1
|
Gil-Fernández A, Ribagorda M, Martín-Ruiz M, López-Jiménez P, Laguna T, Gómez R, Parra MT, Viera A, Veyrunes F, Page J. Meiotic Behavior of Achiasmate Sex Chromosomes in the African Pygmy Mouse Mus mattheyi Offers New Insights into the Evolution of Sex Chromosome Pairing and Segregation in Mammals. Genes (Basel) 2021; 12:1434. [PMID: 34573416 PMCID: PMC8471055 DOI: 10.3390/genes12091434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
X and Y chromosomes in mammals are different in size and gene content due to an evolutionary process of differentiation and degeneration of the Y chromosome. Nevertheless, these chromosomes usually share a small region of homology, the pseudoautosomal region (PAR), which allows them to perform a partial synapsis and undergo reciprocal recombination during meiosis, which ensures their segregation. However, in some mammalian species the PAR has been lost, which challenges the pairing and segregation of sex chromosomes in meiosis. The African pygmy mouse Mus mattheyi shows completely differentiated sex chromosomes, representing an uncommon evolutionary situation among mouse species. We have performed a detailed analysis of the location of proteins involved in synaptonemal complex assembly (SYCP3), recombination (RPA, RAD51 and MLH1) and sex chromosome inactivation (γH2AX) in this species. We found that neither synapsis nor chiasmata are found between sex chromosomes and their pairing is notably delayed compared to autosomes. Interestingly, the Y chromosome only incorporates RPA and RAD51 in a reduced fraction of spermatocytes, indicating a particular DNA repair dynamic on this chromosome. The analysis of segregation revealed that sex chromosomes are associated until metaphase-I just by a chromatin contact. Unexpectedly, both sex chromosomes remain labelled with γH2AX during first meiotic division. This chromatin contact is probably enough to maintain sex chromosome association up to anaphase-I and, therefore, could be relevant to ensure their reductional segregation. The results presented suggest that the regulation of both DNA repair and epigenetic modifications in the sex chromosomes can have a great impact on the divergence of sex chromosomes and their proper transmission, widening our understanding on the relationship between meiosis and the evolution of sex chromosomes in mammals.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Tamara Laguna
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Frederic Veyrunes
- Institut des Sciences de l’Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| |
Collapse
|
2
|
Morgan AP, Bell TA, Crowley JJ, Pardo-Manuel de Villena F. Instability of the Pseudoautosomal Boundary in House Mice. Genetics 2019; 212:469-487. [PMID: 31028113 PMCID: PMC6553833 DOI: 10.1534/genetics.119.302232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
3
|
Dumont BL, Williams CL, Ng BL, Horncastle V, Chambers CL, McGraw LA, Adams D, Mackay TFC, Breen M. Relationship Between Sequence Homology, Genome Architecture, and Meiotic Behavior of the Sex Chromosomes in North American Voles. Genetics 2018; 210:83-97. [PMID: 30002081 PMCID: PMC6116968 DOI: 10.1534/genetics.118.301182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
In most mammals, the X and Y chromosomes synapse and recombine along a conserved region of homology known as the pseudoautosomal region (PAR). These homology-driven interactions are required for meiotic progression and are essential for male fertility. Although the PAR fulfills key meiotic functions in most mammals, several exceptional species lack PAR-mediated sex chromosome associations at meiosis. Here, we leveraged the natural variation in meiotic sex chromosome programs present in North American voles (Microtus) to investigate the relationship between meiotic sex chromosome dynamics and X/Y sequence homology. To this end, we developed a novel, reference-blind computational method to analyze sparse sequencing data from flow-sorted X and Y chromosomes isolated from vole species with sex chromosomes that always (Microtus montanus), never (Microtus mogollonensis), and occasionally synapse (Microtus ochrogaster) at meiosis. Unexpectedly, we find more shared X/Y homology in the two vole species with no and sporadic X/Y synapsis compared to the species with obligate synapsis. Sex chromosome homology in the asynaptic and occasionally synaptic species is interspersed along chromosomes and largely restricted to low-complexity sequences, including a striking enrichment for the telomeric repeat sequence, TTAGGG. In contrast, homology is concentrated in high complexity, and presumably euchromatic, sequence on the X and Y chromosomes of the synaptic vole species, M. montanus Taken together, our findings suggest key conditions required to sustain the standard program of X/Y synapsis at meiosis and reveal an intriguing connection between heterochromatic repeat architecture and noncanonical, asynaptic mechanisms of sex chromosome segregation in voles.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
| | - Christina L Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Valerie Horncastle
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Carol L Chambers
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
| | - David Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Trudy F C Mackay
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| |
Collapse
|
4
|
Matveevsky S, Kolomiets O, Bogdanov A, Hakhverdyan M, Bakloushinskaya I. Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes (Basel) 2017; 8:E306. [PMID: 29099806 PMCID: PMC5704219 DOI: 10.3390/genes8110306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
This study reports on extensive experimental material covering more than 30 years of studying the genetics of mole voles. Sex chromosomes of Ellobius demonstrate an extraordinary case of mammalian sex chromosomes evolution. Five species of mole voles own three types of sex chromosomes; typical for placentals: XY♂/XX♀; and atypical X0♂/X0♀; or XX♂/XX♀. Mechanisms of sex determination in all Ellobius species remain enigmatic. It was supposed that the Y chromosome was lost twice and independently in subgenera Bramus and Ellobius. Previous to the Y being lost, the X chromosome in distinct species obtained some parts of the Y chromosome, with or without Sry, and accumulated one or several copies of the Eif2s3y gene. Along with enormous variations of sex chromosomes, genes of sex determination pathway and autosomes, and five mole vole species demonstrate ability to establish different meiotic mechanisms, which stabilize their genetic systems and make it possible to overcome the evolutionary deadlocks.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
5
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
6
|
Paternal X inactivation does not correlate with X chromosome evolutionary strata in marsupials. BMC Evol Biol 2014; 14:267. [PMID: 25539578 PMCID: PMC4302592 DOI: 10.1186/s12862-014-0267-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. Results We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter’s X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter’s liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. Conclusions We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0267-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Abstract
The gene order on the X chromosome of eutherians is generally highly conserved, although an increase in the rate of rearrangement has been reported in the rodent lineage. Conservation of the X chromosome is thought to be caused by selection related to maintenance of dosage compensation. However, we herein reveal that the cattle (Btau4.0) lineage has experienced a strong increase in the rate of X-chromosome rearrangement, much stronger than that previously reported for rodents. We also show that this increase is not matched by a similar increase on the autosomes and cannot be explained by assembly errors. Furthermore, we compared the difference in two cattle genome assemblies: Btau4.0 and Btau6.0 (Bos taurus UMD3.1). The results showed a discrepancy between Btau4.0 and Btau6.0 cattle assembly version data, and we believe that Btau6.0 cattle assembly version data are not more reliable than Btau4.0. [BMB Reports 2013; 46(6): 310-315]
Collapse
Affiliation(s)
- Woncheoul Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
8
|
Meiotic analysis of XX/XY and neo-XX/XY sex chromosomes in Phyllostomidae by cross-species chromosome painting revealing a common chromosome 15-XY rearrangement in Stenodermatinae. Chromosome Res 2010; 18:667-76. [PMID: 20635197 DOI: 10.1007/s10577-010-9146-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/26/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
We analyzed the meiotic behavior of the sex chromosomes of the bats Glossophaga soricina (XX/XY), Artibeus cinereus and Uroderma magnirostrum (neo-XX/XY) using multicolor FISH. The X chromosome and pair 15 autosome probes are from Phyllostomus hastatus and the Y from Carollia brevicauda. On both species with the neo-XX/XY system, the autosome translocated to the sex chromosomes is the pair 15 in P. hastatus, a synapomorphy. The analysis of meiosis confirms that the X and Y have a pseudo-autosomal region, with a typical end-to-end pairing. The autosomal regions of the neo-XX/XY shows different levels of condensation when compared to the original XX/XY. The compound system presented a characteristic shape, as if it was a closed ring with a tail. The ring represents the non-paired segments of the X and Y and the small pairing region of the original sex chromosomes. The tail corresponds to the pairing of the 15 P. hastatus autosomal bivalent, which are translocated to the sex chromosomes. Probably the non-pairing is responsible for the meiotic silencing of these segments.
