1
|
Cheng HH, Chou CT, Sun TK, Liang WZ, Cheng JS, Chang HT, Tseng HW, Kuo CC, Chen FA, Kuo DH, Shieh P, Jan CR. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells. Hum Exp Toxicol 2015; 34:1096-105. [PMID: 25636639 DOI: 10.1177/0960327115569810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis.
Collapse
Affiliation(s)
- H-H Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung Institute of Technology, Chia-Yi, Taiwan Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | - T-K Sun
- Division of Pediatrics, St. Joseph Hospital, Kaohsiung, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - J-S Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-T Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-W Tseng
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - F-A Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - D-H Kuo
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - P Shieh
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Kempson SA, Edwards JM, Osborn A, Sturek M. Acute inhibition of the betaine transporter by ATP and adenosine in renal MDCK cells. Am J Physiol Renal Physiol 2008; 295:F108-17. [PMID: 18448594 DOI: 10.1152/ajprenal.00108.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP interacts with purinergic P2 receptors to regulate a range of physiological responses, including downregulation of transport activity in the nephron. ATP is released from cells by mechanical stimuli such as cell volume changes, and autocrine signaling by extracellular ATP could occur in renal medullary cells during diuresis. This was tested in Madin-Darby canine kidney (MDCK) cells, a model used frequently to study P1 and P2 receptor activity. ATP was released within 1 min after transfer from 500 to 300 mosmol/kgH2O medium. A 30-min incubation with ATP produced dose-dependent inhibition (0.01-0.10 mM) of the renal betaine/GABA transporter (BGT1) with little effect on other osmolyte transporters. Inhibition was reproduced by specific agonists for P2X (alpha,beta-methylene-ATP) and P2Y (UTP) receptors. Adenosine, the final product of ATP hydrolysis, also inhibited BGT1 but not taurine transport. Inhibition by ATP and adenosine was blocked by pertussis toxin and A73122, suggesting involvement of inhibitory G protein and PLC in postreceptor signaling. Both ATP and adenosine (0.1 mM) produced rapid increases in intracellular Ca2+, due to the mobilization of intracellular Ca2+ stores and Ca2+ influx. Blocking these Ca2+ increases with BAPTA-AM also blocked the action of ATP and adenosine on BGT1 transport. Finally, immunohistochemical studies indicated that inhibition of BGT1 transport may be due to endocytic accumulation of BGT1 proteins from the plasma membrane. We conclude that ATP and adenosine, through stimulation of PLC and intracellular Ca2+, may be rapidly acting regulators of BGT1 transport especially in response to a fall in extracellular osmolarity.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Intergrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
3
|
Sedova M, Klishin A, Huser J, Blatter LA. Capacitative Ca2+ entry is graded with degree of intracellular Ca2+ store depletion in bovine vascular endothelial cells. J Physiol 2000; 523 Pt 3:549-59. [PMID: 10718737 PMCID: PMC2269830 DOI: 10.1111/j.1469-7793.2000.t01-3-00549.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. In endothelial cells, release of Ca2+ from endoplasmic reticulum (ER) Ca2+ stores activates Ca2+ influx via the capacitative Ca2+ entry (CCE) pathway. In cultured bovine pulmonary artery endothelial cells, we investigated the relationship between intracellular Ca2+ store load and CCE activity, as well as the kinetics of CCE activation and deactivation, by simultaneously measuring changes in [Ca2+]i and unidirectional manganese (Mn2+) entry through the CCE pathway. 2. Submaximal concentrations of ATP caused quantal release of Ca2+ from the ER, resulting in a dose-dependent depletion of Ca2+ stores and acceleration of Mn2+ entry. Mn2+ entry rate, as a measure of CCE activity, was graded with the amount of released Ca2+. Maximal activation of CCE did not require complete store depletion. 3. Slow depletion of the ER by exposure to the ER Ca2+ pump inhibitor cyclopiazonic acid resulted in a delayed activation of CCE, revealing a temporal dissociation between release of Ca2+ from intracellular stores and activation of CCE. 4. During [Ca2+]i oscillations, at frequencies higher than 0.5 spikes min-1, each Ca2+ spike resulted in a progressive acceleration of CCE without leading to oscillations of Ca2+ entry. In contrast, low frequency [Ca2+]i oscillations were paralleled by transient CCE that was activated and deactivated with each Ca2+ spike, resulting in an oscillatory pattern of Ca2+ entry. 5. It is concluded that CCE is a rapidly activating process which is graded with store depletion and becomes fully activated before complete depletion. The duration of CCE activation correlates with the degree of store depletion and the time that is required to refill depleted stores. Overall, a mechanism of graded CCE prevents exhaustion of intracellular Ca2+ reserves and provides an efficient way to respond to variable degrees of intracellular store depletion.
