1
|
Is Spironolactone the Preferred Renin-Angiotensin-Aldosterone Inhibitor for Protection Against COVID-19? J Cardiovasc Pharmacol 2020; 77:323-331. [PMID: 33278189 DOI: 10.1097/fjc.0000000000000960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT The high mortality of specific groups from COVID-19 highlights the importance of host-viral interactions and the potential benefits from enhancing host defenses. SARS-CoV-2 requires angiotensin-converting enzyme (ACE) 2 as a receptor for cell entry and infection. Although both ACE inhibitors and spironolactone can upregulate tissue ACE2, there are important points of discrimination between these approaches. The virus requires proteolytic processing of its spike protein by transmembrane protease receptor serine type 2 (TMPRSS2) to enable binding to cellular ACE2. Because TMPRSS2 contains an androgen promoter, it may be downregulated by the antiandrogenic actions of spironolactone. Furin and plasmin also process the spike protein. They are inhibited by protease nexin 1 or serpin E2 (PN1) that is upregulated by angiotensin II but downregulated by aldosterone. Therefore, spironolactone should selectively downregulate furin and plasmin. Furin also promotes pulmonary edema, whereas plasmin promotes hemovascular dysfunction. Thus, a downregulation of furin and plasmin by PN1 could be a further benefit of MRAs beyond their well-established organ protection. We review the evidence that spironolactone may be the preferred RASSi to increase PN1 and decrease TMPRSS2, furin, and plasmin activities and thereby reduce viral cell binding, entry, infectivity, and bad outcomes. This hypothesis requires direct investigation.
Collapse
|
2
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Agné AM, Baldin JP, Benjamin AR, Orogo-Wenn MC, Wichmann L, Olson KR, Walters DV, Althaus M. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. Am J Physiol Regul Integr Comp Physiol 2015; 308:R636-49. [PMID: 25632025 DOI: 10.1152/ajpregu.00489.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.
Collapse
Affiliation(s)
- Alisa M Agné
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Jan-Peter Baldin
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Audra R Benjamin
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Maria C Orogo-Wenn
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Lukas Wichmann
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana; and
| | - Dafydd V Walters
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Mike Althaus
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany;
| |
Collapse
|
4
|
Erb A, Althaus M. Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis). PLoS One 2014; 9:e100971. [PMID: 24960042 PMCID: PMC4069190 DOI: 10.1371/journal.pone.0100971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/30/2014] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs.
Collapse
Affiliation(s)
- Alexandra Erb
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mike Althaus
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
5
|
Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models. Eur J Pharmacol 2013; 718:290-8. [DOI: 10.1016/j.ejphar.2013.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/25/2013] [Accepted: 08/26/2013] [Indexed: 01/14/2023]
|
6
|
Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels. Pflugers Arch 2008; 456:1109-20. [PMID: 18581136 DOI: 10.1007/s00424-008-0486-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Accepted: 02/27/2008] [Indexed: 01/11/2023]
Abstract
Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.
Collapse
|
7
|
Sommer D, Bogdan R, Berger J, Peters DM, Morty RE, Clauss WG, Fronius M. CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium. Respir Physiol Neurobiol 2007; 158:97-106. [PMID: 17490919 DOI: 10.1016/j.resp.2007.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/09/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
In our present study we used preparations from Xenopus laevis lungs to perform electrophysiological Ussing chamber measurements, unidirectional flux measurements, and employed molecular approaches to elucidate the presence and function of a cystic fibrosis transmembrane conductance regulator (CFTR) homolog in this tissue. Application of different CFTR blockers (NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid), niflumic acid (NFA), glibenclamide, lonidamine, CFTR(inh)-172) to the apical side of the tissues was able to significantly decrease the measured short circuit current (I(SC)) indicating a Cl(-) secretion due to luminal located CFTR channels. This was further supported by a net (36)Cl(-) secretion determined by radioactive tracer flux experiments. Further, Xenopus pulmonary epithelia responded to apical chlorzoxazone exposure - a CFTR activator - and this activated current was inhibited by CFTR(inh)-172. We performed reverse transcription-PCR (RT-PCR) and Western blot analysis and with both approaches we found characteristic signals indicating the presence of a CFTR homolog in Xenopus lung. In addition, we were able to detect CFTR in apical membranes of Xenopus lung slices with immunohistological techniques. We conclude that Xenopus lung epithelium exhibits functional CFTR channels and that this tissue represents a valuable model for the investigation of ion transport properties in pulmonary epithelia.
