1
|
Ji J, Kang J, Rampe D. L-type Ca2+ channel responses to bay k 8644 in stem cell-derived cardiomyocytes are unusually dependent on holding potential and charge carrier. Assay Drug Dev Technol 2015; 12:352-60. [PMID: 25147907 DOI: 10.1089/adt.2014.596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human stem cell-derived cardiomyocytes provide a cellular model for the study of electrophysiology in the human heart and are finding a niche in the field of safety pharmacology for predicting proarrhythmia. The cardiac L-type Ca2+ channel is an important target for some of these safety studies. However, the pharmacology of this channel in these cells is altered compared to native cardiac tissue, specifically in its sensitivity to the Ca2+ channel activator S-(-)-Bay K 8644. Using patch clamp electrophysiology, we examined the effects of S-(-)-Bay K 8644 in three separate stem cell-derived cardiomyocyte cell lines under various conditions in an effort to detect more typical responses to the drug. S-(-)-Bay K 8644 failed to produce characteristically large increases in current when cells were held at -40 mV and Ca2+ was used as the charge carrier, although high-affinity binding and the effects of the antagonist isomer, R-(+)-Bay K 8644, were intact. Dephosphorylation of the channel with acetylcholine failed to restore the sensitivity of the channel to the drug. Only when the holding potential was shifted to a more hyperpolarized (-60 mV) level, and external Ca2+ was replaced by Ba2+, could large increases in current amplitude be observed. Even under these conditions, increases in current amplitude varied dramatically between different cell lines and channel kinetics following drug addition were generally atypical. The results indicate that the pharmacology of S-(-)-Bay K 8644 in stem cell-derived cardiomyocytes varies by cell type, is unusually dependent on holding potential and charge carrier, and is different from that observed in primary human heart cells.
Collapse
Affiliation(s)
- Junzhi Ji
- 1 Disposition, Safety, and Animal Research , Sanofi, Inc., Waltham, Massachusetts
| | | | | |
Collapse
|
2
|
Farkas V, Szentandrássy N, Bárándi L, Hegyi B, Ruzsnavszky F, Ruzsnavszky O, Horváth B, Bányász T, Magyar J, Márton I, Nánási PP. Interaction between Ca(2+) channel blockers and isoproterenol on L-type Ca(2+) current in canine ventricular cardiomyocytes. Acta Physiol (Oxf) 2012; 206:42-50. [PMID: 22520840 DOI: 10.1111/j.1748-1716.2012.02448.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/31/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
AIM The aim of this work was to study antagonistic interactions between the effects of various types of Ca(2+) channel blockers and isoproterenol on the amplitude of L-type Ca(2+) current in canine ventricular cells. METHODS Whole-cell version of the patch clamp technique was used to study the effect of isoproterenol on Ca(2+) current in the absence and presence of Ca(2+) channel-blocking agents, including nifedipine, nisoldipine, diltiazem, verapamil, CoCl(2) and MnCl(2) . RESULTS Five micromolar Nifedipine, 1 μM nisoldipine, 10 μM diltiazem, 5 μM verapamil, 3 mM CoCl(2) and 5 mM MnCl(2) evoked uniformly a 90-95% blockade of Ca(2+) current in the absence of isoproterenol. Isoproterenol (100 nM) alone increased the amplitude of Ca(2+) current from 6.8 ± 1.3 to 23.7 ± 2.2 pA/pF in a reversible manner. Isoproterenol caused a marked enhancement of Ca(2+) current even in the presence of nifedipine, nisoldipine, diltiazem and verapamil, but not in the presence of CoCl(2) or MnCl(2) . CONCLUSION The results indicate that the action of isoproterenol is different in the presence of organic and inorganic Ca(2+) channel blockers. CoCl(2) and MnCl(2) were able to fully prevent the effect of isoproterenol on Ca(2+) current, while the organic Ca(2+) channel blockers failed to do so. This has to be born in mind when the effects of organic Ca(2+) channel blockers are evaluated either experimentally or clinically under conditions of increased sympathetic tone.
Collapse
Affiliation(s)
- V. Farkas
- Department of Dentistry; University of Debrecen; Debrecen; Hungary
| | - N. Szentandrássy
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - L. Bárándi
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - B. Hegyi
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - F. Ruzsnavszky
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - O. Ruzsnavszky
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - B. Horváth
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - T. Bányász
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - J. Magyar
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| | - I. Márton
- Department of Dentistry; University of Debrecen; Debrecen; Hungary
| | - P. P. Nánási
- Department of Physiology; University of Debrecen; Debrecen; Hungary
| |
Collapse
|
3
|
Zhu HL, Teramoto N. Antagonistic actions of S(-)-Bay K 8644 on cyclic nucleotide-induced inhibition of voltage-dependent Ba(2+) currents in guinea pig gastric antrum. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:609-15. [PMID: 18648774 DOI: 10.1007/s00210-008-0332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 06/28/2008] [Indexed: 11/28/2022]
Abstract
(+/-)-Bay K 8644, a conventional racemic mixture of Bay K 8644, is widely used as an L-type Ca(2+) channel agonist. Although interactions between Bay K 8644 and cyclic nucleotide have been described, they have not been properly characterized. We have investigated whether two optical isomers of Bay K 8644 (i.e., R(+)- and S(-)-Bay K 8644) modify cyclic nucleotide (cAMP and cGMP)-induced inhibitory effects on nifedipine-sensitive voltage-dependent Ba(2+) currents (I (Ba)) recorded from guinea pig gastric myocytes. Conventional whole-cell recordings were used to compare the effects of R(+)-Bay K 8644 and S(-)-Bay K 8644 on I (Ba). S(-)-Bay K 8644 enhanced the peak amplitude of I (Ba) evoked by depolarizing pulses to +10 mV from a holding potential of -70 mV in a concentration-dependent manner (EC(50) = 32 nM), while R(+)-Bay K 8644 inhibited I (Ba) (IC(50) = 975 nM). When R(+)-Bay K 8644 (0.5 microM) was applied, I (Ba) was suppressed to 71 +/- 10% of control. In the presence of R(+)-Bay K 8644 (0.5 microM), additional application of forskolin and sodium nitroprusside (SNP) further inhibited I (Ba). Conversely, in the presence of S(-)-Bay K 8644 (0.5 microM), subsequent application of forskolin and SNP did not affect I (Ba). Similarly, in the presence of 0.5 microM S(-)-Bay K 8644, db-cAMP and 8-Br-cGMP had no effect on I (Ba). These results indicate that S(-)-Bay K 8644, but not R(+)-Bay K 8644, can prevent the inhibitory actions of two distinct cyclic nucleotide pathways on I (Ba) in gastric myocytes of the guinea pig antrum.
