory evoked potentials (SEP) and power spectrum of the electroencephalogram (EEGp) were recorded under urethane anesthesia. In another group of conscious animals, auditory startle reflex (ASR) was evaluated followed, after euthanasia, with measurements of plasma B-esterases, and genotoxicity with the alkaline comet assay (ACA) at the same CPF doses. The results indicated a CPF dose related inhibition of B-esterases. Enhanced inhibition of the ASR by a subthreshold pre-pulse was observed at all doses and ACA showed a significant higher DNA damage than vehicle controls in animals exposed to 10mg/kg CPF. A trend to higher frequencies of EEGp and an increase in amplitude of the first negative wave of the SEP were found at all doses. The first positive wave of the SEP decreased at the CPF dose of 10mg/kg. In summary, a shift to higher EEG frequencies and alterations of somatosensory and auditory input to the central nervous system were sensitive manifestations of CPF toxicity, associated with depression of B-esterases. The changes in electrical activity of the cerebral cortex and DNA damage observed at doses that do not elicit overt toxicity may be useful in the detection of CPF exposure before clinical signs appear.
Collapse
Affiliation(s)
- Mariel Muller
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina
| | - Leonardo Hess
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina
| | - Agostina Tardivo
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina
| | - Rafael Lajmanovich
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
| | - Andres Attademo
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
| | - Gisela Poletta
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
| | - Maria Fernanda Simoniello
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
| | - Agustina Yodice
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina
| | - Simona Lavarello
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina
| | - Dante Chialvo
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina
| | - Oscar Scremin
- PROFISIO, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina; Greater Los Angeles VA Healthcare System and David Geffen School of Medicine at UCLA, 11301 Wilshire Building, Los Angeles, CA 90073, USA.
| |
Collapse
|
17
|
Si Y, Zhang N, Sun Z, Li S, Zhao L, Li R, Wang H. A phosphorylation-sensitive tyrosine-tailored magnetic particle for electrochemically probing free organophosphates in blood. Analyst 2014; 139:5466-71. [DOI: 10.1039/c4an01074d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation-sensitive tyrosine was coated onto Fe3O4 particles, resulting in a “lab-on-a-particle”-based electrochemical detection protocol for probing free organophosphates in blood.
Collapse
Affiliation(s)
- Yanmei Si
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Ning Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Zongzhao Sun
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Shuai Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Liyang Zhao
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Rui Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Hua Wang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| |
Collapse
|
18
|
Makhaeva GF, Radchenko EV, Palyulin VA, Rudakova EV, Aksinenko AY, Sokolov VB, Zefirov NS, Richardson RJ. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem Biol Interact 2013; 203:231-7. [DOI: 10.1016/j.cbi.2012.10.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
|
19
|
Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 2012; 203:238-44. [PMID: 23220002 DOI: 10.1016/j.cbi.2012.10.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
Neuropathy target esterase (NTE) was discovered by M.K. Johnson in his quest for the entity responsible for the striking and mysterious paralysis brought about by certain organophosphorus (OP) esters. His pioneering work on OP neuropathy led to the view that the biochemical lesion consisted of NTE that had undergone OP inhibition and aging. Indeed, nonaging NTE inhibitors failed to produce disease but protected against neuropathy from subsequently administered aging inhibitors. Thus, inhibition of NTE activity was not the culprit; rather, formation of an abnormal protein was the agent of the disorder. More recently, however, Paul Glynn and colleagues showed that whereas conventional knockout of the NTE gene was embryonic lethal, conditional knockout of central nervous system NTE produced neurodegeneration, suggesting to these authors that the absence of NTE rather than its presence in some altered form caused disease. We now know that NTE is the 6th member of a 9-protein family called patatin-like phospholipase domain-containing proteins, PNPLA1-9. Mutations in the catalytic domain of NTE (PNPLA6) are associated with a slowly developing disease akin to OP neuropathy and hereditary spastic paraplegia called NTE-related motor neuron disorder (NTE-MND). Furthermore, the NTE protein from affected individuals has altered enzymological characteristics. Moreover, closely related PNPLA7 is regulated by insulin and glucose. These seemingly disparate findings are not necessarily mutually exclusive, but we need to reconcile recent genetic findings with the historical body of toxicological data indicating that inhibition and aging of NTE are both necessary in order to produce neuropathy from exposure to certain OP compounds. Solving this mystery will be satisfying in itself, but it is also an enterprise likely to pay dividends by enhancing our understanding of the physiological and pathogenic roles of the PNPLA family of proteins in neurological health and disease, including a potential role for NTE in diabetic neuropathy.
Collapse
Affiliation(s)
- Rudy J Richardson
- Toxicology Program, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
20
|
Baker PE, Cole TB, Cartwright M, Suzuki SM, Thummel KE, Lin YS, Co AL, Rettie AE, Kim JH, Furlong CE. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants. Chem Biol Interact 2012; 203:257-64. [PMID: 23085349 DOI: 10.1016/j.cbi.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/22/2012] [Accepted: 10/10/2012] [Indexed: 11/15/2022]
Abstract
Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC(50) value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid naringenin dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing.