Collapse
Affiliation(s)
- Dagmar Sommer
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Wartweg 95, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Agostoni P, Magini A, Andreini D, Contini M, Apostolo A, Bussotti M, Cattadori G, Palermo P. Spironolactone improves lung diffusion in chronic heart failure. Eur Heart J 2004; 26:159-64. [PMID: 15618072 DOI: 10.1093/eurheartj/ehi023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS To evaluate whether anti-aldosteronic treatment influences lung diffusion (DLCO) in chronic heart failure (HF) patients. Spironolactone improves clinical conditions and prognosis in chronic HF and reduces connective tissue matrix turnover; DLCO abnormalities in chronic HF are related to increase in fibrosis and connective tissue derangement. METHODS AND RESULTS Thirty stable chronic HF patients, with reduced DLCO (<80% of predicted), were randomly assigned to active treatment (25 mg spironolactone daily) or placebo in addition to conventional anti-failure treatment. They were evaluated by quality of life questionnaire, laboratory investigations, cardiopulmonary exercise test, and pulmonary function test, which included DLCO and membrane diffusing capacity (DM). The evaluation was done before treatment and 6 months after. Quality of life score and standard pulmonary function tests were not significantly affected by spironolactone, while active treatment increased DLCO due to an increase of DM (DLCO: 18.3+/-3.9 vs. 19.9+/-5.5 mL/min/mmHg; DM: 28.1+/-7.7 vs. 33.3+/-8.6 mL/min/mmHg) and peak oxygen consumption (peak VO2 16.8+/-1.9 vs.18.6+/-2.2 mL/min/kg). Increments of DLCO and peak VO2 were linearly related (R=0.849, P<0.001). CONCLUSION These data show a positive effect of spironolactone on gas diffusion and exercise capacity suggesting a novel mechanism by which anti-aldosteronic drugs improve HF clinical condition and prognosis.
Collapse
Affiliation(s)
- Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Istituto di Cardiologia, Università di Milano, via Parea 4, 20138 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fronius M, Berk A, Clauss W, Schnizler M. Ion transport across Xenopus alveolar epithelium is regulated by extracellular ATP, UTP and adenosine. Respir Physiol Neurobiol 2004; 139:133-44. [PMID: 15122997 DOI: 10.1016/j.resp.2003.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2003] [Indexed: 11/26/2022]
Abstract
Native alveolar epithelium from Xenopus lung was used for electrophysiological Ussing chamber experiments to investigate ion transport regulation. The tissue exhibits a considerable absorption of Na(+) ions and this transepithelial transport is largely up-regulated after treatment of donor animals with ACTH. Extracellular ATP, UTP and adenosine were tested for their regulating effects and all three increased I(sc), which was mainly due to a stimulation of amiloride sensitive Na(+) transport (increase of I(ami) 32% for ATP, 21% for UTP, 25% for adenosine). Solely the effect of UTP was completely abolished in the presence of amiloride. In contrast, the effects of ATP or adenosine disappeared under Cl(-)-free conditions. ATP and UTP proved to have additive effects and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of purinergic receptors, inhibited selectively the effect of UTP on I(sc). Further, I(sc) was increased by the P2X selective agonist beta,gamma-meATP. We were able to demonstrate, that extracellular purines and pyrimidines play a possible role as auto/paracrine messengers for alveolar ion transport regulation in Xenopus lung.
Collapse
Affiliation(s)
- Martin Fronius
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Wartweg 95, D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
10
|
Berk A, Fronius M, Clauss W, Schnizler M. Prostaglandin E2 induces upregulation of Na+ transport across Xenopus lung epithelium. J Comp Physiol B 2003; 174:83-9. [PMID: 14586636 DOI: 10.1007/s00360-003-0391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2003] [Indexed: 10/26/2022]
Abstract
The apical mucus on pulmonary epithelia is not only critical for physiological functions such as gas exchange or inflammatory processes, but also contains surfactants and multiple molecules that mediate cellular responses. A tight control of transepithelial ion transport maintains viscosity of this layer and, e.g., the amiloride-sensitive sodium channels (ENaCs) in lung epithelia of vertebrates are the most important regulatory sites for transcellular sodium uptake. Dysfunction of this sodium transport results in reduced liquid absorption and causes massive problems with gas exchange. We used dissected lungs of Xenopus laevis in Ussing chambers to investigate the influence of prostaglandin E2 (PGE2) on the regulation of short-circuit current (ISC) and amiloride-sensitive sodium absorption (Iami). Apical application of PGE2 (1 microM) increased ISC by 38% and Iami by approximately 60%. In contrast, a different prostaglandin, PGI2, neither affected ISC nor Iami. Forskolin increased current to a similar magnitude and preincubation of the lung with an RP-isomer of cyclic AMP, an inhibitor of protein kinase A (PKA), abolished the effects of both PGE2 and forskolin. Transepithelial Na+ uptake was also upregulated by the prostaglandin receptor agonists misoprostol and sulprostone. The Iami in Xenopus oocytes that heterologously expressed ENaCs was not affected by PGE2.