Collapse
Affiliation(s)
- Hai-Lei Zhu
- Department of Pharmacology, Kyushu University, Fukuoka, 812-8582, Japan
| | | |
Collapse
|
4
|
Chen X, Zhang X, Harris DM, Piacentino V, Berretta RM, Margulies KB, Houser SR. Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. Am J Physiol Heart Circ Physiol 2008; 294:H2257-67. [PMID: 18359894 DOI: 10.1152/ajpheart.01335.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abnormal L-type Ca(2+) channel (LTCC, also named Cav1.2) density and regulation are important contributors to depressed contractility in failing hearts. The LTCC agonist BAY K 8644 (BAY K) has reduced inotropic effects on failing myocardium. We hypothesized that BAY K effects on the LTCC current (I(CaL)) in failing myocytes would be reduced because of increased basal activity. Since support of the failing heart with a left ventricular assist device (LVAD) improves contractility and adrenergic responses, we further hypothesized that BAY K effects on I(CaL) would be restored in LVAD-supported failing hearts. We tested our hypotheses in human ventricular myocytes (HVMs) isolated from nonfailing (NF), failing (F), and LVAD-supported failing hearts. We found that 1) BAY K had smaller effects on I(CaL) in F HVMs compared with NF HVMs; 2) BAY K had diminished effects on I(CaL) in NF HVM pretreated with isoproterenol (Iso) or dibutyryl cyclic AMP (DBcAMP); 3) BAY K effects on I(CaL) in F HVMs pretreated with acetylcholine (ACh) were normalized; 4) Iso had no effect on NF HVMs pretreated with BAY K; 5) BAY K effects on I(CaL) in LVAD HVMs were similar to those in NF HVMs; 6) BAY K effects were reduced in LVAD HVMs pretreated with Iso or DBcAMP; 7) Iso had no effect on I(CaL) in LVAD HVMs pretreated with BAY K. Collectively, these results suggest that the decreased BAY K effects on LTCC in F HVMs are caused by increased basal channel activity, which should contribute to abnormal contractility reserve.
Collapse
Affiliation(s)
- Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Haller VL, Bernstein MA, Welch SP. Chronic morphine treatment decreases the Cav1.3 subunit of the L-type calcium channel. Eur J Pharmacol 2008; 578:101-7. [DOI: 10.1016/j.ejphar.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/21/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
|
6
|
Abstract
We have developed a model for the rat phrenic motor neuron (PMN) that robustly replicates many experimentally observed behaviors of PMNs in response to pharmacological, ionic, and electrical perturbations using a single set of parameters. Our model suggests that the after-depolarization (ADP) response seen in action potentials is a result of the slow deactivation of the fast sodium channel in the range of the ADP coupled with the activation of the L-type calcium channel (I(CaL)). This current and its interactions with the small and large conductance calcium-activated potassium currents (I(KCaSK) and I(KCaBK), respectively) is also important in the generation of spike frequency adaptation in the repetitive firing mode of activity. Other aspects of the model conform very well to experimental observations in both the action potential and repetitive firing mode of activity, including the role of I(KCaSK) in the medium after-hyperpolarization (AHP) and the role of I(KCaBK) in the fast AHP. We have made a number of predictions using the model, including the characterization of two putative sodium currents (fast and persistent), as well as functional roles for the N- and T-type calcium currents.
Collapse
Affiliation(s)
- Behrang Amini
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
7
|
Baldelli P, Hernández-Guijo JM, Carabelli V, Novara M, Cesetti T, Andrés-Mateos E, Montiel C, Carbone E. Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits? Mol Neurobiol 2004; 29:73-96. [PMID: 15034224 DOI: 10.1385/mn:29:1:73] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 07/24/2003] [Indexed: 01/08/2023]
Abstract
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.
Collapse
Affiliation(s)
- Pietro Baldelli
- INFM Research Unit and Department of Neuroscience, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Erxleben C, Gomez-Alegria C, Darden T, Mori Y, Birnbaumer L, Armstrong DL. Modulation of cardiac Ca(V)1.2 channels by dihydropyridine and phosphatase inhibitor requires Ser-1142 in the domain III pore loop. Proc Natl Acad Sci U S A 2003; 100:2929-34. [PMID: 12601159 PMCID: PMC151443 DOI: 10.1073/pnas.2628046100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2002] [Indexed: 11/18/2022] Open
Abstract
Dihydropyridine-sensitive, voltage-activated calcium channels respond to membrane depolarization with two distinct modes of activity: short bursts of very short openings (mode 1) or repetitive openings of much longer duration (mode 2). Here we show that both the dihydropyridine, BayK8644 (BayK), and the inhibitor of SerThr protein phosphatases, okadaic acid, have identical effects on the gating of the recombinant cardiac calcium channel, Ca(V)1.2 (alpha(1)C). Each produced identical mode 2 gating in cell-attached patches, and each prevented rundown of channel activity when the membrane patch was excised into ATP-free solutions. These effects required Ser or Thr at position 1142 in the domain III pore loop between transmembrane segments S5 and S6, where dihydropyridines bind to the channel. Mutation of Ser-1142 to Ala or Cys produced channels with very low activity that could not be modulated by either BayK or okadaic acid. A molecular model of Ca(V)1.2 indicates that Ser-1142 is unlikely to be phosphorylated, and thus we conclude that BayK binding stabilizes mode 2 gating allosterically by either protecting a phospho Ser/Thr on the alpha(1)C subunit or mimicking phosphorylation at that site.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Adenosine Triphosphate/metabolism
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels/metabolism
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Cell Line
- Cell Membrane/metabolism
- Cricetinae
- Dihydropyridines/pharmacology
- Electrophysiology
- Enzyme Inhibitors/pharmacology
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Okadaic Acid/pharmacology
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphorylation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rabbits
- Serine/chemistry
- Threonine/chemistry
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Christian Erxleben
- Laboratory of Signal Transduction and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
9
|
MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AMF, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51 Suppl 3:S434-42. [PMID: 12475787 DOI: 10.2337/diabetes.51.2007.s434] [Citation(s) in RCA: 378] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiological effects of glucagon-like peptide-1 (GLP-1) are of immense interest because of the potential clinical relevance of this peptide. Produced in intestinal L-cells through posttranslational processing of the proglucagon gene, GLP-1 is released from the gut in response to nutrient ingestion. Peripherally, GLP-1 is known to affect gut motility, inhibit gastric acid secretion, and inhibit glucagon secretion. In the central nervous system, GLP-1 induces satiety, leading to reduced weight gain. In the pancreas, GLP-1 is now known to induce expansion of insulin-secreting beta-cell mass, in addition to its most well-characterized effect: the augmentation of glucose-stimulated insulin secretion. GLP-1 is believed to enhance insulin secretion through mechanisms involving the regulation of ion channels (including ATP-sensitive K(+) channels, voltage-dependent Ca(2+) channels, voltage-dependent K(+) channels, and nonselective cation channels) and by the regulation of intracellular energy homeostasis and exocytosis. The present article will focus principally on the mechanisms proposed to underlie the glucose dependence of GLP-1's insulinotropic effect.
