1
|
Coleman D, Windt CW, Buckley TN, Merchant A. Leaf relative water content at 50% stomatal conductance measured by noninvasive NMR is linked to climate of origin in nine species of eucalypt. PLANT, CELL & ENVIRONMENT 2023; 46:3791-3805. [PMID: 37641435 DOI: 10.1111/pce.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small-scale non-destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50 ) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50 is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf-to-air vapour pressure deficits.
Collapse
Affiliation(s)
- David Coleman
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Andrew Merchant
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Institute for Bio-Geosciences, Juelich, Germany
| |
Collapse
|
2
|
Costa e Silva J, Potts BM, Wiehl G, Prober SM. Linking leaf economic and hydraulic traits with early-age growth performance and survival of Eucalyptus pauciflora. FRONTIERS IN PLANT SCIENCE 2022; 13:973087. [PMID: 36426150 PMCID: PMC9679299 DOI: 10.3389/fpls.2022.973087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Selection on plant functional traits may occur through their direct effects on fitness (or a fitness component), or may be mediated by attributes of plant performance which have a direct impact on fitness. Understanding this link is particularly challenging for long-lived organisms, such as forest trees, where lifetime fitness assessments are rarely achievable, and performance features and fitness components are usually quantified from early-life history stages. Accordingly, we studied a cohort of trees from multiple populations of Eucalyptus pauciflora grown in a common-garden field trial established at the hot and dry end of the species distribution on the island of Tasmania, Australia. We related the within-population variation in leaf economic (leaf thickness, leaf area and leaf density) and hydraulic (stomatal density, stomatal length and vein density) traits, measured from two-year-old plants, to two-year growth performance (height and stem diameter) and to a fitness component (seven-year survival). When performance-trait relationships were modelled for all traits simultaneously, statistical support for direct effects on growth performance was only observed for leaf thickness and leaf density. Performance-based estimators of directional selection indicated that individuals with reduced leaf thickness and increased leaf density were favoured. Survival-performance relationships were consistent with size-dependent mortality, with fitness-based selection gradients estimated for performance measures providing evidence for directional selection favouring individuals with faster growth. There was no statistical support for an effect associated with the fitness-based quadratic selection gradient estimated for growth performance. Conditional on a performance measure, fitness-based directional selection gradients estimated for the leaf traits did not provide statistical support for direct effects of the focal traits on tree survival. This suggested that, under the environmental conditions of the trial site and time period covered in the current study, early-stage selection on the studied leaf traits may be mediated by their effects on growth performance, which in turn has a positive direct influence on later-age survival. We discuss the potential mechanistic basis of the direct effects of the focal leaf traits on tree growth, and the relevance of a putative causal pathway of trait effects on fitness through mediation by growth performance in the studied hot and dry environment.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Brad M. Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Australian Research Council (ARC) Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Georg Wiehl
- CSIRO Land and Water, Private Bag 5, Wembley, WA, Australia
| | | |
Collapse
|
3
|
Wani IA, Verma S, Ahmad P, El-Serehy HA, Hashim MJ. Reproductive Biology of Rheum webbianum Royle, a Vulnerable Medicinal Herb From Alpines of North-Western Himalaya. FRONTIERS IN PLANT SCIENCE 2022; 13:699645. [PMID: 35251069 PMCID: PMC8891384 DOI: 10.3389/fpls.2022.699645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Information on reproductive biology and pollination ecology studies of threatened plants are essential to develop strategies for their sustainable utilization and effective conservation. As such, these studies were conducted on Rheum webbianum, a high-value "vulnerable" medicinal herb of the north-western Himalaya. This species presents a unique mode of reproductive behavior through the involvement of different floral events, including the movement of reproductive organs. The plants survive extremely cold conditions through underground perennating rhizomes that sprout into juvenile shoots with the onset of the favorable climatic conditions. The peduncle arises from the axils of the radical leaves, bearing a globular collection of densely arranged hermaphrodite flowers with temporally separated male and female phases; the male phase precedes the female phase (protandry). Anther dehiscence and stigma receptivity is post-anthesis. Anthers dehisce longitudinally along margins, liberating a large mass of spherical and tricolpate pollen with spinulose exine. Pollen viability decreased to < 10% on day 9. Pistil is tristylous, with each style terminating into a fan-shaped stigma lobe. The pollen receptive surface of each stigmatic lobe remains incurved at an angle of 360° and shows upward movement after anthesis, forming a funnel-like structure at an angle of 180° with respect to the ovary. Pollination syndrome is ambophilous. Spontaneous autogamy or geitonogamy to a certain extent is achieved in this species due to the arrangement of flowers in the inflorescence and overlapping of male and female reproductive phases among them. Incurved stigmatic lobes and outward movement of stamens too facilitate outcrossing. Pollen/ovule ratio estimates, results of pollination experiments on breeding behavior, outcrossing, and self-compatibility indices demonstrated that plants are self-compatible and cross-fertile.