Collapse
Affiliation(s)
- M Sedova
- Department of Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Di- and tripeptides and peptide mimetics such as beta-lactam antibiotics are efficiently reabsorbed from the tubular lumen by a high-affinity peptide transporter. We have recently identified and characterized this H+-coupled high-affinity peptide transport system in the porcine proximal tubular cell line LLC-PK1. Here we describe for the first time the regulation of the renal high-affinity peptide cotransporter at the cellular level. Uptake of 5 microM 3H-D-Phe-L-Ala into LLC-PK1 cells was significantly increased by lowering [Ca2+]in and decreased by increasing [Ca2+] in. Moreover, it was shown that the [Ca2+]in effects on peptide transport activity were dependent on Ca2+ entry from the extracellular site (e.g., via a store-regulated capacitative Ca2+ influx). Protein kinase C (PKC) was found to transmit the effects of [Ca2+]in on peptide transport. Although we demonstrate by pHin measurements that the PKC inhibitor staurosporine did decrease the transmembrane H+ gradient and consequently should have reduced the driving force for peptide uptake, the only effect on transport kinetics of 3H-D-Phe-L-Ala observed was a significant decrease in Km from 22.7+/-2.5 microM to 10.2+/-1.9 microM with no change in maximal velocity.
Collapse
Affiliation(s)
- U Wenzel
- Institute of Nutritional Sciences, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
5
|
Bauer CS, Plieth C, Bethmann B, Popescu O, Hansen UP, Simonis W, Schonknecht G. Strontium-induced repetitive calcium spikes in a unicellular green alga. PLANT PHYSIOLOGY 1998; 117:545-57. [PMID: 9625707 PMCID: PMC34974 DOI: 10.1104/pp.117.2.545] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 03/03/1998] [Indexed: 05/22/2023]
Abstract
The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.
Collapse
|
6
|
Peters SM, Tijsen MJ, van Os CH, Wetzels JF, Bindels RJ. Hypoxia decreases calcium influx into rat proximal tubules. Kidney Int 1998; 53:703-8. [PMID: 9507217 DOI: 10.1046/j.1523-1755.1998.00816.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal ischemia results in adenosine triphosphate (ATP) depletion, particularly in cells of the proximal tubule (PT), which rely heavily on oxidative phosphorylation for energy supply. Lack of ATP leads to a disturbance in intracellular homeostasis of Na+, K+ and Cl-. Also, cytosolic Ca2+ levels in renal PTs may increase during hypoxia [1], presumably by a combination of impaired extrusion and enhanced influx [2]. However, Ca2+ influx was previously measured using radiolabeled Ca2+ and at varying partial oxygen tension [2]. We have now used to Mn2(+)-induced quenching of fura-2 fluorescence to study Ca2+ influx in individual rat PTs during normoxic and hypoxic superfusion. Normoxic Ca2+ influx was indeed reflected by the Mn2+ quenching of fura-2 fluorescence and this influx could be inhibited by the calcium entry blocker methoxyverapamil (D600; inhibition 50 +/- 2% and 35 +/- 3% for 10 and 100 mumol, respectively). La3+ completely blocked normoxic Ca2+ influx. Hypoxic superfusion or rat PTs did not induce an increase in Ca2+ influx, but reduced this influx to 79 +/- 3% of the normoxic control. We hypothesize that reducing Ca2+ influx during hypoxia provides the cell with a means to prevent cellular Ca2+ overload during ATP-depletion, where Ca2+ extrusion is limited.