Collapse
|
10
|
Jamie H, Kilian G, Dyason K, Milne PJ. The effect of the isomers of cyclo(Trp-Pro) on heart and ion-channel activity. J Pharm Pharmacol 2002; 54:1659-65. [PMID: 12542896 DOI: 10.1211/002235702252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclo(L-Trp-L-Pro) has shown potential for use in the treatment of cardiovascular dysfunction. The aim of the study was to determine the effects of the isomers of cyclo(Trp-Pro) - cyclo(L-Trp-L-Pro), cyclo(L-Trp-D-Pro), cyclo(D-Trp-L-Pro) and cyclo(D-Trp-D-Pro) - on heart and ion-channel activity. The effects on L-type Ca(2+)-channel, Na(+)-channel and inward rectifier K(+)-channel activity were determined by using the whole-cell patch-clamp technique on myocytes of guinea-pig origin. Dependence on the membrane potential in terms of Ca(2+)-channel activity was also investigated. A modified Langendorff method was used to determine the effects of the isomers on heart rate, coronary flow, duration of ventricular tachycardia and arrhythmia, time to sinus rhythm and QRS interval on the rat isolated heart. Cyclo(L-Trp-L-Pro), cyclo(L-Trp-D-Pro) and cyclo(D-Trp-D-Pro), 100 microM, showed agonism towards Ca(2+)-channel activity, while cyclo(D-Trp-L-Pro) caused a blockage of the current. The action of cyclo(D-Trp-L-Pro) was shown to be independent of membrane potential. No significant effect (P > 0.05) on the inward rectifier K(+) current was observed in the presence of cyclo(L-Trp-D-Pro) and cyclo(D-Trp-D-Pro), while antagonism was noted in the presence of cyclo(L-Trp-L-Pro) and cyclo(D-Trp-L-Pro). All isomers showed antagonist effects on the Na(+) channel. No adverse effects were noted on chronotropic effects in the presence of 200 microM cyclo(L-Trp-L-Pro) and cyclo(D-Trp-D-Pro) (P > 0.05), while cyclo(L-Trp-D-Pro) significantly increased the heart rate. Cyclo(D-Trp-L-Pro) significantly reduced the heart rate (P < 0.05). In addition, no significant effects were observed on the coronary flow rate in the presence of the isomers. All isomers significantly reduced the duration of ventricular tachycardia and arrhythmia, as well as the time to sinus rhythm. Furthermore, no change in the QRS intervals was noted in the presence of the isomers in comparison with the control, with a significant increase being noted for cyclo(D-Trp-D-Pro) (P < 0.05) in reference to the other isomers. The isomers thus show antiarrhythmic potential and may manifest as novel agents in the treatment of cardiovascular dysfunction, since a decrease in ventricular fibrillation may reduce the mortality rates in acute myocardial infarction.
Collapse
Affiliation(s)
- Hajierah Jamie
- Cyclic Dipeptide Research Unit, Department of Pharmacy, Box 1600, University of Port Elizabeth, Port Elizabeth, 6000, South Africa
| | | | | | | |
Collapse
|
11
|
Sonoda S, Ochi R. Independent modulation of L-type Ca2+ channel in guinea pig ventricular cells by nitrendipine and isoproterenol. JAPANESE HEART JOURNAL 2001; 42:771-80. [PMID: 11933926 DOI: 10.1536/jhj.42.771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dihydropyridine (DHP) Ca2+ channel blockers decrease L-type Ca2+ channel current (I(CaL)) by enhancing steady-state inactivation, whereas beta-adrenergic stimulation increases I(CaL) with small changes in the kinetics. We studied the effects of DHP Ca2+ channel blockers on cardiac I(CaL) augmented by beta-adrenergic stimulation. We recorded I(CaL) as Ba2+ currents (I(Ba)) from guinea pig ventricular myocytes using the whole-cell patch clamp technique. and compared the effects of nitrendipine (NIT) in the absence and presence of isoproterenol (1 microM, ISO) or forskolin (10 microM, FSK). Maximal I(Ba) elicited from a holding potential of -80 mV were diminished to 69.4+/-13.5% (mean and SE, n=5) of control by NIT (100 nM) and the diminished I(Ba) were increased to 180.3+/-23.2% of control by ISO in the presence of NIT, which was similar to the enhancement seen in the absence of NIT. NIT shifted the V(1/2) of the I(Ba) inactivation curve from -34.6+/-1.9 mV (n=5) to -48.7+/-1.2 mV, enhancing I(Ba) decay with shortening T(1/2) at -10 mV from 164.6+/-24.2 ms (n=7) to 105.4+/-15.2 ms. ISO elicited a small additional shift in the V(1/2) of I(Ba) inactivation in the same direction. ISO and FSK each slowed I(Ba) decay in the absence of NIT, but not in its presence. Thus, beta-adrenergic agonists increase and DHP Ca2+ channel blockers decrease the amplitude of cardiac I(CaL) independently and the kinetics of I(CaL) is determined mainly by the latter when these drugs coexist.
Collapse
Affiliation(s)
- S Sonoda
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
12
|
Carmeliet E. Rapid delayed K+ current and quinidine sensitivity are reduced in healed myocardial infarction. J Cardiovasc Electrophysiol 1999; 10:855-9. [PMID: 10376923 DOI: 10.1111/j.1540-8167.1999.tb00266.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Adachi-Akahane S, Cleemann L, Morad M. BAY K 8644 modifies Ca2+ cross signaling between DHP and ryanodine receptors in rat ventricular myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1178-89. [PMID: 10199841 DOI: 10.1152/ajpheart.1999.276.4.h1178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amplification factor of dihydropyridine (DHP)/ryanodine receptors was defined as the amount of Ca2+ released from the sarcoplasmic reticulum (SR) relative to the influx of Ca2+ through L-type Ca2+ channels in rat ventricular myocytes. The amplification factor showed steep voltage dependence at potentials negative to -10 mV but was less dependent on voltage at potentials positive to this value. In cells dialyzed with 0.2 mM cAMP in addition to 2 mM fura 2, the Ca2+-channel agonist (-)-BAY K 8644 enhanced Ca2+-channel current (ICa), shifted the activation curve by -10 mV, and significantly delayed its inactivation. Surprisingly, BAY K 8644 reduced the amplification factor by 50% at all potentials, even though the caffeine-releasable Ca2+ stores were mostly intact at holding potentials of -90 mV. In contrast, brief elevation of extracellular Ca2+ activity from 2 to 10 mM enhanced both ICa and intracellular Ca2+ transients in the absence or presence of BAY K 8644 but had no significant effect on the amplification factor. BAY K 8644 abolished the direct dependence of the rate of inactivation of ICa on the release of Ca2+ from the SR. These findings suggest that the gain of the Ca2+-induced Ca2+ release in cardiac myocytes is regulated by the gating kinetics of cardiac L-type Ca2+ channels via local exchange of Ca2+ signals between DHP and ryanodine receptors and that BAY K 8644 suppresses the amplification factor through attenuation of the Ca2+-dependent inactivation of Ca2+ channels.