Collapse
Affiliation(s)
- Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Susheel Verma
- Conservation and Molecular Biology Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha J. Hashim
- Department of Bioscience, University of Nottinghamshire, Nottingham, United Kingdom
| |
Collapse
|
4
|
Falster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, Kellermann J, Kenny B, Kohout M, Kooyman RM, Kotowska MM, Lai HR, Laliberté E, Lambers H, Lamont BB, Lanfear R, van Langevelde F, Laughlin DC, Laugier-Kitchener BA, Laurance S, Lehmann CER, Leigh A, Leishman MR, Lenz T, Lepschi B, Lewis JD, Lim F, Liu U, Lord J, Lusk CH, Macinnis-Ng C, McPherson H, Magallón S, Manea A, López-Martinez A, Mayfield M, McCarthy JK, Meers T, van der Merwe M, Metcalfe DJ, Milberg P, Mokany K, Moles AT, Moore BD, Moore N, Morgan JW, Morris W, Muir A, Munroe S, Nicholson Á, Nicolle D, Nicotra AB, Niinemets Ü, North T, O'Reilly-Nugent A, O'Sullivan OS, Oberle B, Onoda Y, Ooi MKJ, Osborne CP, Paczkowska G, Pekin B, Guilherme Pereira C, Pickering C, Pickup M, Pollock LJ, Poot P, Powell JR, Power SA, Prentice IC, Prior L, Prober SM, Read J, Reynolds V, Richards AE, Richardson B, Roderick ML, Rosell JA, Rossetto M, Rye B, Rymer PD, Sams MA, Sanson G, Sauquet H, Schmidt S, Schönenberger J, Schulze ED, Sendall K, Sinclair S, Smith B, Smith R, Soper F, Sparrow B, Standish RJ, Staples TL, Stephens R, Szota C, Taseski G, Tasker E, Thomas F, Tissue DT, Tjoelker MG, Tng DYP, de Tombeur F, Tomlinson K, Turner NC, Veneklaas EJ, Venn S, Vesk P, Vlasveld C, Vorontsova MS, Warren CA, Warwick N, Weerasinghe LK, Wells J, Westoby M, White M, Williams NSG, Wills J, Wilson PG, Yates C, Zanne AE, Zemunik G, Ziemińska K. AusTraits, a curated plant trait database for the Australian flora. Sci Data 2021; 8:254. [PMID: 34593819 PMCID: PMC8484355 DOI: 10.1038/s41597-021-01006-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Collapse
Affiliation(s)
- Daniel Falster
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia.