Collapse
|
9
|
Abstract
There is longstanding evidence that X-chromosome inactivation
(XCI) travels less successfully in autosomal than in X-chromosomal chromatin. The interspersed repeat elements LINE1s (L1s) have been suggested as candidates for “boosters” which promote the spread of XCI in the X-chromosome. The present paper reviews the current evidence concerning the possible role of L1s in XCI. Recent evidence, accruing from the human genome sequencing project and other sources, confirms that mammalian X-chromosomes are indeed rich in L1s, except in regions where there are many genes escaping XCI. The density of L1s is the highest in the evolutionarily oldest regions. Recent work on X; autosome translocations in human and mouse suggested failure of stabilization of XCI in autosomal material, so that genes are reactivated, but resistance of autosomal genes to the original silencing is not excluded. The accumulation of L1s on the X-chromosome may have resulted from reduced recombination or late replication. Whether L1s are part of the mechanism of XCI or a
result of it remains enigmatic.
Collapse
Affiliation(s)
- Mary F. Lyon
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell, Oxfordshire OX11 0RD, UK
- *Mary F. Lyon:
| |
Collapse
|
10
|
|
11
|
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci U S A 2006; 103:18190-5. [PMID: 17110446 PMCID: PMC1838728 DOI: 10.1073/pnas.0605274103] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/23/2006] [Indexed: 11/18/2022] Open
Abstract
All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids.
Collapse
Affiliation(s)
- Kazumi Matsubara
- *Laboratory of Animal Cytogenetics, Department of Genome Dynamics, Creative Research Initiative “Sousei” and
| | - Hiroshi Tarui
- Genome Resource and Analysis Subunit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Michihisa Toriba
- Japan Snake Institute, 3318 Yabuzuka-cho, Ota 379-2301, Japan; and
| | - Kazuhiko Yamada
- *Laboratory of Animal Cytogenetics, Department of Genome Dynamics, Creative Research Initiative “Sousei” and
| | - Chizuko Nishida-Umehara
- *Laboratory of Animal Cytogenetics, Department of Genome Dynamics, Creative Research Initiative “Sousei” and
- Laboratory of Animal Cytogenetics, Division of Life Science, Graduate School of Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Matsuda
- *Laboratory of Animal Cytogenetics, Department of Genome Dynamics, Creative Research Initiative “Sousei” and
- Laboratory of Animal Cytogenetics, Division of Life Science, Graduate School of Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Deuve JL, Bennett NC, O'Brien PCM, Ferguson-Smith MA, Faulkes CG, Britton-Davidian J, Robinson TJ. Complex evolution of X and Y autosomal translocations in the giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 2006; 14:681-91. [PMID: 16964575 DOI: 10.1007/s10577-006-1080-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/25/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Cross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals.
Collapse
Affiliation(s)
- J L Deuve
- Evolutionary Genetics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
13
|
Page J, Viera A, Parra MT, de la Fuente R, Suja JA, Prieto I, Barbero JL, Rufas JS, Berríos S, Fernández-Donoso R. Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genet 2006; 2:e136. [PMID: 16934004 PMCID: PMC1557784 DOI: 10.1371/journal.pgen.0020136] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022] Open
Abstract
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.
Collapse
Affiliation(s)
- Jesús Page
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stankiewicz P, Kuechler A, Eller CD, Sahoo T, Baldermann C, Lieser U, Hesse M, Gläser C, Hagemann M, Yatsenko SA, Liehr T, Horsthemke B, Claussen U, Marahrens Y, Lupski JR, Hansmann I. Minimal phenotype in a girl with trisomy 15q due to t(X;15)(q22.3;q11.2) translocation. Am J Med Genet A 2006; 140:442-52. [PMID: 16470732 DOI: 10.1002/ajmg.a.31096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Few cases of de novo unbalanced X;autosome translocations associated with a normal or mild dysmorphic phenotype have been described. We report a 3-year-old dizygotic female twin with prenatally ascertained increased nuchal translucency. Prenatal chromosome studies revealed nearly complete trisomy 15 due to a de novo unbalanced translocation t(X;15)(q22;q11.2) confirmed postnatally. A mild phenotype was observed with normal birth measurements, minor facial dysmorphic features (hypertelorism, short broad nose, and a relatively long philtrum), and moderate developmental delay at the age of 3 years in comparison to her male fraternal twin. Replication timing utilizing BrdU and acridine-orange staining showed that the der(X) chromosome was late-replicating with variable spreading of inactivation into the translocated 15q segment. The der(X) was determined to be of paternal origin by analyses of polymorphic markers and CGG-repeat at FMR1. Methylation analysis at the SNRPN locus and analysis of microsatellites on 15q revealed paternal isodisomy with double dosage for all markers and the unmethylated SNRPN gene. The Xq breakpoint was mapped within two overlapping BAC clones RP11-575K24 and RP13-483F6 at Xq22.3 and the 15q breakpoint to 15q11.2, within overlapping clones RP11-509A17 and RP11-382A4 that are all significantly enriched for LINE-1 elements (36.6%, 43.0%, 26.6%, 22.0%, respectively). We speculate that the attenuated phenotype may be due to inactivation spreading into 15q, potentially facilitated by the enrichment of LINE-1 elements at the breakpoints. In silico analysis of breakpoint regions revealed the presence of highly identical low-copy repeats (LCRs) at both breakpoints, potentially involved in generating the translocation.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wolf U, Schempp W, Scherer G. Molecular biology of the human Y chromosome. Rev Physiol Biochem Pharmacol 2005; 121:147-213. [PMID: 1485072 DOI: 10.1007/bfb0033195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- U Wolf
- Institut für Humangenetik und Anthropologie der Universität, Freiburg, FRG
| | | | | |
Collapse
|
16
|
Page J, Berríos S, Parra MT, Viera A, Suja JA, Prieto I, Barbero JL, Rufas JS, Fernández-Donoso R. The program of sex chromosome pairing in meiosis is highly conserved across marsupial species: implications for sex chromosome evolution. Genetics 2005; 170:793-9. [PMID: 15802509 PMCID: PMC1450418 DOI: 10.1534/genetics.104.039073] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marsupials present a series of genetic and chromosomal features that are highly conserved in very distant species. One of these features is the absence of a homologous region between X and Y chromosomes. According to this genetic differentiation, sex chromosomes do not synapse during the first meiotic prophase in males, and a special structure, the dense plate, maintains sex chromosome association. In this report we present results on the process of meiotic sex chromosome pairing obtained from three different species, Thylamys elegans, Dromiciops gliroides, and Rhyncholestes raphanurus, representing the three orders of American marsupials. We have investigated the relationships between the axial structures organized along sex chromosomes and the formation of the dense plate. We found that in the three species the dense plate arises as a modification of sex chromosomal axial elements, but without the involvement of other meiotic axial structures, such as the cohesin axes. Considering the phylogenetic relationships among the marsupials studied here, our data reinforce the idea that the dense plate emerged early in marsupial evolution as an efficient mechanism to ensure the association of the nonhomologous sex chromosomes. This situation could have influenced the further evolution of sex chromosomes in marsupials.