Collapse
Affiliation(s)
- S M Peters
- Department of Cell Physiology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Barritt GJ. Does a decrease in subplasmalemmal Ca2+ explain how store-operated Ca2+ channels are opened? Cell Calcium 1998; 23:65-75. [PMID: 9570011 DOI: 10.1016/s0143-4160(98)90075-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phenomenon of store-activated Ca2+ inflow (capacitative Ca2+ entry) in which the depletion of Ca2+ in the endoplasmic reticulum (ER) increases the probability of opening of store-operated Ca2+ channels (SOCs) located in the plasma membrane is ubiquitous in 'non-excitable' animal cells and is also found in some 'excitable' cells. At present, neither the structures of SOCs nor the mechanism(s) by which a decrease in Ca2+ in the lumen of the ER activates SOCs are well understood. This paper discusses the hypothesis that a decrease in the concentration of Ca2+ in restricted regions of the subplasmalemmal space (bounded by the plasma membrane and peripheral regions of the ER) is responsible for the activation of SOCs. The hypothesis rests on observations made by others that Ca2+ is a strong feed-back inhibitor of SOCs and of the endoplasmic reticulum (Ca(2+)+Mg2+)-ATPases (SERCAs), and on the concepts (developed previously by others) of a subplasmalemmal space and the directed flow of Ca2+ through SOCs into the lumen of the ER and from there to the deep cytoplasmic space. The way in which the hypothesis might explain the actions of agonists (acting via inositol 1,4,5-trisphosphate) and thapsigargin (an inhibitor of SERCAs) in activating SOCs under physiological conditions is described. The proposed involvement of thapsigargin-insensitive SERCAs, and possible limitations of the hypothesis are discussed.
Collapse
Affiliation(s)
- G J Barritt
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
8
|
Zimmermann B. Calcium store depletion activates two distinct calcium entry pathways in secretory cells of the blowfly salivary gland. Cell Calcium 1998; 23:53-63. [PMID: 9570010 DOI: 10.1016/s0143-4160(98)90074-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ca2+ influx into secretory cells of the intact salivary gland of the blowfly Calliphora erythrocephala elicited by the agonist 5-hydroxytryptamine (5-HT) or the Ca2+ uptake inhibitor thapsigargin was studied by using Fura-2 and digital fluorescence imaging and by recordings of the transepithelial potential. Application of saturating [5-HT] in the absence of Ca2+ (Ca2+o) from the bathing saline did not affect the initial Ca2+ transient but greatly attenuated the subsequent sustained Ca2+ elevation observed in the presence of Ca2+o demonstrating that the latter component of the [Ca2+]i response is largely dependent on Ca2+ entry across the baso-lateral plasma membrane. La3+ or Gd3+ (10 microM) mimicked the effects of the withdrawal of Ca2+o. Experimental attempts temporally to uncouple 5-HT stimulation and Ca2+ influx by withdrawal of Ca2+o during agonist application revealed a second Ca2+ entry pathway. This pathway was insensitive to 10 microM La3+ and produced transient [Ca2+]i increases whose amplitudes were a function of the [5-HT] during the preceding stimulation and that were selectively suppressed by 50 microM SK&F 96365. Both (10 microM) La(3+)-insensitive [Ca2+]i transients and (10 microM) La3+ inhabitable tonic [Ca2+]i increases could be sequentially activated in the presence of 5-HT or thapsigargin (1 microM). These results indicate that Ca2+ store depletion by 5-HT or thapsigargin activates two distinct store-operated Ca2+ entry pathways, one of which supports tonic [Ca2+]i increases. The other is transiently activated, even under conditions that prohibit store refilling and does not significantly contribute to the [Ca2+]i responses evoked by saturating 5-HT concentrations.
Collapse
Affiliation(s)
- B Zimmermann
- Institut für Zoophysiologie und Zellbiologie, Universität Potsdam, Germany.