Collapse
Affiliation(s)
- A Berk
- Institut für Tierphysiologie, Justus-Liebig Universität Giessen, Wartweg 95, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
11
|
Urbach V, Harvey BJ. Rapid and non-genomic reduction of intracellular [Ca(2+)] induced by aldosterone in human bronchial epithelium. J Physiol 2001; 537:267-75. [PMID: 11711579 PMCID: PMC2278946 DOI: 10.1111/j.1469-7793.2001.0267k.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Using a Ca(2+) imaging system and fura-2 AM (5 microM) we showed that exposure of polarised monolayers of human bronchial epithelial cells (16HBE14o- cell line) to aldosterone produced a fast intracellular [Ca(2+)] ([Ca(2+)](i)) decrease, in 70 % of cells. Exposure to aldosterone (1 nM) reduced the [Ca(2+)](i) by 39 +/- 9 nM (n = 282, P < 0.0001) within 10 min, from a basal [Ca(2+)](i) of 131 +/- 19 nM (n = 282). 2. The effect of aldosterone on [Ca(2+)](i) was not affected by inhibitors of the classical genomic pathway, cycloheximide (1 microM) or spironolactone (10 microM). The aldosterone-induced [Ca(2+)](i) decrease was inhibited by thapsigargin (1 microM), pertussis toxin (24 h at 200 ng ml(-1)), the adenylate cyclase inhibitors 2',3'-dideoxyadenosine (200 microM) and MDL-12,330A hydrochloride (500 microM), and the protein kinase A inhibitor R(P)-adenosine 3',5'-cyclic monophosphorothioate (200 microM). In addition, treatment of 16HBE14o- monolayers with aldosterone (1 nM) inhibited by approximately 30 % the large and transient [Ca(2+)](i) increase induced by apical exposure to uridine triphosphate (UTP, 0.1 mM), a known secretagogue in airway epithelia. 3. Our results demonstrate for the first time that in human bronchial epithelial cells, aldosterone decreases [Ca(2+)](i) levels via a non-genomic mechanism. The hormone-induced changes to [Ca(2+)](i) involve stimulation of thapsigargin-sensitive Ca(2+)-ATPase, via G-protein-, adenylate cyclase- and protein kinase A-coupled signalling pathways.
Collapse
Affiliation(s)
- V Urbach
- INSERM U454, CHU Arnaud de Villeneuve, 34295 Montpellier, France.
| | | |
Collapse
|
12
|
Olivera WG, Ciccolella DE, Barquin N, Ridge KM, Rutschman DH, Yeates DB, Sznajder JI. Aldosterone regulates Na,K-ATPase and increases lung edema clearance in rats. Am J Respir Crit Care Med 2000; 161:567-73. [PMID: 10673201 DOI: 10.1164/ajrccm.161.2.9808050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aldosterone increases the Na,K-ATPase function in renal cells involved in active Na(+) transport. Because the alveolar type 2 (AT2) cells participate in active Na(+) transport, we studied whether aldosterone regulates the Na,K-ATPase in rat AT2 cells and whether aldosterone delivered by aerosols to spontaneously breathing rats affects edema clearance in a model of isolated-perfused lungs. The AT2 cells treated with aldosterone had increased Na,K-ATPase beta1-subunit mRNA and protein, which was associated with a 4-fold increase in the Na,K-ATPase hydrolytic activity and the ouabain-sensitive (86)Rb(+) uptake. In physiologic experiments, 24 h after aldosterone was delivered by aerosols to the rat air spaces, the active Na(+) transport and lung edema clearance increased by approximately 53% as compared with control rats and rats in which saline aerosols were delivered. The data suggest that increased active Na(+) transport and lung edema clearance induced by aldosterone is probably due to Na,K-ATPase regulation in alveolar epithelial cells. Conceivably, aldosterone may be used as a strategy to increase lung edema clearance.