Collapse
Affiliation(s)
- Jesús Page
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kolomietz E, Godbole K, Winsor EJT, Stockley T, Seaward G, Chitayat D. Functional disomy of Xp: Prenatal findings and postnatal outcome. Am J Med Genet A 2005; 134:393-8. [PMID: 15793841 DOI: 10.1002/ajmg.a.30652] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on trisomy of the short arm of the X chromosome (Xp11.2 --> pter) due to a de novo unbalanced X;13 translocation diagnosed prenatally in a female fetus. Amniocentesis was performed at 20-weeks' gestation following ultrasound finding of a Dandy-Walker malformation. The trisomy of Xp11.2 --> pter was confirmed with fluorescence in situ hybridization (FISH), using an X chromosome painting probe and telomeric FISH probes specific for the short arm of chromosome X. The karyotype was defined as 46,XX,der(13)t(X;13)(p11.2;p11.2). Molecular analysis suggested that the extra Xp material was of paternal origin. FISH analysis with an XIST probe showed that the derivative chromosome 13 did not include the XIST locus at the X-inactivation center (XIC). A complex phenotype was seen at birth including macrosomia, facial dysmorphism with preauricular tag, congenital heart defects, and structural brain malformations. Because the derivative chromosome was not subject to X inactivation, functional disomy of Xp11.2 --> pter most likely accounts for the abnormal phenotype in this patient.
Collapse
Affiliation(s)
- E Kolomietz
- Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Ashley T, Fredga K. The curious normality of the synaptic association between the sex chromosomes of two arvicoline rodents: Microtus oeconomus and Clethrionomys glareolus. Hereditas 2004; 120:105-11. [PMID: 8083057 DOI: 10.1111/j.1601-5223.1994.00105.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In all eight species of arvicoline (microtine) rodents previously described, the X and Y chromosomes have remained asynaptic throughout pachynema. Since synapsis is presumed to be a prerequisite for crossing over, it has been concluded that the sex chromosomes in these species are also achiasmatic, but the mechanism(s) of their disjunction remains an enigma. Their asynaptic, achiasmatic condition has been attributed to loss of the pseudoautosomal region (Borodin et al. 1991; Carnero et al. 1991; Jiménez et al. 1991). This loss has been postulated to include all arvicoline rodents. We describe here the sex chromosome behavior during meiotic prophase of two additional species in this group: Microtus oeconomus and Clethrionomys glareolus. In both species there is extensive synapsis between the X and Y, providing the usual opportunity for XY recombination. These findings challenge the concept of the pseudoautosomal region as an evolutionarily conserved region of homology, at least within the arvicoline rodents. The unexpected finding of synapsis in two very different species, one with a derived and one with a primitive karyotype is discussed within its phylogenetic context.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
19
|
Page J, Berríos S, Rufas JS, Parra MT, Suja JA, Heyting C, Fernández-Donoso R. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J Cell Sci 2003; 116:551-60. [PMID: 12508115 DOI: 10.1242/jcs.00252] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike eutherian males, pairing of the sex chromosomes in marsupial males during the first meiotic prophase is not mediated by a synaptonemal complex. Instead, a specific structure, the dense plate, develops during pachytene between the sex chromosomes. We have investigated the development and structural nature of this asynaptic association in males of the marsupial species Thylamys elegans by means of immunolabelling and electron microscopy techniques. Our results show that the behaviour of male marsupial sex chromosomes during first meiotic prophase is complex, involving modifications of their structure and/or composition. Pairing of the sex chromosomes and formation of the dense plate take place in mid pachytene, paralleling morphological changes in the sex chromosomal axial elements. Components of the central element of the synaptonemal complex were not found in the sex body, in agreement with ultrastructural studies that reported the absence of a canonical tripartite synaptonemal complex between male marsupial sex chromosomes. Interestingly, the dense plate is labelled with antibodies against the SCP3 protein of the lateral elements of the synaptonemal complex. Moreover, as sex chromosome axial elements decrease in mass throughout mid-late pachytene, the dense plate increases, suggesting that material moves from the axial elements to the dense plate. Additionally, both sex chromosome axial elements and the dense plate have proteins that are specifically phosphorylated, as revealed by their labelling with the MPM-2 antibody, indicating that they undergo a chromosome-specific regulation process throughout first meiotic prophase. We propose that the unique modifications of the composition and structure of the axial elements of the sex chromosomes in meiotic prophase may result in the prescription of synaptonemal complex formation between male marsupial sex chromosomes, where the dense plate is an extension of the axial elements of sex chromosomes. This replaces synapsis to maintain X and Y association during first meiotic prophase.
Collapse
Affiliation(s)
- Jesús Page
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Roland Toder
- Institute of Human Genetics and Anthropology, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
|
22
|
Kuroiwa A, Tsuchiya K, Watanabe T, Hishigaki H, Takahashi E, Namikawa T, Matsuda Y. Conservation of the rat X chromosome gene order in rodent species. Chromosome Res 2001; 9:61-7. [PMID: 11272793 DOI: 10.1023/a:1026795717658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We constructed the comparative cytogenetic maps of X chromosomes in three rodent species, Indian spiny mouse (Mus platythrix), Syrian hamster and Chinese hamster, using 26 mouse cDNA clones. Twenty-six, 22 and 22 out of the 26 genes, which were mapped to human, mouse and rat X chromosomes in our previous study, were newly localized to X chromosomes of Indian spiny mouse, and Syrian and Chinese hamsters, respectively. The order of the genes aligned on the long arm of human X chromosome was highly conserved in rat and the three rodent species except mouse. The present results suggest a possibility that the rat X chromosome retains the ancestral form of the rodent X chromosomes.