Collapse
Affiliation(s)
- Paul E Baker
- Department of Medicine-Division of Medical Genetics, University of Washington, Seattle, WA 98195, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Calcium-dependent neutral cysteine protease and organophosphate-induced delayed neuropathy. Chem Biol Interact 2012; 200:114-8. [PMID: 23092810 DOI: 10.1016/j.cbi.2012.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
A few organophosphorus compounds (OPs) can cause toxic neuropathy known as organophosphorus ester-induced delayed neuropathy (OPIDN). Although the incidents of OPIDN have been documented for over a century, its molecular mechanisms underlying the axonopathy are still unclear. Recently, increasing evidences suggest that proteases are closely associated with OPIDN. Herein, we have summarized the roles of calcium-dependent cysteine proteases (calpains) in OPIDN. The activation of calpains should be an early molecular event during the onset and development of OPIDN. However, the understanding of the mechanism underlying the disruption of Ca(2+) homeostasis and the activation of calpain by neurotoxic OPs is still limited. Therefore, a better understanding of molecular mechanisms that can prevent the disturbance in cellular Ca(2+) homeostasis can facilitate to establish the novel therapeutic strategies for OPIDN.
Collapse
|
22
|
Henschler D, Schmuck G, van Aerssen M, Schiffmann D. The inhibitory effect of neuropathic organophosphate esters on neurite outgrowth in cell cultures: A basis for screening for delayed neurotoxicity. Toxicol In Vitro 2012; 6:327-35. [PMID: 20732129 DOI: 10.1016/0887-2333(92)90022-j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1991] [Revised: 01/06/1992] [Indexed: 10/27/2022]
Abstract
Organophosphates have previously been tested for the induction of delayed neuropathy in adult hens. An alternative in vitro test, which avoids the severe suffering caused by the test in hens, has been developed using permanent cell lines from a rat-brain glioma (C-6) or from a mouse-brain neuroblastoma (N-18). Addition of dibutyryl cAMP to these cell cultures triggers the development of neurite-like processes; the development of these processes is inhibited by the addition of various organophosphate compounds and this inhibition serves as an indicator of neurotoxicity. 26 compounds with positive results in the in vivo test in hens, and eight analogues with negative results were tested in vitro. An almost perfect correlation between the in vivo and in vitro results was found; two compounds with weak positive results in vitro (O,O,S-trimethyl phosphorothioate and O,S,S-trimethyl phosphorothioate) yielded negative results in hens but this discrepancy may be related to their bioavailability in hens. The in vitro test is recommended to avoid the pain and stress caused by testing in vivo in hens.
Collapse
Affiliation(s)
- D Henschler
- Institute of Toxicology, University of Würzburg, Versbacher Strasse 9, D-8700 Würzburg, Germany
| | | | | | | |
Collapse
|
23
|
Amara S, Delorme V, Record M, Carrière F. Inhibition of phospholipase A1, lipase and galactolipase activities of pancreatic lipase-related protein 2 by methyl arachidonyl fluorophosphonate (MAFP). Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1379-85. [PMID: 22835523 DOI: 10.1016/j.bbalip.2012.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022]
Abstract
Methyl arachidonyl fluorophosphonate (MAFP) is a known inhibitor of cytosolic phospholipase A2 and some other serine enzymes. MAFP was found here to be an irreversible inhibitor of human pancreatic lipase-related protein 2 (HPLRP2), an enzyme displaying lipase, phospholipase A1 and galactolipase activities. In the presence of MAFP, mass spectrometry analysis of HPLRP2 revealed a mass increase of 351Da, suggesting a covalent binding of MAFP to the active site serine residue. When HPLRP2 was pre-incubated with MAFP before measuring residual activity, a direct inhibition of HPLRP2 occurred, confirming that HPLRP2 has an active site freely accessible to solvent and differs from most lipases in solution. HPLRP2 activities on tributyrin (TC4), phosphatidylcholine (PC) and monogalactosyl dioctanoylglycerol (C8-MGDG) were equally inhibited under these conditions. Bile salts were not required to trigger the inhibition, but they significantly increased the rate of HPLRP2 inhibition, probably because of MAFP micellar solubilization. Since HPLRP2 is active on various substrates that self-organize differently in the presence of water, HPLRP2 inhibition by MAFP was tested in the presence of these substrates after adding MAFP in the course of the lipolysis reaction. In this case, the rates of inhibition of lipase, phospholipase A1 and galactolipase activities were not equivalent (triglycerides>PC>MGDG), suggesting different enzyme/inhibitor partitioning between the aqueous phase and lipid aggregates. The inhibition by MAFP of a well identified phospholipase A1 (HPLRP2), present in pancreatic juice and also in human monocytes, indicates that MAFP cannot be used for discriminating phospholipase A2 from A1 activities at the cellular level.
Collapse
Affiliation(s)
- Sawsan Amara
- CNRS-Aix-Marseille Université-Enzymologie Interfaciale et Physiologie de la Lipolyse-UMR 7282, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
24
|
Emerick GL, DeOliveira GH, dos Santos AC, Ehrich M. Mechanisms for consideration for intervention in the development of organophosphorus-induced delayed neuropathy. Chem Biol Interact 2012; 199:177-84. [PMID: 22819951 DOI: 10.1016/j.cbi.2012.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/15/2022]
Abstract
Organophosphorus-induced delayed neuropathy (OPIDN) is a neurodegenerative disorder characterised by ataxia progressing to paralysis with concomitant central and peripheral distal axonopathy. Symptoms of OPIDN in people include tingling of the hands and feet. This tingling is followed by sensory loss, progressive muscle weakness and flaccidity of the distal skeletal muscles of the lower and upper extremities and ataxia, which appear about 8-14 days after exposure. Some organophosphorus compounds (OPs) that are still used in worldwide agriculture have potential to induce OPIDN, including methamidophos, trichlorfon, dichlorvos and chorpyrifos. This review summarizes experimental attempts to prevent and/or treat OPIDN and the different mechanisms involved in each approach. The initial mechanism associated with development of OPIDN is phosphorylation and inhibition of neuropathy target esterase (NTE). The phosphorylated enzyme undergoes a second reaction known as "aging" that results in the loss of one of the "R" groups bound to the phosphorus of the OP. A second mechanism involved in OPIDN is an imbalance in calcium homeostasis. This can lead to the activation of calcium-activated neutral protease and increases in calcium/calmodulin-dependent protein kinases. These events contribute to aberrant phosphorylation of cytoskeletal proteins and protein digestion in the terminal axon that can proceed similarly to Wallerian-type degeneration. Several experimental studies demonstrated alleviation of the signs and symptoms of OPIDN by restoring calcium balance. Other studies have used preadministration of NTE inhibitors, such as carbamates, thiocarbamates, sulfonyl fluorides and phosphinate to prevent OPIDN. Progress is being made, but there is yet no single specific treatment available for use in clinical practice to prevent or alleviate the severe effects of OPIDN.