Collapse
Affiliation(s)
- W G Olivera
- Pulmonary and Critical Care Medicine Division, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The adrenal cortex elaborates two major groups of steroids that have been arbitrarily classified as glucocorticoids and mineralocorticoids, despite the fact that carbohydrate metabolism is intimately linked to mineral balance in mammals. In fact, glucocorticoids assured both of these functions in all living cells, animal and photosynthetic, prior to the appearance of aldosterone in teleosts at the dawn of terrestrial colonization. The evolutionary drive for a hormone specifically designed for hydromineral regulation led to zonation for the conversion of 18-hydroxycorticosterone into aldosterone through the catalytic action of a synthase in the secluded compartment of the adrenal zona glomerulosa. Corticoid hormones exert their physiological action by binding to receptors that belong to a transcription factor superfamily, which also includes some of the proteins regulating steroid synthesis. Steroids stimulate sodium absorption by the activation and/or de novo synthesis of the ion-gated, amiloride-sensitive sodium channel in the apical membrane and that of the Na+/K+-ATPase in the basolateral membrane. Receptors, channels, and pumps apparently are linked to the cytoskeleton and are further regulated variously by methylation, phosphorylation, ubiquination, and glycosylation, suggesting a complex system of control at multiple checkpoints. Mutations in genes for many of these different proteins have been described and are known to cause clinical disease.
Collapse
Affiliation(s)
- M K Agarwal
- Centre National de la Recherche Scientifique, Paris, France.
| | | |
Collapse
|
14
|
Baxendale-Cox LM. Terbutaline increases open channel density of epithelial sodium channel (ENaC) in distal lung. RESPIRATION PHYSIOLOGY 1999; 116:1-8. [PMID: 10421029 DOI: 10.1016/s0034-5687(99)00033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neonatal and adult vertebrate respiration is facilitated by alveolar fluid and sodium (Na+) absorption driven by apical sodium channels (ENaC). ENaC are characterized in Xenopus laevis lung (XLL) epithelia using voltage clamping and fluctuation analysis to non-invasively examine macroscopic transepithelial current and resistance (I(SC), R(T)), single channel current (i(Na)) and total channel density (N(T)) responses to a beta adrenergic agonist (Terbutaline). Terbutaline addition to the basolateral bath of XLL increased Na entry to > 200% of control reflecting a doubling of open channel density (N(o). These data are consistent with the notion that XLL can serve as a useful model for investigation of distal lung ENaC response to agents of physiological interest.
Collapse
Affiliation(s)
- L M Baxendale-Cox
- The Johns Hopkins University, School of Nursing, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
16
|
Perks AM, Stockbrocks M, Chuang DC, Muhll IV, Kindler PW. Lung-liquid production in vitro by lungs from fetal guinea pigs: effects of amiloride on responses to aldosterone. CAN J ZOOL 1997. [DOI: 10.1139/z97-137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lungs from near-term fetal guinea pigs (62 ± 2 days of gestation) were supported in vitro for 3 h; lung-liquid production was monitored by a dye-dilution method based on Blue Dextran 2000. Untreated preparations produced fluid at 1.26 ± 0.14 mL∙kg−1 body mass∙h−1, with no significant change over the ensuing hours (ANOVA, regression analysis; n = 16). Experimental preparations received aldosterone at plasma concentrations reported to be present at birth. Aldosterone produced rapid, significant reductions in fluid production, and occasionally reabsorptions, which persisted beyond treatment. Reductions during treatment were as follows: 10−8 M aldosterone, 90.8 ± 4.9% (P < 0.001; n = 4); 2 × 10−9 M aldosterone, 64.1 ± 16.6% (P < 0.05–0.001; n = 6), and 7 × 10−10 M aldosterone, 48.6 ± 11.7% (P < 0.005–0.001; n = 6). The linear log dose response curve (r = 0.99) showed a theoretical threshold at 3.4 × 10−11 M aldosterone. Responses to 7 × 10−10 M aldosterone were abolished by 10−6 M amiloride. At the highest concentration of aldosterone (10−8 M), 10−6 M amiloride significantly reduced responses, and the changes were no longer significant by ANOVA. At both high and low aldosterone concentrations, responses with amiloride were significantly lower than those without amiloride (ANOVA, P < 0.03–0.04). Amiloride controls and untreated preparations showed no significant changes in fluid production. It is concluded that aldosterone at plasma concentrations present at birth can cause reductions in lung-liquid production or reabsorption through effects on amiloride-sensitive Na+ channels, and that the responses are remarkably rapid.