Collapse
Affiliation(s)
- A Kuroiwa
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chowdhary BP, Raudsepp T. Chromosome painting in farm, pet and wild animal species. METHODS IN CELL SCIENCE : AN OFFICIAL JOURNAL OF THE SOCIETY FOR IN VITRO BIOLOGY 2001; 23:37-55. [PMID: 11741143 DOI: 10.1007/978-94-010-0330-8_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Among the advanced karyotype analysis approaches embraced by animal cytogenetics during the past decade, chromosome painting has had the greatest impact. Generation of chromosome specific paints is considered pivotal to his development. Additionally, ability to use these paints across species (referred to as Zoo-FISH or comparative painting) is undisputedly the most important breakthrough that has contributed to our ability to compare karyotypes of a wide range of evolutionarily highly diverged chromosome painting, and makes them aware of the tools/resources available to carry out this research in a variety of animal species. An overview of the current status of comparative chromosome painting results across closely as well as distantly related species is presented. Findings from different studies show how some segmental syntenies are more conserved as compared to others. The comparisons provide insight into the likely constitution of a vertebrate/mammalian ancestral karyotype and help understand some of the intricacies about karyotype evolution. Importance of comparative painting in setting the stage for rapid development of gene maps in a number of economically important species is elaborated.
Collapse
Affiliation(s)
- B P Chowdhary
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA.
| | | |
Collapse
|
24
|
De Leo AA, Guedelha N, Toder R, Voullaire L, Ferguson-Smith MA, O'Brien PC, Graves JA. Comparative chromosome painting between marsupial orders: relationships with a 2n = 14 ancestral marsupial karyotype. Chromosome Res 1999; 7:509-17. [PMID: 10598566 DOI: 10.1023/a:1009233327176] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A 2n = 14 karyotype is shared by some species in each of the marsupial orders in Australian and American superfamilies, suggesting that the ancestral marsupial chromosome complement was 2n = 14. We have used chromosome painting between distantly related marsupial species to discover whether genome arrangements in 2n = 14 species in two Australian orders support this hypothesis. Cross-species chromosome painting was used to investigate chromosome rearrangements between a macropodid species Macropus eugenii (2n = 16) and a wombat species in a different suborder (Lasiorhinus latifrons, 2n = 14), and a dasyurid species in a different order (Sminthopsis macroura, 2n = 14). We demonstrate that many chromosome regions are conserved between all three species, and deduce how the similar 2n = 14 karyotypes of species in the two orders are related to a common ancestral 2n = 14 karyotype.
Collapse
Affiliation(s)
- A A De Leo
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Datta U, Wexler ID, Kerr DS, Raz I, Patel MS. Characterization of the regulatory region of the human testis-specific form of the pyruvate dehydrogenase alpha-subunit (PDHA-2) gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:236-43. [PMID: 10542321 DOI: 10.1016/s0167-4781(99)00158-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha-subunit of human pyruvate dehydrogenase (E(1)) is encoded by two separate genes. The gene located on chromosome X (PDHA-1) is expressed in somatic tissues, whereas the second gene (PDHA-2), located on chromosome 4, is expressed only in post-meiotic spermatogenic cells. A genomic fragment harboring the human gene encoding PDHA-2 has been isolated and approximately 800 nucleotides of the promoter region have been characterized. Functional studies of the promoter indicate the presence of both enhancer and repressor elements that are common to other genes that are only expressed in mature sperm.
Collapse
Affiliation(s)
- U Datta
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of Buffalo at New York, 14214, USA
| | | | | | | | | |
Collapse
|
26
|
Bauer MF, Gempel K, Reichert AS, Rappold GA, Lichtner P, Gerbitz KD, Neupert W, Brunner M, Hofmann S. Genetic and structural characterization of the human mitochondrial inner membrane translocase. J Mol Biol 1999; 289:69-82. [PMID: 10339406 DOI: 10.1006/jmbi.1999.2751] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translocation of nuclear-encoded mitochondrial preproteins is mediated by translocases in the outer and inner membranes. In the yeast Saccharomyces cerevisiae, translocation of preproteins into the matrix requires the membrane proteins Tim23, Tim17 and Tim44, which drive translocation in cooperation with mtHsp70 and its co-chaperone Mge1p. We have cloned and functionally analyzed the human homologues of Tim17, Tim23 and Tim44. In contrast to yeast, two TIM17 genes were found to be expressed in humans. TIM44, TIM23 and TIM17a genes were mapped to chromosomes 19p13.2-p13.3, 10q11. 21-q11.23 and 1q32. The TIM17b gene mapped to Xp11.23, near the fusion point where an autosomal region was proposed to have been added to the "ancient" part of the X chromosome about 80-130 MY ago. The primary sequences of the two proteins, hTim17a and hTim17b, are essentially identical, significant differences being restricted to their C termini. They are ubiquitously expressed in fetal and adult tissues, and both show expression levels comparable to that of hTim23. Biochemical characterization of the human Tim components revealed that hTim44 is localized in the matrix and, in contrast to yeast, only loosely associated with the inner membrane. hTim23 is organized into two distinct complexes in the inner membrane, one containing hTim17a and one containing hTim17b. Both TIM complexes display a native molecular mass of 110 kDa. We suggest that the structural organization of TIM23.17 preprotein translocases is conserved from low to high eukaryotes.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 19
- DNA, Complementary
- Fetus
- Humans
- In Situ Hybridization, Fluorescence
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Transport Proteins
- Mice
- Mitochondrial ADP, ATP Translocases/chemistry
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial Membrane Transport Proteins
- Mitochondrial Precursor Protein Import Complex Proteins
- Mitochondrial Proteins
- Molecular Sequence Data
- Open Reading Frames
- Organ Specificity
- Rats
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Repressor Proteins
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Sequence Homology, Amino Acid
- X Chromosome
Collapse
Affiliation(s)
- M F Bauer
- Institut für Klinische Chemie Molekularbiologische Diagnostik und Mitochondriale Genetik und Institut für Diabetesforschung, Akad, Krankenhaus München-Schwabing, Kölner Platz 1, München, D-80804, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
De La Fuente R, Hahnel A, Basrur PK, King WA. X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol Reprod 1999; 60:769-75. [PMID: 10026129 DOI: 10.1095/biolreprod60.3.769] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.