Collapse
Affiliation(s)
- Guilherme L Emerick
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil.
| | | | | | | |
Collapse
|
25
|
Jalali N, Balali-Mood M, Jalali I, Shakeri MT. Electrophysiological changes in patients with acute organophosphorous pesticide poisoning. Basic Clin Pharmacol Toxicol 2010; 108:251-5. [PMID: 21156031 DOI: 10.1111/j.1742-7843.2010.00652.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organophosphorous pesticides (OP) are widely used in agriculture without proper control in the Islamic Republic of Iran and thus OP poisonings are common in this country. Epidemiological and management aspects of OP have been studied in detail, but there have been very few reports on peripheral polyneuropathy, particularly electrophysiological changes related to this poisoning. Thus, we aimed to study electrophysiological changes including electromyography (EMG) and nerve conduction velocity (NCV) in patients with OP poisoning. The patients with acute moderate to severe OP poisonings who revealed clinical symptoms and signs of peripheral polyneuropathy after recovery of the acute phase of intoxication were investigated from 2005 to 2006 in Mashhad, Iran. These patients lacked previous neurological problems and had not been chronically exposed to OP. EMG and NCV were performed using MEDELEC MS92 & TOENNIES Multiliner E. Statistical analyses including Student's t-test and Pearson's test were applied using SPSS (Version 11.5). Of 342 hospitalized patients, eight patients (four females and four males) aged 13-59 years were investigated. Intervals between the onset of OP poisoning and electrodiagnostic tests varied between 10 and 210 days. On EMG, there was a sensory-motor peripheral polyneuropathy, which was predominantly a distal sensory deficit. Sensory nerve dysfunction (84.4%) was significantly higher (p < 0.001) than motor dysfunctions (18.7%). The lower extremities, particularly tibial and peroneal nerves, were more affected than the upper extremities (p < 0.0001). Sensory nerve dysfunction of the lower extremities was more common than motor nerves, which was predominantly a distal sensory deficit.
Collapse
Affiliation(s)
- Navid Jalali
- Medical Toxicology Research Center, Imam Reza Hospital, Medical School, Mashhad University of Medical Sciences (MUMS), Mashhad, I.R. Iran
| | | | | | | |
Collapse
|
26
|
Sogorb MA, González-González I, Pamies D, Vilanova E. An alternative in vitro method for detecting neuropathic compounds based on acetylcholinesterase inhibition and on inhibition and aging of neuropathy target esterase (NTE). Toxicol In Vitro 2010; 24:942-52. [PMID: 20097283 DOI: 10.1016/j.tiv.2010.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 11/18/2022]
Abstract
Organophosphorus-induced delayed polyneuropathy (OPIDP) is a syndrome induced by certain organophosphorus compounds (OPs) through a mechanism based on the inhibition and further modification (aging) of neuropathy target esterase (NTE). OECD guidelines for testing the capability of OPs to trigger OPIDP include two in vivo tests with hens. Activities of acetylcholinesterase and NTE found in SH-SY5Y human neuroblastoma cells were inhibited by 10 different OPs with kinetics similar to those found with chicken brain enzymes (model system for in vivo and in vitro-ex vivo assays). NTE in SH-SY5Y cells inhibited by these OPs aged and reactivated similarly to that described for hen brain NTE ex vivo. In short, we have developed an alternative methodology for predicting the capability of OPs to induce OPIDP based on the inhibition kinetics of acetylcholinesterase and NTE and on the capability of OPs to age the inhibited NTE from SH-SY5Y cell line. The results obtained always agreed with the previously reported ex vivo results with hen brain. The developed methodology correctly predicted the neuropathic potential of the tested OPs in eight cases. The in vivo-in vitro discrepancies with two of the tested compounds can be explained on the basis of differences between in vivo and in vitro biotransformation.
Collapse
Affiliation(s)
- Miguel A Sogorb
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain.
| | | | | | | |
Collapse
|
27
|
Paradox findings may challenge orthodox reasoning in acute organophosphate poisoning. Chem Biol Interact 2009; 187:270-8. [PMID: 19883634 DOI: 10.1016/j.cbi.2009.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/17/2009] [Accepted: 10/20/2009] [Indexed: 12/15/2022]
Abstract
It is generally accepted that inhibition of acetylcholinesterase (AChE) is the most important acute toxic action of organophosphorus compounds, leading to accumulation of acetylcholine followed by a dysfunction of cholinergic signaling. However, the degree of AChE inhibition is not uniformly correlated with cholinergic dysfunction, probably because the excess of essential AChE varies among tissues. Moreover, the cholinergic system shows remarkable plasticity, allowing modulations to compensate for dysfunctions of the canonical pathway. A prominent example is the living (-/-) AChE knockout mouse. Clinical experience indicates that precipitous inhibition of AChE leads to more severe poisoning than more protracted yet finally complete inhibition. The former situation is seen in parathion, the latter in oxydemeton methyl poisoning. At first glance, this dichotomy is surprising since parathion is a pro-poison and has to be activated to the oxon, while the latter is still the ultimate inhibitor. Also oxime therapy in organophosphorus poisoning apparently gives perplexing results: Oximes are usually able to reactivate diethylphosphorylated AChE, but the efficiency may be occasionally markedly smaller than expected from kinetic data. Dimethylphosphorylated AChE is in general less amenable to oxime therapy, which largely fails in some cases of dimethoate poisoning where aging was much faster than expected from a dimethylphosphorylated enzyme. Similarly, poisoning by profenofos, an O,S-dialkyl phosphate, leads to a rapidly aged enzyme. Most surprisingly, these patients were usually well on admission, yet their erythrocyte AChE was completely inhibited. Analysis of the kinetic constants of the most important reaction pathways, determination of the reactant concentrations in vivo and comparison with computer simulations may reveal unexpected toxic reactions. Pertinent examples will be presented and the potentially underlying phenomena discussed.