Collapse
|
17
|
Barbry P, Lazdunski M. Structure and regulation of the amiloride-sensitive epithelial sodium channel. ION CHANNELS 1996; 4:115-167. [PMID: 8744208 DOI: 10.1007/978-1-4899-1775-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- P Barbry
- Institute of Molecular and Cellular Pharmacology, CNRS, Valbonne, France
| | | |
Collapse
|
18
|
Illek B, Fischer H, Clauss W. Quinidine-sensitive K+ channels in the basolateral membrane of embryonic coprodeum epithelium: regulation by aldosterone and thyroxine. J Comp Physiol B 1993; 163:556-62. [PMID: 8151014 DOI: 10.1007/bf00302114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mumol.l-1) and thyroxine (1 mumol.l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6-7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77 +/- 11 microA.cm-2) compared to control (24 +/- 8 microA.cm-2). K+ currents across the basolateral membrane were investigated after permeabilizing the apical membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26.10(6).cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.
Collapse
Affiliation(s)
- B Illek
- Institut für Tierphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | |
Collapse
|
19
|
Matalon S. Mechanisms and regulation of ion transport in adult mammalian alveolar type II pneumocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 261:C727-38. [PMID: 1951664 DOI: 10.1152/ajpcell.1991.261.5.c727] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adult alveolar epithelium consists of type I and type II (ATII) pneumocytes that form a tight barrier, which severely restricts the entry of lipid-insoluble molecules from the interstitial to the alveolar space. Current in vivo and in vitro evidence indicates that the alveolar epithelium is also an absorptive epithelium, capable of transporting Na+ from the alveolar lumen, which is bathed by a small amount of epithelial lining fluid, to the interstitial space. The in situ localization of Na(+)-K(+)-ATPase activity in ATII cells and the fact that these cells are involved in a number of crucial functions, such as surfactant secretion and alveolar remodeling after injury, led investigators to examine their transport characteristics. Radioactive flux studies, in both freshly isolated and cultured cells, and bioelectric measurements in ATII cells grown on porous supports indicate that they transport Na+ according to the Koefoed-Johnsen and Ussing model of epithelial transport. Na+ enters the apical membrane, because of the favorable electrochemical gradient, through Na+ cotransporters, a Na(+)-H+ antiport, and cation channels and is pumped across the basolateral membrane by a ouabain-sensitive Na(+)-K+ pump. Na+ transport is enhanced by substances that increase intracellular adenosine 3',5'-cyclic monophosphate. In addition to Na+ transporters, ATII cells contain several transporters that regulate their intracellular pH, including a H(+)-ATPase, which may explain the low pH of the epithelial lining fluid. The absorptive properties of ATII cells may play an important role in regulating the degree of alveolar fluid in health and disease.
Collapse
Affiliation(s)
- S Matalon
- Department of Anesthesiology, University of Alabama, Birmingham 35233
| |
Collapse
|
20
|
Kim KJ, Cheek JM, Crandall ED. Contribution of active Na+ and Cl- fluxes to net ion transport by alveolar epithelium. RESPIRATION PHYSIOLOGY 1991; 85:245-56. [PMID: 1947462 DOI: 10.1016/0034-5687(91)90065-q] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in bioelectric properties of alveolar epithelial cell monolayers due to pharmacological agents such as beta-agonists, amiloride and ouabain have recently been reported. In order to determine specifically which ionic species contribute to these changes, fluxes of Na+ and Cl- across primary cultured monolayers of rat type II pneumocytes were directly measured. Monolayers were mounted in modified flux chambers and short-circuited. Unidirectional fluxes of 22Na (or 36Cl) and [14C]-mannitol were measured simultaneously. Experimental maneuvers included apical (A) exposure to 10 microM amiloride, basolateral (B) exposure to 1 mM ouabain, or basolateral exposure to 20 microM terbutaline. Results show that baseline monolayers actively reabsorb Na+ (about 0.14 micro Eq.cm-2.h-1) from the apical fluid, while mannitol and Cl- appear to traverse the alveolar epithelium passively. Active Na+ reabsorption was abolished by amiloride or ouabain, while Cl- and mannitol fluxes were unaffected. Terbutaline, on the other hand, markedly increased net absorption of Na+ and caused active transport of Cl- in the A to B direction. Passive mannitol flow was somewhat increased with terbutaline. These data indicate that active Na+ reabsorption across alveolar epithelial monolayers is dependent on intact Na+,K(+)-ATPase activity and cell Na+ entry (probably via Na+ channels), and can be stimulated by beta-agonists. Beta-agonists also cause active reabsorption of Cl- (passive under other conditions).
Collapse
Affiliation(s)
- K J Kim
- Will Rogers Institute, Department of Medicine, University of Southern California, Los Angeles 90033
| | | | | |
Collapse
|