| |
Collapse
|
9
|
Raber G, Willems PH, Lang F, Nitschke R, van Os CH, Bindels RJ. Co-ordinated control of apical calcium influx and basolateral calcium efflux in rabbit cortical collecting system. Cell Calcium 1997; 22:157-66. [PMID: 9330786 DOI: 10.1016/s0143-4160(97)90009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcellular Ca2+ transport in the distal nephron involves passive Ca2+ influx at the apical membrane, diffusion through the cytosol and active extrusion across the opposing basolateral membrane. The molecular identity of the apical Ca2+ entry step is still elusive, but its regulatory aspects have been analyzed in the present study. To this end, rabbit connecting and cortical collecting tubular cells were cultured on permeable and transparent supports and the apical Ca2+ influx was deduced from Mn2+ quenching of Ca2+ independent Fura-2 fluorescence, while the intracellular Ca2+ concentration ([Ca2+]i) was measured simultaneously. In parallel experiments, transcellular Ca2+ transport was determined isotopically as 45Ca2+ flux from the apical to basolateral compartment. Decreasing the apical pH from 7.4 to 5.9 inhibited transcellular Ca2+ transport by 53 +/- 1%, whereas apical Ca2+ influx was reduced by 39 +/- 7% and [Ca2+]i decreased by 18 +/- 3%. Reversal of the Na+/Ca2+ exchanger by iso-osmotic replacement of Na+ by N-methyl-D-glucamine in the basolateral compartment resulted in 50 +/- 5% inhibition of Ca2+ transport, 46 +/- 3% reduction of apical Ca2+ influx and 60 +/- 3% increase in [Ca2+]i. In the absence of basolateral Ca2+, however, this manoeuvre decreased [Ca2+]i by 21 +/- 8%, while Ca2+ transport and apical Ca2+ influx were reduced by the same magnitude as in the presence of Ca2+, that is by 53 +/- 6% and 45 +/- 4%, respectively. Stimulation of adenylyl cyclase with forskolin (10(-5) M) increased transcellular Ca2+ transport by 108 +/- 40%, stimulated apical Ca2+ influx by 120 +/- 17% and increased [Ca2+]i by 110 +/- 2%. In conclusion, the apical Ca2+ influx is regulated by apical pH, intracellular cAMP and basolateral Na+/Ca2+ exchanger activity, and is coupled in an 1:1 fashion to the rate of transepithelial Ca2+ transport.
Collapse
Affiliation(s)
- G Raber
- Department of Cell Physiology, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Røttingen JA, Camerer E, Mathiesen I, Prydz H, Iversen JG. Synchronized Ca2+ oscillations induced in Madin Darby canine kidney cells by bradykinin and thrombin but not by ATP. Cell Calcium 1997; 21:195-211. [PMID: 9105729 DOI: 10.1016/s0143-4160(97)90044-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an earlier report, we described synchronous Ca2+ oscillations in globally stimulated, subconfluent MDCK cells [Røttingen J-A, Enden T., Camerer E., Iversen J-G., Prydz H. Binding of human factor VIIa to tissue factor induces cytosolic Ca2+ signals in J82 cells, transfected COS-1 cells, Madin-Darby canine kidney cells and in human endothelial cells induced to synthesize tissue factor. J Biol Chem 1995; 270: 4650-4660]. In order to elucidate the mechanisms behind these oscillations, we have analyzed the fluctuations in cytosolic Ca2+ in single, Fura-2 loaded, MDCK cells grown to subconfluence, after stimulation with bradykinin, thrombin and ATP. All three agonists gave rise to an initial Ca2+ spike followed by oscillations or transients. Both the initial and subsequent spikes appeared to be due mainly to release of Ca2+ from internal stores, since they remained after Ca2+ influx was impeded by either La3+ or by chelation of extracellular Ca2+ with EGTA. The secondary spikes were apparently synchronized when the cells were (permanently and globally) stimulated with bradykinin or thrombin, but each cell seemed to oscillate independently when stimulated in the same way with ATP. Synchronized secondary spikes arose with a constant frequency and amplitude, independent of agonist concentration in contrast to most Ca2+ oscillations observed. Pretreatment of the cells with octanol to block gap junctions, or with EGTA or La3+ to inhibit Ca2+ influx, abolished the synchronization induced by bradykinin or thrombin. We observed that in the MDCK cell layer there are some "pacemaker' cells and hypothesize that these have a higher sensitivity for the agonists than their neighboring cells. From these pacemakers, an intercellular Ca2+ wave can be seen to spread to adjacent cells in the presence of intact gap junctions, thereby initiating concurrent transients in all cells. The Ca2+ wave is amplified by release from internal stores, probably owing to the bell-shaped Ca2+ activation curve of the IP3 receptor and by subsequent Ca2+ influx through Ca2+ release activated channels.