Collapse
|
28
|
Aldridge WN, Holmstedt B. Metrifonate and dichlorvos: theoretical and practical aspects. History and scope of the conference. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 49 Suppl 5:3-6. [PMID: 7046344 DOI: 10.1111/j.1600-0773.1981.tb03247.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Johnson MK. Delayed neurotoxicity - do trichlorphon and/or dichlorvos cause delayed neuropathy in man or in test animals? ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 49 Suppl 5:87-98. [PMID: 7344417 DOI: 10.1111/j.1600-0773.1981.tb03257.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many, but not all, reports of delayed neuropathy associated with acute poisoning by trichlorphon refer to cases in U.S.S.R. Adulteration of technical trichlorphon with the ethyl analogue would greatly increase the neurotoxic hazard but analysis of a few samples has not revealed such impurities. Simultaneous ingestion of alcohol does not appear to increase neuropathic hazard. In hens double doses of trichlorphon each exceeding unprotected LD50 can produce moderate neuropathy associated with appropriately high inhibitions of neurotoxic esterase. Similar results are obtained with 2 doses of 10 x LD50 of dichlorvos. In vitro the inhibitory power of dichlorvos against neurotoxic esterase of hen brain is 0.02 x the power against acetylcholinesterase. This ratio correlates reasonably with the ratio of LD50/neuropathic dose. The factor for human brain enzymes is 0.06 suggesting that man is more susceptible to neuropathic effects of near-lethal doses of circulating dichlorvos. It is concluded that the only neuropathic hazard to man from good quality trichlorphon arises from rapid ingestion of massive doses. To obtain critical levels of inhibition of neurotoxic esterase and to cause neuropathy in man by repeated doses would require each dose to be severely toxic. Dichlorvos ingested in large doses is likely to kill rather than to cause neuropathy.
Collapse
|
30
|
Grecco FB, Schild AL, Soares MP, Raffi MB, Sallis ESV, Damé MC. Intoxicação por organofosforados em búfalos (Bubalus bubalis) no Rio Grande do Sul. PESQUISA VETERINÁRIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000300004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Descreve-se um surto de intoxicação por organofosforados (ORFs) em búfalos (Bubalus bubalis) na região sul do Rio Grande do Sul. Os animais foram submetidos à aplicação de Expertan® pour-on (clorpirifós) na dose de 12mg/kg de peso animal para controle de infestação por piolhos e desenvolveram sinais clínicos de intoxicação em um período variável entre 7-45 dias após a exposição ao produto. Os sinais clínicos caracterizaram-se por anorexia, diarréia, salivação intensa, incoordenação motora, tremores musculares, paresia e paralisia flácida, decúbito lateral e morte. Em conseqüência da intoxicação morreram 61 búfalos de um total de 267 animais sob risco. Foram realizadas três necropsias de búfalos que morreram 24-72 horas após o início dos sinais clínicos. As lesões macroscópicas caracterizaram-se por congestão e hemorragias intestinais, enfisema e edema pulmonares. Não foram observadas alterações microscópicas significativas em nenhum dos animais. Apesar da ausência de alterações histológicas no sistema nervoso central e periférico, os achados epidemiológicos, clínicos, macroscópicos e toxicológicos sugerem o diagnóstico de neurotoxicidade tardia induzida por ORFs.
Collapse
|
31
|
Barry RC, Lin Y, Wang J, Liu G, Timchalk CA. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2009; 19:1-18. [PMID: 19018275 PMCID: PMC2909474 DOI: 10.1038/jes.2008.71] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/30/2008] [Accepted: 09/23/2008] [Indexed: 05/27/2023]
Abstract
The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical (EC) sensors has the potential to meet the needs for low cost, rapid, high-throughput, and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective EC sensors capable of pM sensitivity, high-throughput and low sample requirements (<50 microl) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next generation of biomonitoring analyzers. This paper highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed.
Collapse
Affiliation(s)
- Richard C Barry
- aBiological Monitoring and Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
32
|
De Nola G, Kibby J, Mazurek W. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry. J Chromatogr A 2008; 1200:211-6. [DOI: 10.1016/j.chroma.2008.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/04/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
|
33
|
Kienesberger PC, Lass A, Preiss-Landl K, Wolinski H, Kohlwein SD, Zimmermann R, Zechner R. Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 2008; 283:5908-17. [PMID: 18086666 DOI: 10.1074/jbc.m709598200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuropathy target esterase (NTE) is a member of the family of patatin domain-containing proteins and exhibits phospholipase activity in brain and cultured cells. NTE was originally identified as target enzyme for organophosphorus compounds that cause a delayed paralyzing syndrome with degeneration of nerve axons. Here we show that the structurally related murine protein NTE-related esterase (NRE) is a potent lysophospholipase. The enzyme efficiently hydrolyzes sn-1 esters in lysophosphatidylcholine and lysophosphatidic acid. No lipase activity was observed when triacylglycerols, cholesteryl esters, retinyl esters, phosphatidylcholine, or monoacylglycerol were used as substrates. Although NTE is predominantly expressed in the nervous system, we found the highest NRE mRNA levels in testes, skeletal muscle, cardiac muscle, and adipose tissue. Induction of NRE mRNA concentrations in these tissues during fasting suggested a nutritional regulation of enzyme expression and, in accordance with this observation, insulin reduced NRE mRNA levels in a dose-dependent manner in 3T3-L1 adipocytes. A green fluorescent protein-NRE fusion protein colocalized to the endoplasmic reticulum and lipid droplets. Thus, NRE is a previously unrecognized ER- and lipid droplet-associated lysophospholipase. Regulation of enzyme expression by the nutritional status and insulin suggests a role of NRE in the catabolism of lipid precursors and/or mediators that affect energy metabolism in mammals.