Collapse
Affiliation(s)
- S Adachi-Akahane
- Institute for Cardiovascular Sciences and Department of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia 20007, USA
| | | | | |
Collapse
|
14
|
Carmeliet E, Mubagwa K. Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 70:1-72. [PMID: 9785957 DOI: 10.1016/s0079-6107(98)00002-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this review a description and an analysis are given of the interaction of antiarrhythmic drugs with their molecular target, i.e. ion channels and receptors. Our approach is based on the concept of vulnerable parameter, i.e. the electrophysiological property which plays a crucial role in the genesis of arrhythmias. To prevent or stop the arrhythmia a drug should modify the vulnerable parameter by its action on channel or receptor targets. In the first part, general aspects of the interaction between drugs channel molecules are considered. Drug binding depends on the state of the channel: rested, activated pre-open, activated open, or inactivated state. The change in channel behaviour with state is presented in the framework of the modulated-receptor hypothesis. Not only inhibition but also stimulation can be the result of drug binding. In the second part a detailed and systematic description and an analysis are given of the interaction of drugs with specific channels (Na+, Ca2+, K+, "pacemaker") and non-channel receptors. Emphasis is given to the type of state-dependent block involved (rested, activated and inactivated state block) and the change in channel kinetics. These properties vary and determine the voltage- and frequency-dependence of the change in ionic current. Finally, the question is asked as to whether the available drugs by their action on channels and receptors modify the vulnerable parameter in the desired way to stop or prevent arrhythmias.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anaesthesiology, University of Leuven, Belgium.
| | | |
Collapse
|
15
|
Abstract
Clinical and experimental studies demonstrate that calcium (Ca2+) overload in myocardial cells is an important factor in the genesis of various serious arrhythmias. Calcium antagonists block voltage-dependent channels and thus reduce entry of Ca2+ into heart cells. Because of their specificity for atrioventricular nodal cells, verapamil and diltiazem are used clinically to treat supraventricular arrhythmias involving transmission in the atrioventricular node. These two drugs and the dihydropyridine (DHP) calcium antagonists have been shown to prevent ventricular ischemic and reperfusion arrhythmias in the laboratory. Despite these data indicating that calcium antagonists are antiarrhythmic, a recent controversy has raised the possibility that certain calcium antagonists are unsafe to use, especially for patients with coronary heart disease. Proarrhythmia has been proposed to be a mechanism contributing to potentially adverse outcomes. Although excessive concentrations of verapamil and diltiazem may cause sino-atrial nodal asystole and varying degrees of atrioventricular block, there is little direct evidence that this contributes to significant proarrhythmia, for example, ventricular tachyarrhythmias. Nonetheless, although it appears paradoxical that agents which block the entry of Ca2+ into heart cells may be considered arrhythmogenic, there are circumstances under which dosage with certain calcium antagonists potentially leads to myocardial Ca2+ overload. For example, bouts of neurohormonal activation brought about by calcium antagonist-induced abrupt reductions in blood pressure may be accompanied each time by significant beta-adrenergic-enhanced influx of Ca2+ through the L-type cardiac calcium channels. This elevates the intracellular Ca2+ concentration and disturbs Ca2+ regulation, especially in diseased hearts whose intracellular Ca2+ regulation has already been compromised, and might induce alterations in cardiac electrical activity. In the present article, interactions among cardiac calcium channels, classes of calcium antagonists, and specific formulations of certain antagonists are considered with respect to directly induced ventricular arrhythmogenesis. Indirect potentially proarrhythmic actions of the calcium antagonists are also discussed. We outline some of the many questions that remain to be answered with respect to the actions of DHP on the heart including that of whether beta-adrenergic stimulation modifies the degree of cardiac Ca2+ channel inhibition by DHP-type calcium antagonists.
Collapse
|
16
|
Abstract
To determine the effect of molsidomine, a nitric oxide (NO) donor, on basal L-type Ca2+ current (ICa), the patch-clamp study was performed in single myocytes isolated from rat ventricles. External application of molsidomine (10 nM-100 microM) in the presence of internal Ca2+ (pCa = 6.85) inhibited basal ICa in a concentration-dependent manner. In the absence of internal Ca2+ (pCa = infinity), molsidomine concentration-dependently stimulated basal ICa. These opposite effects of molsidomine on ICa were not found when intracellular cGMP (1 mM) had been increased. Regardless of the presence or absence of internal Ca2+, milrinone application (20 microM) had a stimulatory effect on ICa in the absence of intracellular cGMP. In the continuing presence of milrinone, molsidomine (1-100 microM) at pCa infinity had no significant effect on the milrinone-enhanced ICa which was concentration-dependently inhibited by molsidomine (1-100 microM) at pCa 6.85. These results suggest that the inhibitory and stimulatory effects of molsidomine on basal ICa in the rat cardiac myocytes are related to an activation of the cGMP-dependent protein kinase (cGMP-PK) and an inhibition of the cGMP-inhibited cAMP-phosphodiesterase (PDE), respectively, and that these different actions appear to be mediated by the difference in intracellular Ca2+ levels.
Collapse
Affiliation(s)
- S Matsumoto
- Department of Physiology, Nippon Dental University, School of Dentistry at Tokyo, Japan
| |
Collapse
|
17
|
Zhang MI, O'Neil RG. Regulated calcium channel in apical membranes renal proximal tubule cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1757-64. [PMID: 8944661 DOI: 10.1152/ajpcell.1996.271.5.c1757] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using the single-channel patch-clamp technique, we identified a Ca2+ channel in the apical membranes rabbit cultured proximal tubule cells. The channel is permeable to both Ca2+ and Ba2+ but not to monovalent cations. In on-cell patches, the channel opened infrequently and had a conductance of 4.6 +/- 0.9 pS (n = 5) with 105 mM CaCl2 in the pipette. Although addition of forskolin (12.5 microM) Cl2 is without effect, addition of phorbol 12-myristate 13-acetate (PMA, 1 microM) activated the channel. At 0 mV pipette voltage (resting state) in the on-cell patches, PMA increased open probability (P0) from 0 to 6.9 +/- 2.3% (n = 5) within 1-3 min of PMA application. Likewise, stretching the membrane patch (-10 to -30 mmHg) activated this channel (P0 increased to 5.3 +/- 2.1%, n = 3, at 0 mV applied pipette potential), with results consistent with a mechanosensitive channel. The channel displayed only modest voltage sensitivity, with mild activation on membrane hyperpolarization but with inactivation on strong depolarization. The addition of the L-type Ca2+ channel blocker (antagonist), nifedipine (10 microM), completely blocked this channel in both on-cell and inside-out patches, whereas the agonist, BAY K 8644 (5 microM) was without effect. It is concluded that this channel is a nifedipine-sensitive, protein kinase C-regulated Ca2+ channel and that it may play a role in Ca2+ signaling in the proximal tubule cells, particularly during periods of mechanical stress.