Collapse
Affiliation(s)
- R De La Fuente
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph,Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
28
|
Saifi GM, Chandra HS. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc Biol Sci 1999; 266:203-9. [PMID: 10097393 PMCID: PMC1689664 DOI: 10.1098/rspb.1999.0623] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe here the results of a search of Mendelian inheritance in man, GENDIAG and other sources which suggest that, in comparison with autosomes 1, 2, 3, 4 and 11, the X chromosome may contain a significantly higher number of sex- and reproduction-related (SRR) genes. A similar comparison between X-linked entries and a subset of randomly chosen entries from the remaining autosomes also indicates an excess of genes on the X chromosome with one or more mutations affecting sex determination (e.g. DAX1), sexual differentiation (e.g. androgen receptor) or reproduction (e.g. POF1). A possible reason for disproportionate occurrence of such genes on the X chromosome could be that, during evolution, the 'choice' of a particular pair of homomorphic chromosomes for specialization as sex chromosomes may be related to the number of such genes initially present in it or, since sex determination and sexual dimorphism are often gene dose-dependent processes, the number of such genes necessary to be regulated in a dose-dependent manner. Further analysis of these data shows that XAR, the region which has been added on to the short arm of the X chromosome subsequent to eutherian-marsupial divergence, has nearly as high a proportion of SRR genes as XCR, the conserved region of the X chromosome. These observations are consistent with current hypotheses on the evolution of sexually antagonistic traits on sex chromosomes and suggest that both XCR and XAR may have accumulated SRR traits relatively rapidly because of X linkage.
Collapse
Affiliation(s)
- G M Saifi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
29
|
Fridolfsson AK, Cheng H, Copeland NG, Jenkins NA, Liu HC, Raudsepp T, Woodage T, Chowdhary B, Halverson J, Ellegren H. Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci U S A 1998; 95:8147-52. [PMID: 9653155 PMCID: PMC20944 DOI: 10.1073/pnas.95.14.8147] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1998] [Accepted: 04/29/1998] [Indexed: 02/08/2023] Open
Abstract
Among the mechanisms whereby sex is determined in animals, chromosomal sex determination is found in a wide variety of distant taxa. The widespread but not ubiquitous occurrence, not even within lineages, of chromosomal sex determination suggests that sex chromosomes have evolved independently several times during animal radiation, but firm evidence for this is lacking. The most favored model for this process is gradual differentiation of ancestral pairs of autosomes. As known for mammals, sex chromosomes may have a very ancient origin, and it has even been speculated that the sex chromosomes of mammals and birds would share a common chromosomal ancestry. In this study we showed that the two genes, ATP5A1 and CHD1, so far assigned to the female-specific W chromosome of birds both exist in a very closely related copy on the Z chromosome but are not pseudoautosomal. This indicates a common ancestry of the two sex chromosomes, consistent with the evolution from a pair of autosomes. Comparative mapping demonstrates, however, that ATP5A1 and CHD1 are not sex-linked among eutherian mammals; this is also not the case for the majority of other genes so far assigned to the avian Z chromosome. Our results suggest that the evolution of sex chromosomes has occurred independently in mammals and birds.
Collapse
Affiliation(s)
- A K Fridolfsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Biomedical Center, Box 597, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
White WM, Willard HF, Van Dyke DL, Wolff DJ. The spreading of X inactivation into autosomal material of an x;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am J Hum Genet 1998; 63:20-8. [PMID: 9634520 PMCID: PMC1377243 DOI: 10.1086/301922] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
X inactivation involves initiation, propagation, and maintenance of genetic inactivation. Studies of replication timing in X;autosome translocations have suggested that X inactivation may spread into adjacent autosomal DNA. To examine the inactivation of autosomal material at the molecular level, we assessed the transcriptional activity of X-linked and autosomal loci spanning an inactive translocation in a phenotypically normal female with a karyotype of 46,X,der(X)t(X;4)(q22;q24). Since 4q duplications usually manifest dysmorphic features and severe growth and mental retardation, the normal phenotype of this individual suggested the spreading of X inactivation throughout the autosomal material. Consistent with this model, reverse transcription-PCR analysis of 20 transcribed sequences spanning 4q24-qter revealed that three known genes and 11 expressed sequence tags (ESTs) were not expressed in a somatic-cell hybrid that carries the translocation chromosome. However, three ESTs and three known genes were expressed from the t(X;4) chromosome and thus "escaped" X inactivation. This direct assay of expression demonstrated that the spreading of inactivation from the adjoining X chromosome was incomplete and noncontiguous. These findings are broadly consistent with the existence of genes known to escape inactivation on normal inactive X chromosomes. However, the fact that a high proportion (30%) of tested autosomal genes escaped inactivation may indicate that autosomal material lacks X chromosome-specific features that are associated with the spreading and/or maintenance of inactivation.
Collapse
Affiliation(s)
- W M White
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
31
|
Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 1998; 8:577-89. [PMID: 9647633 DOI: 10.1101/gr.8.6.577] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although gene maps for a variety of evolutionarily diverged mammalian species have expanded rapidly during the past few years, until recently it has been difficult to precisely define chromosomal segments that are homologous between species. A solution to this problem has come from the development of Zoo-FISH, also known as cross-species chromosome painting. The use of Zoo-FISH to identify regions of chromosomal homology has allowed the transfer of information from map-rich species such as human and mouse to a wide variety of other species. From a Zoo-FISH analysis spanning four mammalian orders (Primates, Artiodactyla, Carnivora, and Perissodactyla), and involving eight species (human, pig, cattle, Indian muntjac, cat, American mink, harbor seal, and horse), three distinct classes of synteny conservation have been designated: (1) conservation of whole chromosome synteny, (2) conservation of large chromosomal blocks, and (3) conservation of neighboring segment combinations. This analysis has also made it possible to identify a set of chromosome segments (based on human chromosome equivalents) that probably made up the karyotype of the common ancestor of the four orders. This approach provides a basis for developing a picture of the ancestral mammalian karyotype, but a full understanding will depend on studies encompassing more diverse combinations of mammalian orders.
Collapse
Affiliation(s)
- B P Chowdhary
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
32
|
Toder R, Graves JA. CSF2RA, ANT3, and STS are autosomal in marsupials: implications for the origin of the pseudoautosomal region of mammalian sex chromosomes. Mamm Genome 1998; 9:373-6. [PMID: 9545494 DOI: 10.1007/s003359900772] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The X and Y Chromosomes (Chrs) of eutherian ("placental") mammals share a pseudo-autosomal region (PAR) that pairs and recombines at meiosis. In humans and other eutherians, the PAR contains several active genes and has also been thought to be critical for pairing and fertility. In order to explore the origin of the PAR, we cloned and mapped three human or mouse pseudoautosomal genes in marsupials, a group of mammals that diverged from eutherians about 130 (MYrBP). All three genes were autosomal in marsupials, and two co-localized with other human Xp genes on an autosome. This implies that the human PAR, like most of human Xp, represents a relic of an autosomal region added to both X and Y Chrs between 80 and 150 MYrBP.