Collapse
|
34
|
Liu G, Wang J, Barry R, Petersen C, Timchalk C, Gassman PL, Lin Y. Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chemistry 2008; 14:9951-9. [PMID: 18942695 PMCID: PMC2909471 DOI: 10.1002/chem.200800412] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE), which is a potential biomarker of exposure to organophosphate (OP) pesticides and chemical warfare nerve agents. Zirconia nanoparticles (ZrO(2) NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to quantify the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO(2) NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemical stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as the model OP insecticide to prepare the phosphorylated AChE adducts to demonstrate proof of principle for the sensor. The phosphorylated AChE adduct was characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy. The binding affinity of anti-AChE to the phosphorylated AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO(2) NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM phosphorylated AChE, and the limit of detection is estimated to be 8.0 pM. The immunosensor also successfully detected phosphorylated AChE in human plasma. This new nanoparticle-based electrochemical immunosensor provides an opportunity to develop field-deployable, sensitive, and quantitative biosensors for monitoring exposure to a variety of OP pesticides and nerve agents.
Collapse
Affiliation(s)
- Guodong Liu
- Pacific Northwest National Laboratory, Richland, WA, 99352(USA)
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND, 58105 (USA), Fax: (+1) 701-231-8697,
| | - Jun Wang
- Pacific Northwest National Laboratory, Richland, WA, 99352(USA)
| | - Richard Barry
- Pacific Northwest National Laboratory, Richland, WA, 99352(USA)
| | | | | | - Paul L Gassman
- Pacific Northwest National Laboratory, Richland, WA, 99352(USA)
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, WA, 99352(USA)
| |
Collapse
|
35
|
|
36
|
Yurumez Y, Cemek M, Yavuz Y, Birdane YO, Buyukokuroglu ME. Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol Pharm Bull 2007; 30:490-4. [PMID: 17329844 DOI: 10.1248/bpb.30.490] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies showed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compounds toxicity. The aim of present study was to investigate either prophylactic and therapeutic effects of N-acetylcysteine (NAC) against fenthion-induced oxidative stress in mice. Additionally, the effects on survival rates were investigated. Therefore, we determined the changes of the blood levels of glutathione (GSH), malondialdehyde (MDA), nitrite, and nitrate in blood or serum. Additionally, all animals were observed for 6 h and the survival rates were recorded. It was found that fenthion administration increased the levels of MDA, and decreased the levels of GSH, nitrite and nitrate. On the other hand, both prophylactic and therapeutic NAC treatment decreased the levels of MDA, and increased the levels of GSH, nitrite, and nitrate. The results showed that NAC is able to attenuate the fenthion-induced oxidative stress whereby NAC has not only prophylactic but also therapeutic activity in fenthion poisoning. On the other hand, we found that NAC can clearly improve survival rates in mice administered with an acute high dose of fenthion poisoning. In conclusion, NAC can decrease OP-induced oxidative stress and mortality rate, but the exact mechanism of its NAC protective effect needs to be explored further.
Collapse
Affiliation(s)
- Yusuf Yurumez
- Department of Emergency Medicine, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, 03200 Turkey.
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Wu SY, Yoshida M, Casida JE. 2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide labelled with tritium in the octyl and aryl moieties. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580341005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hargreaves AJ, Fowler MJ, Sachana M, Flaskos J, Bountouri M, Coutts IC, Glynn P, Harris W, Graham McLean W. Inhibition of neurite outgrowth in differentiating mouse N2a neuroblastoma cells by phenyl saligenin phosphate: Effects on MAP kinase (ERK 1/2) activation, neurofilament heavy chain phosphorylation and neuropathy target esterase activity. Biochem Pharmacol 2006; 71:1240-7. [PMID: 16499876 DOI: 10.1016/j.bcp.2006.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/30/2022]
Abstract
Sub-lethal concentrations of the organophosphate phenyl saligenin phosphate (PSP) inhibited the outgrowth of axon-like processes in differentiating mouse N2a neuroblastoma cells (IC(50) 2.5 microM). A transient rise in the phosphorylation state of neurofilament heavy chain (NFH) was detected on Western blots of cell extracts treated with 2.5 microM PSP for 4 h compared to untreated controls, as determined by a relative increase in reactivity with monoclonal antibody Ta51 (anti-phosphorylated NFH) compared to N52 (anti-total NFH). However, cross-reactivity of PSP-treated cell extracts was lower than that of untreated controls after 24 h exposure, as indicated by decreased reactivity with both antibodies. Indirect immunofluorescence analysis with these antibodies revealed the appearance of neurofilament aggregates in the cell bodies of treated cells and reduced axonal staining compared to controls. By contrast, there was no significant change in reactivity with anti-alpha-tubulin antibody B512 at either time point. The activation state of the MAP kinase ERK 1/2 increased significantly after PSP treatment compared to controls, particularly at 4 h, as indicated by increased reactivity with monoclonal antibody E-4 (anti-phosphorylated MAP kinase) but not with polyclonal antibody K-23 (anti-total MAP kinase). The observed early changes were concomitant with almost complete inhibition of the activity of neuropathy target esterase (NTE), one of the proposed early molecular targets in organophosphate-induced delayed neuropathy (OPIDN).