Collapse
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
18
|
Fass DM, Levitan ES. Bay K 8644 reveals two components of L-type Ca2+ channel current in clonal rat pituitary cells. J Gen Physiol 1996; 108:1-11. [PMID: 8817380 PMCID: PMC2229298 DOI: 10.1085/jgp.108.1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Whole-cell L-type Ca2+ channel current was recorded in GH3 clonal rat pituitary cells using Ba2+ as a charge carrier. In the presence of the dihydropyridine agonist Bay K 8644, deactivation was best described by two exponential components with time constants of approximately 2 and approximately 8 ms when recorded at -40 mV. The slow component activated at more negative potentials than the fast component: Half-maximal activation for the slow and fast components occurred at approximately -15 and approximately 1 mV, respectively. The fast component was more sensitive to enhancement by racemic Bay K 8644 than the slow component: ED50fast = approximately 21 nM, ED50slow = approximately 74 nM. Thyrotropin-releasing hormone (TRH; 1 microM) inhibited the slow component by approximately 46%, whereas the fast component was inhibited by approximately 22%. TRH inhibition of total L-current showed some voltage dependence, but each Bay K 8644-revealed component of L-current was inhibited in a voltage-independent manner. Therefore, the apparent voltage dependence of TRH action is derived from complexities in channel gating rather than from relief of inhibition at high voltages. In summary, Bay K 8644-enhanced L-currents in GH3 cells consist of two components with different sensitivities to voltage, racemic Bay K 8644, and the neuropeptide TRH.
Collapse
Affiliation(s)
- D M Fass
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
19
|
Aggarwal R, Boyden PA. Altered pharmacologic responsiveness of reduced L-type calcium currents in myocytes surviving in the infarcted heart. J Cardiovasc Electrophysiol 1996; 7:20-35. [PMID: 8718981 DOI: 10.1111/j.1540-8167.1996.tb00457.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pharmacologic responses of macroscopic L-type calcium channel currents to the dihydropyridine agonist, Bay K 8644, and beta-adrenergic receptor stimulation by isoproterenol were studied in myocytes enzymatically dissociated from the epicardial border zone of the arrhythmic 5-day infarcted canine heart (IZs). Calcium currents were recorded at 36 degrees to 37 degrees C using the whole cell, patch clamp method and elicited by applying step depolarizations from a holding potential of -40 mV to various test potentials for 250-msec duration at 8-second intervals. A Cs+ -rich and 10 mM EGTA-containing pipette solution and a Na+ -and K+ -free external solutions were used to isolate calcium currents from other contaminating currents. During control, peak ICa,L density was found to be significantly less in IZs (4.0 +/- 1.1 pA/pF) than in myocytes dispersed from the epicardium of the normal noninfarcted heart (NZs; 6.5 +/- 1.8 pA/pF). Bay K 8644 (1 micro M) significantly increased peak ICa,L density 3.5-fold above control levels in both NZs (to 22.5 +/- 6.2 pA/pF; n = 7) and IZs (to 12.8 +/- 3.0 pA/pF; n = 5), yet peak ICa,L density in the presence of drug was significantly less in IZs than NZs. The effects of Bay K 8644 on kinetics of current decay and steady-state inactivation relations of peak ICa,L were similar in the two cell types. In contrast, the response of peak L-type current density to isoproterenol (1 micro M) was significantly diminished in IZs compared to NZs regardless of whether Ba2+ or Ca2+ ions carried the current. Thus, these results indicate an altered responsiveness to beta-adrenergic stimulation in cells that survive in the infarcted heart. Furthermore, application of forskolin (1 micro M and 10 micro M) or intracellular cAMP (200 micro M), agents known to act downstream of the beta-receptor, also produced a smaller increase in peak IBa density in IZs versus NZs, suggesting that multiple defects exist in the beta-adrenergic signaling pathway of IZs. In conclusion, these studies illustrate that reduced macroscopic calcium currents of cells in the infarcted heart exhibit an altered pharmacologic profile that has important implications in the development of drugs for the diseased heart.
Collapse
Affiliation(s)
- R Aggarwal
- Department of Pharmacology, Columbia College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
20
|
Abstract
Voltage-dependent Ca2+ channels are one of the main routes for the entry of Ca2+ into excitable cells. These channels are unique in cell-signalling terms in that they can transduce an electrical signal (membrane depolarization) via Ca2+ entry into a chemical signal, by virtue of the diverse range of intracellular Ca(2+)-dependent enzymes and processes. In a variety of cell types, currents through voltage-dependent Ca2+ channels can be increased in amplitude by a number of means. Although the term facilitation was originally defined as an increase of Ca2+ current resulting from one or a train of prepulses to depolarizing voltages, there is a great deal of overlap between facilitation by this means and enhancement by other routes, such as phosphorylation.
Collapse
Affiliation(s)
- A C Dolphin
- Dept of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| |
Collapse
|
21
|
Abstract
A model of the cardiac ventricular action potential that accounts for dynamic changes in ionic concentrations was used to study the mechanism, characteristics, and rate dependence of early after depolarizations (EADs). A simulation approach to the study of the effects of pharmacological agents on cellular processes was introduced. The simulation results are qualitatively consistent with experimental observations and help resolve contradictory conclusions in the literature regarding the mechanism of EADs. Our results demonstrate that: 1) the L-type calcium current, ICa, is necessary as a depolarizing charge carrier during an EAD; 2) recovery and reactivation of ICa is the mechanism of EAD formation, independent of the intervention used to induce the EADs (cesium, Bay K 8644, or isoproterenol were used in our simulations, following similar published experimental protocols); 3) high [Ca2+]i is not required for EADs to develop and calcium release by the sarcoplasmic reticulum does not occur during the EAD; 4) although the primary mechanism of EAD formation is recovery of ICa, other plateau currents can modulate EAD formation by affecting the balance of currents during a conditional phase before the EAD take-off; and 5) EADs are present at drive cycle lengths longer than 1000 ms. Because of the very long activation time constant of the delayed rectifier potassium current, IK, the activation gate of IK does not deactivate completely between consecutive stimuli at fast rates (drive cycle length < 1000 ms). As a result, IK plays a key role in determining the rate dependence of EADs.