Collapse
Affiliation(s)
- J A Røttingen
- Department of Physiology, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
11
|
McGuinness OM, Moreton RB, Johnson MH, Berridge MJ. A direct measurement of increased divalent cation influx in fertilised mouse oocytes. Development 1996; 122:2199-206. [PMID: 8681800 DOI: 10.1242/dev.122.7.2199] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On fertilisation of mouse oocytes, the fusing spermatozoon triggers a series of repetitive calcium (Ca2+) spikes. The Ca2+ spikes seem to be necessary for successful progression through the cell cycle and are regulated in a cell-cycle-dependent manner. The spikes appear to require the linkage of continuous Ca2+ influx to the periodic release of Ca2+ from intracellular stores by a process of Ca(2+)-induced Ca2+ release. The precise role of Ca2+ influx was explored using the manganese (Mn2+)-quench technique to monitor unidirectional cation influx into single mouse oocytes. There was a marked stimulation of cation influx associated closely with the upsweep of the first and subsequent fertilisation Ca2+ spikes. A smaller but significant increase in the rate of cation influx persisted in the interspike period in fertilised oocytes. Spike-associated entry was not as apparent in oocytes stimulated to spike repetitively by thimerosal or acetylcholine application. Instead, there was a continuous increase in cation influx underlying Ca2+ spiking which commenced with the onset of the first spike. Using the specific microsomal inhibitor thapsigargin and the Ca2+ ionophore ionomycin, we found evidence for a capacitative entry mechanism in mouse oocytes. We propose that the persistent influx of Ca2+ observed in response to all stimuli examined is controlled by a capacitative mechanism and sets the frequency of spiking by determining the time taken to refill the internal stores to a point where they are again sensitive enough to initiate the next spike.
Collapse
Affiliation(s)
- O M McGuinness
- The Babraham Institute, Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | |
Collapse
|
12
|
Bootman MD, Young KW, Young JM, Moreton RB, Berridge MJ. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in HeLa cells. Biochem J 1996; 314 ( Pt 1):347-54. [PMID: 8660306 PMCID: PMC1217048 DOI: 10.1042/bj3140347] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stimulation of single HeLa cells with histamine evoked repetitive increases of the intracellular calcium ion concentration (Ca2+ spikes). The frequency of Ca2+ spiking increased as the extracellular hormone concentration was elevated. In addition, the frequency of Ca2+ spiking could be accelerated by increasing the extracellular Ca2+ concentration ([Ca2+]0) in the presence of a constant hormone concentration. The range of [Ca2+]0 over which the spiking frequency could be titrated was nominally-zero to 10mM, being half-maximally effective at approx. 1 and 2.5mM for 37 and 22 degrees C respectively. The effect of [Ca2+]0 on inositol phosphates production was also examined. Changes of [Ca2+]0 over a range which had been found to affect the frequency of Ca2+ spiking did not have any effect on the rate of myo-inositol 1,4,5-trisphosphate (InsP3) production, although an increase in inositol phosphates production was observed as [Ca2+]0 was increased from zero to values giving less than half-maximal Ca2+ spike frequency. These data suggest that at low Ca2+ spike frequency, Ca2+-stimulated activation of phospholipase C may contribute to Ca2+ spiking in HeLa cells, but under some conditions the availability of Ca2+ to the intracellular stores, rather than changes in the rate of InsP3 production, determines the Ca2+ spike frequency.
Collapse
Affiliation(s)
- M D Bootman
- The Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
13
|
Tang Y, Stephenson JL. Calcium dynamics and homeostasis in a mathematical model of the principal cell of the cortical collecting tubule. J Gen Physiol 1996; 107:207-30. [PMID: 8833342 PMCID: PMC2219266 DOI: 10.1085/jgp.107.2.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Calcium (Ca) dynamics are incorporated into a mathematical model of the principal cell in the cortical collecting tubule developed earlier in Strieter et al. (1992a. Am. J Physiol. 263:F1063-1075). The Ca components are modeled after the Othmer-Tang model for IP(3)-sensitive calcium channels (1993, in Experimental and Theoretical Advances in Biological Pattern Formation, 295-319). There are IP(3)-sensitive Ca channels and ATP-driven pumps on the membrane of the endoplasmic reticulum. Calcium enters the cell passively down its electrochemical gradient. A Ca pump and Na/Ca exchange in the basolateral membrane are responsible for the extrusion of cytoplasmic calcium. Na/Ca exchange can also operate in reverse mode to transport Ca into the cell. Regulatory effects of cytoplasmic Ca on the apical Na channels are modeled after experimental data that indicate apical Na permeability varies inversely with cytoplasmic Ca concentration. Numerical results on changes in intracellular Ca caused by decreasing NaCl in the bath and the lumen are similar to those from experiments in Bourdeau and Lau (1990. Am. J Physiol. 258:F1497-1503). This match of simulation and experiment requires the synergistic action of the Na/Ca exchanger and the Ca regulated apical Na permeability. In a homogeneous medium, cytoplasmic Ca becomes oscillatory when extracellular Na is severely decreased, as observed in experiments of cultured principal cells (Koster, H., C. van Os and R. Bindels. 1993. Kidney Int.43:828-836). This essentially pathological situation arises because the hyperpolarization of membrane potential caused by Na-free medium increases Ca influx into the cell, while the Na/Ca exchanger is inactivated by the low extracellular Na and can no longer move Ca out of the cell effectively. The raising of the total amount of intracellular Ca induces oscillatory Ca movement between the cytoplasm and the endoplasmic reticulum. Ca homeostasis is investigated under the condition of severe extracellular Ca variations. As extracellular Ca is decreased, Ca regulation is greatly impaired if Ca does not regulate apical ionic transport. The simulations indicate that the Na/Ca exchanger alone has only limited regulatory capacity. The Ca regulated apical sodium or potassium permeability are essential for regulation of cytoplasmic Ca in the principal cell of the cortical collecting tubule.