Collapse
Affiliation(s)
- Alan J Hargreaves
- School of Biomedical and Natural Sciences, Nottingham Trent University, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Organophosphate (OP)-type chemical warfare agents (nerve agents) present a constant threat to the population. Sensitive and specific methods for the detection and verification of exposure to nerve agents are required for diagnosis, therapeutic monitoring, health surveillance and forensic purposes. Determination of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in blood remains a mainstay for the fast initial screening but lacks sensitivity and specificity. Quantitative analysis of nerve agents and their degradation products in plasma and urine by mass spectrometric methods may prove exposure but is limited to hours or days after the incident due to the short residence time of the analytes. Investigation of protein adducts extends the time interval between exposure and sampling and may be suitable to detect low-level exposure. Definitive prove of exposure requires a spectrum of different methods, expensive and sophisticated equipment and will be limited to specialized laboratories.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | | | | | |
Collapse
|
41
|
Casida JE, Quistad GB. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 2005; 17:983-98. [PMID: 15310231 DOI: 10.1021/tx0499259] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
42
|
Abstract
Organophosphate-induced delayed polyneuropathy (OPIDP) is a rare toxicity resulting from exposure to certain organophosphorus (OP) esters. It is characterised by distal degeneration of some axons of both the peripheral and central nervous systems occurring 1-4 weeks after single or short-term exposures. Cramping muscle pain in the lower limbs, distal numbness and paraesthesiae occur, followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. Signs include high-stepping gait associated with bilateral foot drop and, in severe cases, quadriplegia with foot and wrist drop as well as pyramidal signs. In time, there might be significant recovery of the peripheral nerve function but, depending on the degree of pyramidal involvement, spastic ataxia may be a permanent outcome of severe OPIDP. Human and experimental data indicate that recovery is usually complete in the young. At onset, the electrophysiological changes include reduced amplitude of the compound muscle potential, increased distal latencies and normal or slightly reduced nerve conduction velocities. The progression of the disease, usually over a few days, may lead to non-excitability of the nerve with electromyographical signs of denervation. Nerve biopsies have been performed in a few cases and showed axonal degeneration with secondary demyelination. Neuropathy target esterase (NTE) is thought to be the target of OPIDP initiation. The ratio of inhibitory powers for acetylcholinesterase and NTE represents the crucial guideline for the aetiological attribution of OP-induced peripheral neuropathy. In fact, pre-marketing toxicity testing in animals selects OP insecticides with cholinergic toxicity potential much higher than that to result in OPIDP. Therefore, OPIDP may develop only after very large exposures to insecticides, causing severe cholinergic toxicity. However, this was not the case with certain triaryl phosphates that were not used as insecticides but as hydraulic fluids, lubricants and plasticisers and do not result in cholinergic toxicity. Several thousand cases of OPIDP as a result of exposure to tri-ortho-cresyl phosphate have been reported, whereas the number of cases of OPIDP as a result of OP insecticide poisoning is much lower. In this article, we mainly discuss OP pesticide poisoning, particularly when caused by chlorpyrifos, dichlorvos, isofenphos, methamidophos, mipafox, trichlorfon, trichlornat, phosphamidon/mevinphos and by certain carbamates. We also discuss case reports where neuropathies were not convincingly attributed to fenthion, malathion, omethoate/dimethoate, parathion and merphos. Finally, several observational studies on long-term, low-level exposures to OPs that sometimes reported mild, inconsistent and unexplained changes of unclear significance in peripheral nerves are briefly discussed.
Collapse
Affiliation(s)
- Marcello Lotti
- Department of Environmental Medicine and Public Health, University of Padua, Padova, Italy.
| | | |
Collapse
|
43
|
Meier C, Ducho C, Görbig U, Esnouf R, Balzarini J. Interaction of cycloSal-pronucleotides with cholinesterases from different origins. A structure-activity relationship. J Med Chem 2004; 47:2839-52. [PMID: 15139762 DOI: 10.1021/jm031032a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large number of cycloSal-nucleotide triesters 1-49 have been studied concerning their ability to inhibit cholinesterases of different origins as well as to inhibit HIV replication in cell culture. It was shown that none of the triesters showed inhibitory effects against human acetylcholinesterase (AChE; isolated enzyme) as well as against AChE from beef erythrocytes and calf serum. In contrast, inhibition of butyrylcholinesterase (BChE) has been observed for some triesters in human and mouse serum. cycloSal pronucleotides showed strong competitive inhibition with respect to the substrate acetylcholine chloride (K(i)/K(m): approximately 2 x 10(-5)) and acted by time-dependent irreversible inhibition of the human serum BChE. Detailed studies demonstrated that the inhibitory effect against BChE is dependent on the nucleoside analogue, the substitution pattern of the cycloSal-moiety, and particularly on the stereochemistry at the phosphorus atom. Structural requirements to avoid the inhibition of BChE by cycloSal-nucleotide triesters have been elucidated in the reported study.