Collapse
Affiliation(s)
- J Zeng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | |
Collapse
|
22
|
Neveu D, Quignard JF, Fernandez A, Richard S, Nargeot J. Differential beta-adrenergic regulation and phenotypic modulation of voltage-gated calcium currents in rat aortic myocytes. J Physiol 1994; 479 ( Pt 2):171-82. [PMID: 7799219 PMCID: PMC1155737 DOI: 10.1113/jphysiol.1994.sp020286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. We studied the beta-adrenergic regulation of voltage-gated Ca2+ channel currents using the whole-cell patch-clamp technique (18-22 degrees C) in freshly isolated and in cultured (1-20 days) rat aortic vascular smooth muscle cells (VSMCs). These currents include a transient low-voltage-activated (LVA) current and two L-type-related high-voltage-activated currents (HVA1 and HVA2, respectively). 2. At 10 microM, the beta-adrenergic agonist, isoprenaline, increased the HVA2 current (65 +/- 30%, n = 10) but had no effect on LVA and HVA1 currents. This potentiation was dose dependent in the range 0.01-10 microM, developed with a slow time course and was mimicked by elevating intracellular cyclic AMP using the permeant analogue dibutyryl cyclic AMP (100 microM). 3. In the well-differentiated freshly isolated myocytes, only the HVA1 current was recorded. In cultured cells, a predominant frequency of occurrence of LVA and HVA1 currents was observed in modulated and differentiated myocytes, respectively. The occurrence of the HVA2 current was stable during culture but this current disappeared when the cells were confluent. It was retrieved when the confluent cells were dispersed and subcultured. 4. In conclusion, we present evidence for a differential beta-adrenergic regulation of three types of Ca2+ channel current in adult rat aortic VSMCs. The differential expression of these currents, associated with marked changes in cell phenotypes in vitro, suggests that they serve distinct physiological functions.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Bucladesine/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cell Cycle
- Cells, Cultured
- DNA/biosynthesis
- Ion Channel Gating
- Isoproterenol/pharmacology
- Male
- Membrane Potentials
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Patch-Clamp Techniques
- Phenotype
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/physiology
Collapse
Affiliation(s)
- D Neveu
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, UPR 9008, INSERM U 249, Montpellier, France
| | | | | | | | | |
Collapse
|
23
|
Tiaho F, Piot C, Nargeot J, Richard S. Regulation of the frequency-dependent facilitation of L-type Ca2+ currents in rat ventricular myocytes. J Physiol 1994; 477:237-51. [PMID: 7932216 PMCID: PMC1155625 DOI: 10.1113/jphysiol.1994.sp020187] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. An increase in the rate of stimulation induces an augmentation of L-type Ca2+ currents (ICa) and concomitant slowing of current decay in rat ventricular cells. This facilitation is quasi immediate (1-3 s), graded with the rate of stimulation, and occurs only from negative holding potentials. We investigated this effect using trains of stimulation at 1 Hz and the whole-cell patch-clamp technique (18-22 degrees C). 2. The decay of ICa is normally bi-exponential and comprises fast and slow current components (ICa,fc and ICa,sc, respectively). Facilitation of ICa was observed only when ICa,fc was predominant. 3. Facilitation developed during the run-up of ICa with the interconversion of ICa,sc into ICa,fc, and vanished during the run-down of ICa with the loss of ICa,fc.Ni2+ (300 microM) and nifedipine (1 microM) suppressed facilitation owing to the preferential inhibition of ICa,fc. 4. Facilitation of ICa was not altered (when present) or favoured (when absent) by the cAMP-dependent phosphorylation of Ca2+ channels promoted by isoprenaline or by intracellular application of cAMP or of the catalytic subunit of protein kinase A (C-sub). A similar effect was observed when the dihydropyridine agonist Bay K 8644 was applied. In both cases, facilitation was linked to a preferential increase of ICa,fc. 5. Following intracellular application of inhibitors of protein kinase A in combination with a non-hydrolysable ATP analogue, ICa consisted predominantly of ICa,sc and no facilitation was observed. The calmodulin antagonist naphthalenesulphonamide had no effect on facilitation. 6. When Bay K 8644 was applied in combination with isoprenaline, cAMP or C-sub, the decay of ICa was slowed with the predominant development of ICa,sc, and facilitation of ICa was nearly abolished. Facilitation also depended on extracellular Ca2+, and was suppressed when Ba2+ replaced Ca2+ as the permeating ion. 7. When no EGTA was included in the patch pipette, facilitation was not further enhanced but a use-dependent decrease of ICa frequently occurred. When BAPTA was used in place of EGTA, the rate of inactivation of ICa was reduced and facilitation was abolished. 8. In conclusion, the facilitation of ICa that reflects a voltage-driven interconversion of ICa,fc into ICa,sc is also regulated by Ca2+ and by cAMP-dependent phosphorylation. The presence of the gating pattern typified by ICa,fc is required. Ca2+ may exert its effect near the inner pore of the Ca2+ channel protein and control the distribution between the closed states of the two gating pathways.
Collapse
Affiliation(s)
- F Tiaho
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, UPR 9008, INSERM U 249, Montpellier, France
| | | | | | | |
Collapse
|
24
|
Muralidharan S, Maher GM, Boyle WA, Nerbonne JM. "Caged" phenylephrine: development and application to probe the mechanism of alpha-receptor-mediated vasoconstriction. Proc Natl Acad Sci U S A 1993; 90:5199-203. [PMID: 8389474 PMCID: PMC46683 DOI: 10.1073/pnas.90.11.5199] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A "caged" analogue of the alpha-adrenergic receptor agonist phenylephrine (PE) was prepared by exploiting the 2-nitrobenzyl protecting group and using a synthetic procedure developed to permit preferential derivatization at the amino group. On isolated adult rat mesenteric arterioles, caged-PE had no measurable effects at concentrations up to 100 microM; 0.5-ms light flashes in the presence of caged-PE, however, produced marked and dose-dependent vasoconstriction. Flash-induced vasoconstrictions were blocked by the alpha-receptor antagonist phentolamine and were unaffected by the beta-receptor antagonist propranolol, indicating that the light-induced responses reflect the selective activation of alpha-adrenergic receptors. After a single flash, a large transient decrease in vessel diameter was recorded, and in most vessels, this was followed by a smaller, sustained constriction. The sustained component of the contraction was selectively eliminated when Ca2+ was removed from the bath, which suggests that different mechanisms underlie the transient and the sustained responses to PE. The responses to single flashes of varying intensities occurred with a mean latency of 460 ms, which is consistent with the intermediacy of several steps between alpha-receptor activation and contraction. We anticipate that it will be possible to extend this approach to develop caged analogues of other neurotransmitters for mechanistic and kinetic studies.