Collapse
Affiliation(s)
- Y Tang
- Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- M J Berridge
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, U.K
| |
Collapse
|
15
|
Schwab A, Wojnowski L, Gabriel K, Oberleithner H. Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest 1994; 93:1631-6. [PMID: 8163666 PMCID: PMC294199 DOI: 10.1172/jci117144] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca(2+)-sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study defines the role this channel plays in migration of MDCK-F cells. We monitored migration of individual MDCK-F cells by video imaging techniques. Under control conditions, MDCK-F cells migrated at a rate of 0.90 +/- 0.03 microns/min (n = 201). Application of K+ channel blockers (1 and 5 mmol/liter Ba2+, 5 mmol/liter tetraethylammonium, 100 mumol/liter 4-aminopyridine, 5 nmol/liter charybdotoxin) caused marked inhibition of migration, pointing to the importance of K+ channels in migration. Using patch-clamp techniques, we demonstrated the sensitivity of the Ca(2+)-sensitive 53-pS K+ channel to these blockers. Blockade of this K+ channel and inhibition of migration were closely correlated, indicating the necessity of oscillating K+ channel activity for migration. Migration of MDCK-F cells was also inhibited by furosemide or bumetanide, blockers of the Na+/K+/2Cl- cotransporter. We present a model for migration in which oscillations of cell volume play a central role. Whenever they are impaired, migration is inhibited.
Collapse
Affiliation(s)
- A Schwab
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
Wojnowski L, Hoyland J, Mason WT, Schwab A, Westphale HJ, Oberleithner H. Cell transformation induces a cytoplasmic Ca2+ oscillator in Madin-Darby canine kidney cells. Pflugers Arch 1994; 426:89-94. [PMID: 8146030 DOI: 10.1007/bf00374675] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alkaline stress transforms Madin-Darby canine kidney (MDCK) cells as indicated by loss of epithelial structure, multilayer cell growth and formation of foci. In the present study we report that transformed MDCK cells (MDCK-F cells) exhibit spontaneous and lasting oscillations of intracellular Ca2+ concentration ([Ca2+]i), which are absent in non-transformed cells. Oscillations, as revealed by Fura-2 video imaging, were due to the activity of an inositol 1,4,5-trisphosphate-(InsP3)-sensitive Ca2+ store since their frequency was dependent on bradykinin concentration and they were abolished by the phosphoinositidase C inhibitor U73122. Moreover, blockers of the cytoplasmic Ca(2+)-ATPase, thapsigargin and 2,5-di-(tetr-butyl)-1,4-benzohydroquinone inhibited oscillatory activity. In contrast, neither injection of ruthenium red, ryanodine nor caffeine had any effect on oscillations. Analysis of the spatial distribution of [Ca2+]i showed that Ca2+ transients originated from an initiation site constant for a given cell and spread through the cell as an advancing Ca2+ wave. Oscillations started in a random manner from single cells and spread over neighbouring cells, suggesting a kind of intercellular communication. We conclude that MDCK-F cells have acquired the ability for endogenous Ca2+ release through transformation. Oscillations are primarily due to the activity of an InsP3-sensitive cytosolic Ca2+ oscillator.
Collapse
Affiliation(s)
- L Wojnowski
- Department of Physiology, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|