Collapse
Affiliation(s)
- Chris Meier
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The number of intoxications with organophosphorus pesticides (OPs) is estimated at some 3,000,000 per year, and the number of deaths and casualties some 300,000 per year. OPs act primarily by inhibiting acetylcholinesterase (AChE), thereby allowing acetylcholine to accumulate at cholinergic synapses, disturbing transmission at parasympathetic nerve endings, sympathetic ganglia, neuromuscular endplates and certain CNS regions. Atropine is the mainstay of treatment of effects mediated by muscarine sensitive receptors; however, atropine is ineffective at the nicotine sensitive synapses. At both receptor types, reactivation of inhibited AChE may improve the clinical picture. The value of oximes, however, is still a matter of controversy. Enthusiastic reports of outstanding antidotal effectiveness, substantiated by laboratory findings of reactivated AChE and improved neuromuscular transmission, contrast with many reports of disappointing results. In vitro studies with human erythrocyte AChE, which is derived from the same single gene as synaptic AChE, revealed marked differences in the potency and efficacy of pralidoxime, obidoxime, HI 6 and HLö 7, the latter two oximes being considered particularly effective in nerve agent poisoning. Moreover, remarkable species differences in the susceptibility to oximes were revealed, requiring caution when animal data are extrapolated to humans. These studies impressively demonstrated that any generalisation regarding an effective oxime concentration is inappropriate. Hence, the 4 mg/L concept should be dismissed. To antagonise the toxic effects of the most frequently used OPs, pralidoxime plasma concentrations of around 80 mumol/L (13.8 mg/L pralidoxime chloride) should be attained while obidoxime plasma concentrations of 10 mumol/L (3.6 mg/L obidoxime chloride) may be sufficient. These concentrations should be maintained as long as circulating poison is expected to be present, which may require oxime therapy for up to 10 days. Various dosage regimens exist to reach this goal. The most appropriate consists of a bolus short infusion followed by a maintenance dosage. For pralidoxime chloride, a 1 g bolus over 30 minutes followed by an infusion of 0.5 g/h appears appropriate to maintain the target concentrtion of about 13 mg/L (70 kg person). For obidoxime chloride, the appropriate dosage is a 0.25 g bolus followed by an infusion of 0.75 g/24 h. These concentrations are well tolerated and keep a good portion of AChE in the active state, thereby retarding the AChE aging rate. AChE aging is particularly rapid with dimethyl phosphoryl compounds and may thwart the effective reactivation by oximes, particularly in suicidal poisoning with excessive doses. In contrast, patients with diethyl OP poisoning may particularly benefit from oxime therapy, even if no improvement is seen during the first days when the poison load is high. The low propensity to aging with diethyl OP poisoning may allow reactivation after several days, when the poison concentration drops. Rigorous testing of the benefits of oximes is only possible in randomised controlled trials with clear stratification according to the class of pesticides involved, time elapsed between exposure and treatment and severity of cholinergic symptoms on admission.
Collapse
Affiliation(s)
- Peter Eyer
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
45
|
Quistad GB, Barlow C, Winrow CJ, Sparks SE, Casida JE. Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc Natl Acad Sci U S A 2003; 100:7983-7. [PMID: 12805562 PMCID: PMC164699 DOI: 10.1073/pnas.1232473100] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropathy target esterase (NTE) is inhibited by several organophosphorus (OP) pesticides, chemical warfare agents, lubricants, and plasticizers, leading to OP-induced delayed neuropathy in people (>30,000 cases of human paralysis) and hens (the best animal model for this demyelinating disease). The active site region of NTE as a recombinant protein preferentially hydrolyzes lysolecithin, suggesting that this enzyme may be a type of lysophospholipase (LysoPLA) with lysolecithin as its physiological substrate. This hypothesis is tested here in mouse brain by replacing the phenyl valerate substrate of the standard NTE assay with lysolecithin for an "NTE-LysoPLA" assay with four important findings. First, NTE-LysoPLA activity, as the NTE activity, is 41-45% lower in Nte-haploinsufficient transgenic mice than in their wild-type littermates. Second, the potency of six delayed neurotoxicants or toxicants as in vitro inhibitors varies from IC50 0.02 to 13,000 nM and is essentially the same for NTE-LysoPLA and NTE (r2 = 0.98). Third, the same six delayed toxicants administered i.p. to mice at multiple doses inhibit brain NTE-LysoPLA and NTE to the same extent (r2 = 0.90). Finally, their in vivo inhibition of brain NTE-LysoPLA generally correlates with delayed toxicity. Therefore, OP-induced delayed toxicity in mice, and possibly the hyperactivity associated with NTE deficiency, may be due to NTE-LysoPLA inhibition, leading to localized accumulation of lysolecithin, a known demyelinating agent and receptor-mediated signal transducer. This mouse model has some features in common with OP-induced delayed neuropathy in hens and people but differs in the neuropathological signs and apparently the requirement for NTE aging.
Collapse
Affiliation(s)
- Gary B Quistad
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3112, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude.
Collapse
Affiliation(s)
- Chris Winder
- School of Safety Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
47
|
Quistad GB, Sparks SE, Segall Y, Nomura DK, Casida JE. Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications. Toxicol Appl Pharmacol 2002; 179:57-63. [PMID: 11884237 DOI: 10.1006/taap.2001.9342] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid amide hydrolase (FAAH) plays an important role in nerve function by regulating the action of endocannabinoids (e.g., anandamide) and hydrolyzing a sleep-inducing factor (oleamide). Several organophosphorus pesticides and related compounds are shown in this study to be more potent in vivo inhibitors of mouse brain FAAH than neuropathy target esterase (NTE), raising the question of the potential toxicological relevance of FAAH inhibition. These FAAH-selective compounds include tribufos and (R)-octylbenzodioxaphosphorin oxide with delayed neurotoxic effects in mice and hens plus several organophosphorus pesticides (e.g., fenthion) implicated as delayed neurotoxicants in humans. The search for a highly potent and selective inhibitor for FAAH relative to NTE for use as a toxicological probe culminated in the discovery that octylsulfonyl fluoride inhibits FAAH by 50% at 2 nM in vitro and 0.2 mg/kg in vivo and NTE is at least 100-fold less sensitive in each case. More generally, the studies revealed 12 selective in vitro inhibitors for FAAH (mostly octylsulfonyl and octylphosphonyl derivatives) and 9 for NTE (mostly benzodioxaphosphorin oxides and organophosphorus fluoridates). The overall in vivo findings with 16 compounds indicate the expected association of AChE inhibition with acute or cholinergic syndrome and >70% brain NTE inhibition with delayed neurotoxic action. Surprisingly, 75-99% brain FAAH inhibition does not lead to any overt neurotoxicity or change in behavior (other than potentiation of exogenous anandamide action). Thus, FAAH inhibition in mouse brain does not appear to be a primary target for organophosphorus pesticide-induced neurotoxic action (cholinergic or intermediate syndrome or delayed neurotoxicity).