Collapse
Affiliation(s)
- S Muralidharan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
25
|
Fournier F, Bourinet E, Nargeot J, Charnet P. Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes. Pflugers Arch 1993; 423:173-80. [PMID: 8391678 DOI: 10.1007/bf00374391] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Xenopus oocytes injected with rat cerebellum mRNA, express voltage-dependent calcium channels (VDCC). These were identified as P-type Ca2+ channels by their insensitivity to dihydropyridines and omega-conotoxin and by their blockade by Agelenopsis aperta venom (containing the funnel-web spider toxins: FTX and omega-Aga-IV-A). Coinjection of cerebellar mRNA and antisense oligonucleotide complementary to the dihydropyridine-resistant brain Ca2+ channel, named BI [Mori Y. et al. (1991) Nature 350:398-402] or rbA [Starr T. V. B. et al. (1991) Proc Natl Acad Sci USA 88:5621-5625], strongly reduced the expressed Ba2+ current suggesting that these clones encode a P-type VDCC. The macroscopic Ca2+ channel activity was increased by direct intraoocyte injection of cAMP. This increase in current amplitude was concomitant with a slowing of current inactivation, and was attributed to activation of protein kinase A, since it could be antagonized by a peptidic inhibitor of this enzyme. Positive regulation of P-type VDCC could be of importance in Purkinje neurons and motor nerve terminals where this channel is predominant.
Collapse
Affiliation(s)
- F Fournier
- CRBM-C.N.R.S. UPR 9008, I.N.S.E.R.M. U249, Montpellier, France
| | | | | | | |
Collapse
|
26
|
Tiaho F, Nargeot J, Richard S. Repriming of L-type calcium currents revealed during early whole-cell patch-clamp recordings in rat ventricular cells. J Physiol 1993; 463:367-89. [PMID: 8246188 PMCID: PMC1175348 DOI: 10.1113/jphysiol.1993.sp019599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The establishment of the whole-cell patch-clamp recording configuration (WCR) revealed a type of inhibition to which L-type Ca2+ channels were subject in static rat ventricular myocytes before obtaining the WCR. 2. Immediately after membrane disruption (< 10 s), the Ca2+ current (ICa) was absent but gradually increased in amplitude to reach its final waveform (amplitude and kinetics) 2-3 min after the WCR was reached. 3. Three distinct phases (P) were identified. First, no inward but an outward current, blocked (1-2 min) by Cs+ dialysing from the patch pipette (P1), was recorded. Second, overlapping with (P1), ICa increased dramatically to reach a maximum peak amplitude within 2-3 min (P2). Concomitantly, its rate of decay, initially monoexponential and slow, became biexponential owing to the appearance of a fast component of inactivation (P3). Complete interconversion between slow and fast components sometimes occurred. 4. Changes in current waveform were not related to voltage loss or series resistance variation, and suppression of an outward current (P1) was unlikely to account for P2 and P3. 5. The run-up of ICa was independent of the nature of the permeating ions, the membrane holding potential, depolarization, rate of stimulation, the intracellular Ca2+, ATP, Mg2+, Cs+ and the pH of the pipette solution. Since large Ca2+ currents were recorded using the perforated patch technique, the run-up of ICa is not explained by the wash-out of an inhibitory endogenous macromolecule during cell-pipette exchanges. 6. Pharmacological manipulations, including the use of Ca(2+)-Ba(2+)-EGTA and exposure of the cells to isoprenaline and/or Bay K 8644 prior to recording, did not alter the mechanism primarily responsible for build-up. Unrepriming of channel activity was required before these modulations could be effective. 7. Currents could however be instantly augmented when cells were extracellularly superfused during the run-up step. The wash-out of an inhibitory agent originating in the cell itself (such as H+, NH4+ and lactate) and accumulating in the extracellular microenvironment of the cells seems unlikely. Rather, we suggest that pressure-induced mechanostimulation may be involved in the restoration of Ca2+ channel activity.
Collapse
Affiliation(s)
- F Tiaho
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 8402, INSERM U 249, Montpellier, France
| | | | | |
Collapse
|
27
|
Scamps F, Nilius B, Alvarez J, Vassort G. Modulation of L-type Ca channel activity by P2-purinergic agonist in cardiac cells. Pflugers Arch 1993; 422:465-71. [PMID: 8386353 DOI: 10.1007/bf00375073] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanism of enhancement of the L-type Ca current by a P2-purinergic agonist adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was studied by recording single channel activity from cell-attached patches on rat isolated ventricular cells using patch pipettes containing 110 mM Ba2+. The application of ATP gamma S to the patch membrane through the pipette solution did not affect single channel activity. The addition of ATP gamma S to the bath containing a depolarizing solution was ineffective due to the voltage dependence of the purinergic stimulation. Bath application of ATP gamma S (100 microM) to control 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid (HEPES) solution increased the amplitude of ensemble average currents both by decreasing the probability of a blank sweep occurring and by increasing the number of openings per non-blank sweep. The single channel conductance (17 pS) was not changed by ATP gamma S. Both activation and inactivation curves were shifted towards hyperpolarized potentials by about 10 mV under P2-purinergic stimulation. Since ATP gamma S increased channel activity when applied via the bath, it must be supposed that a diffusible messenger is involved.
Collapse
Affiliation(s)
- F Scamps
- U-241 INSERM, Physiologie Cellulaire Cardiaque, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
28
|
Richard S, Neveu D, Carnac G, Bodin P, Travo P, Nargeot J. Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1160:95-104. [PMID: 1329983 DOI: 10.1016/0167-4838(92)90042-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of different types of Ca(2+)-channels was studied using the whole-cell patch-clamp technique in cultured rat aortic smooth-muscle myocytes. Ca(2+)-currents were identified as either low- or high voltage-activated (ICa,LVA or ICa,HVA, respectively) based on their distinct voltage-dependences of activation and inactivation, decay kinetics using Ba2+ as the charge carrier and sensitivity to dihydropyridines. The heterogeneity in the functional expression of the two types of Ca(2+)-channels in the cultured myocytes delineated four distinct phenotypes; (i), cells exhibiting only LVA currents; (ii), cells exhibiting only HVA currents; (iii), cells exhibiting both LVA and HVA currents and (iv), cells exhibiting no current. The myocytes exclusively expressed HVA currents both during the first five days in primary culture and after the cells had reached confluence (> 15 days). In contrast, LVA currents were expressed transiently between 5 and 15 days, during which time the cells were proliferating and had transient loss of contractility. Thus, both LVA and HVA Ca(2+)-current types contribute to Ca(2+)-signalling in cultured rat aortic myocytes. However, the differential expression of the two Ca2+ current types associated with differences in contractile and proliferative phenotypes suggest that they serve distinct cellular functions. Our results are consistent with the idea that LVA current expression is important for cell proliferation.