Collapse
Affiliation(s)
- R Toder
- School of Genetics and Human Variation, La Trobe University, Bundoora, Melbourne, Vic 3083, Australia
| | | |
Collapse
|
33
|
Nesterova TB, Duthie SM, Mazurok NA, Isaenko AA, Rubtsova NV, Zakian SM, Brockdorff N. Comparative mapping of X chromosomes in vole species of the genus Microtus. Chromosome Res 1998; 6:41-8. [PMID: 9510509 DOI: 10.1023/a:1009266324602] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Comparative mapping of X-linked genes has progressed rapidly since Ohno's prediction that genes on the X chromosome should be conserved as a syntenic group in all mammals. Although several conserved blocks of homology between human and mouse have been discovered, rearrangements within the X chromosome have also been characterized. More recently, some exceptions to Ohno's law have been reported. We have used fluorescence in situ hybridization (FISH) to map five genes, Gla, G6pd, Hprt, Pgk1 and Xist, to two of the largest conserved segments of X material in five members of the genus Microtus (grey vole) and show that vole X chromosomes demonstrate greater homology to human than to mouse. Cytogenetic analysis indicates a relatively high frequency of rearrangement during vole evolution, although certain blocks of homology appear to be highly conserved in all species studied to date. On this basis we were able to predict the probable location of the rat X inactivation centre (Xic) based solely on high-resolution G-banding. Our prediction was then confirmed by mapping the rat Xist gene by FISH. The possible significance of conserving long-range chromosome structure in the vicinity of the Xic is discussed with respect to the mechanism of X inactivation.
Collapse
Affiliation(s)
- T B Nesterova
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
D'Esposito M, Matarazzo MR, Ciccodicola A, Strazzullo M, Mazzarella R, Quaderi NA, Fujiwara H, Ko MS, Rowe LB, Ricco A, Archidiacono N, Rocchi M, Schlessinger D, D'Urso M. Differential expression pattern of XqPAR-linked genes SYBL1 and IL9R correlates with the structure and evolution of the region. Hum Mol Genet 1997; 6:1917-23. [PMID: 9302271 DOI: 10.1093/hmg/6.11.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recently discovered second pseudoautosomal region (XqPAR) contains at least two genes, IL9R and SYBL1. Recent findings show that, like XpPAR genes, IL9R escapes X inactivation and its Y allele is also expressed, but SYBL1 seems to act like an X-linked gene, expressed from the active X chromosome but not from the inactive X or Y. Here we show that differences are also seen in the evolution of the sex chromosome locations of IL9R and SYBL1. IL9R is known to be autosomal in mice, and is X-linked only in primates. SYBL1, however, has been found to be on the X chromosome in all mammals tested, from marsupials to humans. Both genes were duplicated on the Y homologue of the terminal portion of the X chromosome during the evolution of Homo sapiens from other higher primates. The inactivation pattern of SYBL1 may be correlated with its longer history of X linkage, and at a more centromeric chromosomal position during evolution; the more recent X linkage and more telomeric position of the IL9R gene may explain its autosomal, 'uninactivated' transcriptional status.
Collapse
Affiliation(s)
- M D'Esposito
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brown CJ, Carrel L, Willard HF. Expression of genes from the human active and inactive X chromosomes. Am J Hum Genet 1997; 60:1333-43. [PMID: 9199554 PMCID: PMC1716148 DOI: 10.1086/515488] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
X-chromosome inactivation results in the cis-limited inactivation of many, but not all, of the genes on one of the pair of X chromosomes in mammalian females. In addition to the genes from the pseudoautosomal region, which have long been anticipated to escape inactivation, genes from several other regions of the human X chromosome have now been shown to escape inactivation and to be expressed from both the active and inactive X chromosomes. The growing number of genes escaping inactivation emphasizes the need for a reliable system for assessing the inactivation status of X-linked genes. Since many features of the active or inactive X chromosome, including transcriptional activity, are maintained in rodent/human somatic-cell hybrids, such hybrids have been used to study the inactivation process and to determine the inactivation status of human X-linked genes. In order to assess the fidelity of inactivation status in such hybrids, we have examined the expression of 33 X-linked genes in eight mouse/human somatic-cell hybrids that contain either the human active (three hybrids) or inactive X (five hybrids) chromosome. Inactivation of nine of these genes had previously been demonstrated biochemically in human cells, and the expression of these genes only in hybrids retaining an active X, but not in those retaining an inactive X, confirms that expression in hybrids reflects expression in human cells. Although the majority of genes tested showed consistent patterns of expression among the active X hybrids or inactive X hybrids, surprisingly, 5 of the 33 genes showed heterogeneous expression among the hybrids, demonstrating a significantly higher rate of variability than previously reported for other genes in either human somatic cells or mouse/human somatic-cell hybrids. These data suggest that at least some X-linked genes may be under additional levels of epigenetic regulation not previously recognized and that somatic-cell hybrids may provide a useful approach for studying these chromosomal phenomena.
Collapse
Affiliation(s)
- C J Brown
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
36
|
Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA. Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 1997; 8:418-22. [PMID: 9166586 DOI: 10.1007/s003359900459] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cross-species chromosome painting was used to investigate genome rearrangements between tammar wallaby Macropus eugenii (2n = 16) and the swamp wallaby Wallabia bicolor (2n = 10female symbol/11male symbol), which diverged about 6 million years ago. The swamp wallaby has an XX female:XY1Y2 male sex chromosome system thought to have resulted from a fusion between an autosome and the small original X, not involving the Y. Thus, the small Y1 should represent the original Y and the large Y2 the original autosome. DNA paints were prepared from flow-sorted and microdissected chromosomes from the tammar wallaby. Painting swamp wallaby spreads with each tammar chromosome-specific probe gave extremely strong and clear signals in single-, two-, and three-color FISH. These showed that two tammar wallaby autosomes are represented unchanged in the swamp wallaby, two are represented by different centric fusions, and one by a tandem fusion to make the very long arms of swamp wallaby Chromosome (Chr) 1. The large swamp wallaby X comprises the tammar X as its short arm, and a tandemly fused 7 and 2 as the long arm. The acrocentric swamp wallaby Y2 is a 2/7 fusion, homologous with the long arm of the X. The small swamp wallaby Y1 is confirmed as the original Y by its painting with the tammar Y. However, the presence of sequences shared between the microdissected tammar Xp and Y on the swamp wallaby Y2 implies that the formation of the compound sex chromosomes involved addition of autosome(s) to both the original X and Y. We propose that this involved fusion with an ancient pseudoautosomal region followed by fission proximal to this shared region.
Collapse
Affiliation(s)
- R Toder
- School of Genetics and Human Variation, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Marsupials and monotremes, the mammals most distantly related to placental mammals, share essentially the same genome but show major variations in chromosome organization and function. Rules established for the mammalian genome by studies of human and mouse do not always apply to these distantly related mammals, and we must make new and more general laws. Some examples are contradictions to our assumption of frequent genome reshuffling in vertebrate evolution, Ohno's Law of X chromosome conservation, the Lyon Hypothesis of X chromosome inactivation, sex chromosome pairing, several explanations of Haldane's Rule, and the theory that mammalian Y chromosome contains a male-specific gene with a direct dominant action on sex determination. Significantly, it is not always the marsupials and monotremes (usually considered the weird mammals) that are exceptional. In many features, it appears that humans and, particularly, mice are the weird mammals that break more general mammalian, or even vertebrate rules.