Collapse
Affiliation(s)
- Gary B Quistad
- Environmental Chemistry and Toxicology Laboratory, University of California, Berkeley, California 94720-3112, USA
| | | | | | | | | |
Collapse
|
48
|
Quistad GB, Sparks SE, Casida JE. Fatty Acid Amide Hydrolase Inhibition by Neurotoxic Organophosphorus Pesticides. Toxicol Appl Pharmacol 2001; 173:48-55. [PMID: 11350214 DOI: 10.1006/taap.2001.9175] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at <30 mg/kg 4 h after ip administration to mice; while inhibition by chlorpyrifos, diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.
Collapse
Affiliation(s)
- G B Quistad
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, 114 Wellman Hall, Berkeley, California, 94720-3112, USA
| | | | | |
Collapse
|
49
|
Fowler MJ, Flaskos J, McLean WG, Hargreaves AJ. Effects of neuropathic and non-neuropathic isomers of tricresyl phosphate and their microsomal activation on the production of axon-like processes by differentiating mouse N2a neuroblastoma cells. J Neurochem 2001; 76:671-8. [PMID: 11158237 DOI: 10.1046/j.1471-4159.2001.00020.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to investigate the sublethal neuropathic effects of tricresyl phosphate (TCP: mixed isomers), triorthocresyl phosphate (TO:CP) and triparacresyl phosphate (TP:CP) on differentiating mouse N2a neuroblastoma cells. This was achieved by a combination of measurements of cell viability, axon outgrowth and the levels of cytoskeletal proteins detectable on western blots of extracts from cells induced to differentiate in the presence and absence of the compounds. In a time-course experiment TCP inhibited the outgrowth of axon-like processes following exposure times of 24 h or longer. Dose-response experiments indicated that TCP and TO:CP exhibited similar sustained levels of toxicity following both 24 and 48 h exposure, with no significant difference between their respective IC(50) values. By contrast, TP:CP demonstrated a transient effect on the outgrowth of axon-like processes, which was detectable after 24 but not 48 h of exposure. Isomer-specific patterns of toxicity were also evident at earlier time-points, with only the ortho isomer showing significant levels of inhibition of axon outgrowth following 4-8 h exposure. Probing of western blots with antibodies against cytoskeletal proteins indicated that the inhibition of axon outgrowth by these compounds was associated with a sustained reduction in the levels of phosphorylated neurofilament heavy chain. The inhibitory effect on axon outgrowth of TO:CP but not TP:CP was enhanced in the presence of a microsomal activation system. Since TO:CP is the most neuropathic of the isomers of TCP in vivo, differentiating N2a cells provide a useful cellular system for mechanistic studies of the neurodegenerative effects of this organophosphate.
Collapse
Affiliation(s)
- M J Fowler
- Department of Life Sciences, The Nottingham Trent University, Clifton Lane, Nottingham, UK
| | | | | | | |
Collapse
|
50
|
Singh AK. QSAR for the organophosphate-induced inhibition and 'aging' of the enzyme neuropathy target esterase (NTE). SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2001; 12:275-295. [PMID: 11696925 DOI: 10.1080/10629360108032917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
QSAR was devised for the neuropathy potency of various organophosphate (OP) compounds. The neuropathy-target-esterase (NTE) inhibition data were either obtained from the literature for a number of OP compounds or were determined experimentally for methamidophos, acephate, coumaphos and EPN. Aging Index that determined whether or not an OP would age NTE, correlated with molecular depth (MD) and the index density* dipole-moment (density* omega) (Eq. (1)). The t1/2 values that represented the time (min) during which 50% of the OP-inhibited brain NTE undergoes 'aging', correlated with the topological indices Dif3 and 1/Dif4 (Eq. (2)). Log10I50 for AChE that determined the OP concentration causing 50% inhibition in AChE activity, correlated with EBOND and Charge-1 (Eq. (3)). Log10I50 for NTE correlated with 1/HS2 and H-Bonding (Eq. (4)). The (Log10I50NTE)/(Log10I50AChE) ratio that determined an OPs neuropathy potential relative to its cholinergic toxicity potential, correlated with log P and Log10Polarity (Eq. (6)). Equation (3) accurately predicted AChE inhibition by methamidophos, coumaphos and EPN, but not by acephate. Equations (1), (2), (4)-(6), accurately predicted their respective biological indices. Therefore, it is proposed that the QSAR models developed in this study may accurately predict the neuropathy potential of OP compounds. The only exception is Eq. (3) that did not accurately predict the acephate-induced inhibition of AChE, possibly because acephate and other OPs inhibit the enzyme by distinct mechanisms.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St Paul Campus, 1333 Gortner Ave., St Paul, MN 55108, USA
| |
Collapse
|