Collapse
Affiliation(s)
- S Richard
- Groupe d'électrophysiologie cellulaire et moléculaire, Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 9008, INSERM U249, Montpellier, France
| | | | | | | | | | | |
Collapse
|
29
|
Chiavaroli C, Vacher P, Schlegel W. Modulation of Ca2+ influx by protein phosphorylation in single intact clonal pituitary cells. Eur J Pharmacol 1992; 227:173-80. [PMID: 1330649 DOI: 10.1016/0922-4106(92)90125-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In pituitary cells, electrical activity generates characteristic oscillations of the cytosolic free Ca2+ concentration, [Ca2+]i. These oscillations are controlled by activators as well as by inhibitors of secretion. We studied, in single fura-2-loaded cells, the role of protein phosphorylation in modulating [Ca2+]i oscillations, using either okadaic acid, an inhibitor of protein phosphatases, or activators of protein kinases A and C. Okadaic acid always increased rapidly both the frequency and amplitude of [Ca2+]i oscillations. In contrast, activation of protein kinases A or C generated more complex kinetic [Ca2+]i patterns: phosphorylation due to both kinases resulted in a sustained activation of [Ca2+]i oscillations in about one-third of the cells, whereas two-thirds of the cells responded by an arrest of [Ca2+]i oscillations. This transient phase of arrest was followed, after a few minutes, by a recovery of [Ca2+]i oscillations, often with enhanced frequency. During the arrest, depolarizing the cells with an external microelectrode could not trigger an increase in [Ca2+]i. We conclude that: (i) the fine regulation between phosphorylation/dephosphorylation events is crucial for the modulation of [Ca2+]i oscillations, and (ii) protein kinases A and C can control Ca2+ influx bidirectionally.
Collapse
Affiliation(s)
- C Chiavaroli
- Department of Medicine, University of Geneva, Switzerland
| | | | | |
Collapse
|
30
|
Yakel JL. Inactivation of the Ba2+ current in dissociated Helix neurons: voltage dependence and the role of phosphorylation. Pflugers Arch 1992; 420:470-8. [PMID: 1614819 DOI: 10.1007/bf00374621] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rate of inactivation of the voltage-dependent Ba2+ current in dissociated neurons from the snail Helix aspersa was found to be modulated by phosphorylation. Conditions were chosen such that the most likely mechanism of inactivation of the Ba2+ current was a voltage-dependent/calcium-independent inactivation process. If adenosine-triphosphate (ATP) was not included in the patch electrode filling solution, or if alkaline phosphatase was added, the Ba2+ current rapidly ran down and the rate of inactivation greatly increased with time. Dialysis with either ATP gamma S or the phosphatase inhibitor okadaic acid (OA) either enhanced the amplitude or greatly reduced the rate of run-down of the Ba2+ current (depending upon the presence of ATP), as well as reducing the rate of inactivation. However, dialysis with either the catalytic subunit of the cyclic-adenosine-mono-phosphate-dependent protein kinase (cAMP-PK), a synthetic peptide inhibitor of this enzyme, or staurosporine (a potent inhibitor of protein kinase C), did not have any significant effect on the amplitude or kinetics of the Ba2+ current. Surprisingly, dialysis with a peptide inhibitor (CKIP) of the Ca2+/calmodulin-dependent protein kinase II (Ca(2+)-CaM-PK) significantly reduced the rate of inactivation of this current. These results suggest that phosphorylation may exert its effect by modulating the gating properties of the Ca2+ channels.
Collapse
Affiliation(s)
- J L Yakel
- Laboratoire de Neurobiologie (URA 295 CNRS), Ecole Normale Supérieure, Paris, France
| |
Collapse
|
31
|
Lory P, Nargeot J. Cyclic AMP-dependent modulation of cardiac Ca channels expressed in Xenopus laevis oocytes. Biochem Biophys Res Commun 1992; 182:1059-65. [PMID: 1371671 DOI: 10.1016/0006-291x(92)91839-i] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclic AMP-dependent modulation of cardiac L-type voltage-dependent Ca channel (VDCC) has been probed in Xenopus laevis oocytes injected with poly(A+) RNA from rat heart. A 2 to 3 fold increase of the Ba current amplitude was routinely obtained upon microinjection of cAMP (50-500 microM). Inhibition of protein kinase A (PKA) dramatically reduced the Ba current amplitude, indicating that cAMP-dependent modulation plays an important role in maintaining the basal activity of expressed Ca channels. Moreover, the effects of the DHP agonist Bay K 8644 on kinetic properties of expressed Ba current (IBa,C) were dependent on PKA activation. The results suggest that most expressed cardiac L-type VDCCs are phosphorylated and demonstrate that reconstitution in Xenopus oocytes is a suitable approach to address how phosphorylation regulates VDCC activity.
Collapse
Affiliation(s)
- P Lory
- Centre de Recherche de Biochimie Macromoleculaire, UPR 8402 CNRS, U 249 INSERM, Montpellier, France
| | | |
Collapse
|
32
|
Tiaho F, Nargeot J, Richard S. Voltage-dependent regulation of L-type cardiac Ca channels by isoproterenol. Pflugers Arch 1991; 419:596-602. [PMID: 1664936 DOI: 10.1007/bf00370301] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The beta-adrenergic cascade is important for the regulation of voltage-dependent Ca channels by phosphorylation. Here we report that isoproterenol (ISO) profoundly alters the voltage-dependent properties of L-type Ca channels studied in rat ventricular cells. ISO (1 microM) shifted both threshold and maximal activation of Ba current (IBa) towards more negative potentials (approx. 10 mV). An equivalent shift was observed in the steady-state voltage-dependent inactivation curve. As a consequence, the potentiation induced by ISO on IBa was greater for weak depolarizations and from negative holding potentials (Vh). We have excluded that the contribution of minor uncompensated series resistances, the activation of Cl currents or changes in junction potential during the experiments account for these effects. In addition, ISO had a dual effect on IBa decay depending on the voltage step (acceleration below, slowing above -10 mV). In conclusion, it is postulated that the voltage dependence of the potentiating effects of ISO on Ca channels activity may ensure a selective regulation among heart tissues with different membrane resting potentials.
Collapse
Affiliation(s)
- F Tiaho
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 8402, INSERM U 249, Montpellier, France
| | | | | |
Collapse
|
33
|
Dolphin AC, Huston E, Pearson H, Menon-Johanssen A, Sweeney MI, Adams ME, Scott RH. G protein modulation of calcium entry and transmitter release. Ann N Y Acad Sci 1991; 635:139-52. [PMID: 1683748 DOI: 10.1111/j.1749-6632.1991.tb36488.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A C Dolphin
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|