Collapse
Affiliation(s)
- J A Graves
- School of Genetics and Human Variation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Judelson HS. Chromosomal heteromorphism linked to the mating type locus of the oomycete Phytophthora infestans. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:155-61. [PMID: 8804388 DOI: 10.1007/bf02173215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mating type locus of the oomycete, Phytophthora infestans, is embedded in a region of DNA that displays distorted and non-Mendelian segregation. By using DNA probes linked to the mating type locus to genetically and physically characterize that region, a large zone of chromosomal heteromorphism was detected. Locus S1 was shown to represent a tandemly repeated array of DNA that was typically present in a hemizygous state in A1 isolates while being absent from A2 isolates. The analysis of the parents and progeny of seven crosses indicated that the tandem array was linked in cis to the A1-determining allele of the mating type locus. A worldwide survey of genotypically diverse field isolates of P. infestans indicated that S1 was present in each of 48 isolates of the A1 mating type that were tested, but was absent in 46 of 47 A2 strains. Physical analysis of S1 indicated that the tandemly repeated DNA sequence spanned about 300 kb and had evolved from a 1.35-kb monomer. Internal deletions occurred within S1 during sexual propagation. This and other mutations apparently contributed to a high degree of polymorphism within the S1 array.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Chromosomes, Fungal/genetics
- Crosses, Genetic
- DNA Primers
- Electrophoresis, Agar Gel
- Electrophoresis, Gel, Pulsed-Field
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal
- Genetic Markers
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phytophthora/genetics
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- H S Judelson
- Department of Plant Pathology, University of California, Riverside 92521, USA
| |
Collapse
|
39
|
Ogata T, Matsuo N. Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1996; 38:390-8. [PMID: 8840552 DOI: 10.1111/j.1442-200x.1996.tb03513.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.
Collapse
Affiliation(s)
- T Ogata
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
40
|
Fennelly J, Harper K, Laval S, Wright E, Plumb M. Co-amplification to tail-to-tail copies of MuRVY and IAPE retroviral genomes on the Mus musculus Y chromosome. Mamm Genome 1996; 7:31-6. [PMID: 8903725 DOI: 10.1007/s003359900008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have isolated a clone from a C57BL/6 genomic library that contains both part of the Y Chromosome-specific 8.7 kbp MuRVY genome (Hutchinson and Eicher, J. Virol. 63, 4043, 1989) and a full-length 8.3 kbp Intracisternal A Particle genome (IAPE-Y), in a tail-to-tail organization. Although IAPs are encoded by a disperse multigene family (approximately 1000 copies per haploid genome), we present evidence that a significant proportion of the IAP-related sequences are present on the Y Chromosome (Chr) and that a >25 kbp genomic sequence, which contains the two proviral genomes, has been amplified on the Y Chr. Two discrete amplified families of MuRVY retroviral genomes distinguishable by a polymorphic restriction site were detected, suggestive that amplification occurred in incremental stages. The presence of MuRVY-related DNA sequences, but absence of IAPE-Y-related DNA sequences in Mus spretus suggests that the IAPE-Y retrotransposition event occurred after the evolutionary divergence of the lineages leading to Mus musculus and Mus spretus, and that the amplification of MuRVY occurred independently in the two lineages.
Collapse
Affiliation(s)
- J Fennelly
- MRC Radiobiology Unit, Chilton, Didcot, Oxon, UK
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Graves JA. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays 1995; 17:311-20. [PMID: 7741724 DOI: 10.1002/bies.950170407] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammals have an XX:XY system of chromosomal sex determination in which a small heterochromatic Y controls male development. The Y contains the testis determining factor SRY, as well as several genes important in spermatogenesis. Comparative studies show that the Y was once homologous with the X, but has been progressively degraded, and now consists largely of repeated sequences as well as degraded copies of X linked genes. The small original X and Y have been enlarged by cycles of autosomal addition to one partner, recombination onto the other and continuing attrition of the compound Y. This addition-attrition hypothesis predicts that the pseudoautosomal region of the human X is merely the last relic of the latest addition. Genes (including SRY) on the conserved or added region of the Y evolved functions in male sex determination and differentiation distinct from the general functions of their X-linked partners. Although the gonadogenesis pathway is highly conserved in vertebrates, its control has probably changed radically and rapidly in vertebrate--even mammalian--evolution.
Collapse
Affiliation(s)
- J A Graves
- School of Genetics and Human Variation, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Wang I, Franco B, Ferrero GB, Chinault AC, Weissenbach J, Chumakov I, Le Paslier D, Levilliers J, Klink A, Rappold GA, Ballabio A, Petit C. High-density physical mapping of a 3-Mb region in Xp22.3 and refined localization of the gene for X-linked recessive chondrodysplasia punctata (CDPX1). Genomics 1995; 26:229-38. [PMID: 7601447 DOI: 10.1016/0888-7543(95)80205-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The study of patients with chromosomal rearrangements has led to the mapping of the gene responsible for X-linked recessive chondrodysplasia punctata (CDPX1; MIM 302950) to the distal part of the Xp22.3 region, between the loci PABX and DXS31. To refine this mapping, a yeast artificial chromosome (YAC) contig map spanning this region has been constructed. Together with the YAC contig of the pseudo-autosomal region that we previously established, this map covers the terminal 6 Mb of Xp, with an average density of 1 probe every 100 kb. Newly isolated probes that detect segmental X-Y homologies on Yp and Yq suggest multiple complex rearrangements of the ancestral pseudoautosomal region during evolution. Compilation of the data obtained from the study of individuals carrying various Xp22.3 deletions led us to conclude that the CDPX disease displays incomplete penetrance and, consequently, to refine the localization of CDPX1 to a 600-kb interval immediately adjacent to the pseudoautosomal boundary. This interval, in which 12 probes are ordered, provides the starting point for the isolation of CDPX1.
Collapse
Affiliation(s)
- I Wang
- Institut Pasteur, Unité de Génétique Moléculaire Humaine (CNRS UA 1445), Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Valleley EM, Harrison CJ, Cook Y, Ferguson MW, Sharpe PT. The karyotype of Alligator mississippiensis, and chromosomal mapping of the ZFY/X homologue, Zfc. Chromosoma 1994; 103:502-7. [PMID: 7720416 DOI: 10.1007/bf00337388] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Comparative mapping studies of X-linked genes in mammals have provided insights into the evolution of the X chromosome. Many reptiles including the American alligator, Alligator mississippiensis, do not appear to possess heteromorphic sex chromosomes, and sex is determined by the incubation temperature of the egg during embryonic development. Mapping of homologues of mammalian X-linked genes in reptiles could lead to a greater understanding of the evolution of vertebrate sex chromosomes. One of the genes used in the mammalian mapping studies was ZFX, an X-linked copy of the human ZFY gene which was originally isolated as a candidate for the mammalian testis-determining factor (TDF). ZFX is X-linked in eutherians, but maps to two autosomal locations in marsupials and monotremes, close to other genes associated with the eutherian X. The alligator homologue of the ZFY/ZFX genes, Zfc, has been isolated and described previously. A detailed karyotype of A. mississippiensis is presented, together with chromosomal in situ hybridisation data localising the Zfc gene to chromosome 3. Further chromosomal mapping studies using eutherian X-linked genes may reveal conserved chromosomal regions in the alligator that have become part of the eutherian X chromosome during evolution.
Collapse
Affiliation(s)
- E M Valleley
- School of Biological Sciences, University of Manchester, UK
| | | | | | | | | |
Collapse
|
45
|
Cooper DW, Holland EA, Rudman K, Donald JA, Zehavi-Feferman R, McKenzie LM, Sinclair AH, Spencer JA, Graves JA, Poole WE. Phosphoglycerate kinase pseudogenes in the tammar wallaby and other macropodid marsupials. Mamm Genome 1994; 5:531-7. [PMID: 8000135 DOI: 10.1007/bf00354925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphoglycerate kinase (EC 2.7.2.3; PGK) exists in two forms in marsupials. PGK1 is an X-linked house-keeping enzyme, and PGK2 is a mainly testis-specific enzyme under autosomal control. We have used PGK1 probes derived from two closely related species of macropodid marsupials (kangaroos and wallabies) to demonstrate the existence of a large family of pseudogenes in the tammar wallaby (Macropus eugenii). Over 30 fragments are detectable after Taq digestion. We estimate that there are 25-30 copies per genome. Most are autosomally inherited and are apparently not closely linked. Only two restriction fragments that appeared to be sex linked could be detected. Varying degrees of hybridization of fragments to the probes suggest different levels of homology, and hence different ages of origin. The existence of two PGK1 homologous restriction fragments from the X and a large number from the autosomes was also demonstrated by somatic cell hybridization for two other macropodid species, the wallaroo (M. robustus) and the red kangaroo (M. rufus). These results are compared with those from human and mouse, and it is suggested that the propensity of PGK1 to form pseudogenes is an ancient (approximately 130 MYR BP) characteristic of mammals. The high level of polymorphism detected in the tammar makes these PGK1 probes potentially useful for measuring genetic variability in this species and other macropodids.
Collapse
Affiliation(s)
- D W Cooper
- School of Biological Sciences, Macquarie University, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pravtcheva DD, Wise TL, Ensor NJ, Ruddle FH. Mosaic expression of an Hprt transgene integrated in a region of Y heterochromatin. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 268:452-68. [PMID: 8176360 DOI: 10.1002/jez.1402680606] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitivity of small transgenes to position effects on their expression suggests that they could serve as indicators of the chromatin properties at their integration site. In particular, they might be expected to provide information on the functional properties of mammalian heterochromatin. We have produced a transgenic line that carries a mouse Hprt minigene on the Y chromosome. In situ hybridization localized the transgene to the heterochromatic portion of the Y. Analysis of transgene expression by isoelectric focusing indicated that the transgene is expressed in a mosaic pattern, and expressing cells have different levels of transgene activity. These findings can be explained as a position effect variegation induced by Y heterochromatin. However, two other transgenes, located at autosomal sites, also showed mosaic activity. If the mosaic transgene expression is attributed to the influence of the chromatin at the insertion site, the Y heterochromatin would appear less potent than some autosomal regions at inducing variegation. An alternative explanation consistent with our results is that the mosaic expression is a semi-autonomous characteristic of these transgene loci. Transgene-expressing and non-expressing cells differed in their ability to grow and be cloned in vitro, indicating that cellular differentiation affected the chromatin structure of the transgene locus on the Y. Karyotype analysis of male mice with the Y-linked transgene and from control male mice carrying the human HPRT transgene, or the mouse Pgk-1 gene at autosomal sites, indicated that the transgene-carrying Y is prone to non-disjunction, generating cells with two (or more) or no Y chromosomes in equal proportion. Further studies will determine if the propensity of this Y chromosome to mitotic errors is also observed in vivo.
Collapse
Affiliation(s)
- D D Pravtcheva
- Pediatric Research Institute, St. Louis University School of Medicine, Missouri 63110
| | | | | | | |
Collapse
|
47
|
Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Frönicke L. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 1994; 6:342-7. [PMID: 8054973 DOI: 10.1038/ng0494-342] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow sorted human chromosomes 1, 16, 17 and X, and mouse chromosome 11 discloses the presence of syntenic groups in distantly related mammalian orders ranging from primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These mammalian orders have evolved separately for 55-80 million years (Myr). We conclude that ZOO-FISH can be used to generate comparative chromosome maps of a large number of mammalian species.
Collapse
Affiliation(s)
- H Scherthan
- Institute of Human Genetics and Anthropology, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Foster JW, Graves JA. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci U S A 1994; 91:1927-31. [PMID: 8127908 PMCID: PMC43277 DOI: 10.1073/pnas.91.5.1927] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The SRY gene on the human, mouse, and marsupial Y chromosomes is the testis-determining gene that initiates male development in mammals. The SRY protein has a DNA-binding domain (high mobility group or HMG box) similar to those found in the high-mobility-group proteins. SRY is specific for the Y chromosome, but many autosomal genes have been identified that possess a similar HMG box region; those with the most closely SRY-related box regions form a gene family now referred to as SOX genes. We have identified a sequence on the marsupial X chromosome that shares homology with SRY. Sequence comparisons show near-identity with the mouse and human SOX3 gene (formerly called a3), the SOX gene which is the most closely related to SRY. We suggest here that the highly conserved X chromosome-linked SOX3 represents the ancestral SOX gene from which the sex-determining gene SRY was derived. In this model SOX3/SRY divergence and the acquisition of a testis-determining role by SRY might have preceded (and initiated) sex chromosome differentiation or, alternatively, might have been a consequence of X chromosome-Y chromosome differentiation initiated at the locus of an original sex-determining gene(s), later superseded by SRY.
Collapse
Affiliation(s)
- J W Foster
- Department of Genetics and Human Variation, LaTrobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
49
|
Rejón CR, Jamilena M, Garrido Ramos M, Parker JS, Ruiz Rejón M. Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity (Edinb) 1994. [DOI: 10.1038/hdy.1994.28] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Graves JA, Foster JW. Evolution of mammalian sex chromosomes and sex-determining genes. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 154:191-259. [PMID: 8083032 DOI: 10.1016/s0074-7696(08)62200-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J A Graves
- Department of Genetics and Human Variation, LaTrobe University
| | | |
Collapse
|