| | - Rachael Gallagher
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Elizabeth H Wenk
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Dony Indiarto
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Caitlan Baxter
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - James Lawson
- NSW Department of Primary Industries, Orange, Australia
| | - Stuart Allen
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Anne Fuchs
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Anna Monro
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Fonti Kar
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Mark A Adams
- Swinburne University of Technology, Hawthorn, Australia
| | - Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Matthew Alfonzetti
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Deborah M G Apgaua
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | | | - Owen K Atkin
- The Australian National University, Canberra, Australia
| | - Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Tony Auld
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | | | | | | | - Jason Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | | | - James Camac
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, Australia
| | | | | | | | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | | | - Alex R Chapman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - David Cheal
- Centre for Environmental Management, School of Health & Life Sciences, Federation University, Mount Helen, Australia
| | | | - Si-Chong Chen
- Royal Botanic Gardens, Richmond, Kew, United Kingdom
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Brook Clinton
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Peta L Clode
- University of Western Australia, Crawley, Australia
| | - Helen Coleman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Michael Crisp
- The Australian National University, Canberra, Australia
| | - Erika Cross
- Charles Sturt University, Bathurst, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Saul Cunningham
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| | | | - Ellen Curtis
- University of Technology Sydney, Sydney, Australia
| | - Matthew I Daws
- Environment Department, Alcoa of Australia, Huntly, Western Australia, Australia
| | - Jane L DeGabriel
- School of Marine and Tropical Biology, James Cook University, Douglas, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | | | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, ACT, 2617, Canberra, Australia
| | - Marco Duretto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - John R Evans
- The Australian National University, Canberra, Australia
| | - Susan E Everingham
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Jennifer Firn
- Queensland University of Technology, Brisbane, Australia
| | - Carlos Roberto Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Natal - RN, Brazil
| | | | - Doug Frood
- Pathways Bushland and Environment Consultancy, Sydney, Australia
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, USA
| | | | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Carl R Gosper
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Emma Gray
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Saskia Grootemaat
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Greg Guerin
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lydia Guja
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Amy K Hahs
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Australia
| | | | | | - Martin Henery
- arks Australia, Department of Agriculture, Water and the Environment, Hobart, Australia
| | - Dieter Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Guomin Huang
- Nanchang Institute of Technology, Nanchang, China
| | - Lesley Hughes
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - John Huisman
- Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | | | - Ashika Jagdish
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Daniel Jin
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Enrique Jurado
- Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, Mexico
| | | | | | - Jürgen Kellermann
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
| | | | - Michele Kohout
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Robert M Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Martyna M Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Hao Ran Lai
- University of Canterbury, Christchurch, New Zealand
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Hans Lambers
- University of Western Australia, Crawley, Australia
| | | | - Robert Lanfear
- Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Frank van Langevelde
- Wildlife Ecology & Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | | | | | | | - Andrea Leigh
- University of Technology Sydney, Sydney, Australia
| | | | - Tanja Lenz
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Brendan Lepschi
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | - Felix Lim
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | | | | | - Christopher H Lusk
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | | | - Hannah McPherson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susana Magallón
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Manea
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Andrea López-Martinez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margaret Mayfield
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Annette Muir
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Samantha Munroe
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Dean Nicolle
- Currency Creek Arboretum, Currency Creek, Australia
| | | | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Tom North
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | | | - Brad Oberle
- Division of Natural Sciences, New College of Florida, Sarasota, USA
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark K J Ooi
- Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, UNSW, Sydney, Australia
| | - Colin P Osborne
- University of Sheffield, Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Grazyna Paczkowska
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Burak Pekin
- Istanbul Technical University, Eurasia Institute of Earth Sciences, Istanbul, Turkey
| | - Caio Guilherme Pereira
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | - Pieter Poot
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Jennifer Read
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Victoria Reynolds
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | - Ben Richardson
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | | | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Barbara Rye
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Michael A Sams
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Gordon Sanson
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, University of Queensland, St Lucia, Australia
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Kerrie Sendall
- Rider University, Lawrence Township, Lawrenceville, NJ, USA
| | - Steve Sinclair
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Ben Sparrow
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rachel J Standish
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Australia
| | - Timothy L Staples
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Ruby Stephens
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Guy Taseski
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Elizabeth Tasker
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - David Yue Phin Tng
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | - Félix de Tombeur
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | | | | | | | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Peter Vesk
- University of Melbourne, Melbourne, Australia
| | - Carolyn Vlasveld
- School of Biological Sciences, Monash University, Clayton, Australia
| | | | - Charles A Warren
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | | | - Jessie Wells
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Matthew White
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | | | - Jarrah Wills
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Peter G Wilson
- National Herbarium of NSW and Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Colin Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Biology, University of Miami, Coral Gables, Florida 33146 USA, George Washington University, Washington, DC, 20052, USA
| | | | - Kasia Ziemińska
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| |
Collapse
|
5
|
Aspinwall MJ, Faciane M, Harris K, O'Toole M, Neece A, Jerome V, Colón M, Chieppa J, Feller IC. Salinity has little effect on photosynthetic and respiratory responses to seasonal temperature changes in black mangrove (Avicennia germinans) seedlings. TREE PHYSIOLOGY 2021; 41:103-118. [PMID: 32803230 DOI: 10.1093/treephys/tpaa107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Temperature and salinity are important regulators of mangrove range limits and productivity, but the physiological responses of mangroves to the interactive effects of temperature and salinity remain uncertain. We tested the hypothesis that salinity alters photosynthetic responses to seasonal changes in temperature and vapor pressure deficit (D), as well as thermal acclimation _of leaf respiration in black mangrove (Avicennia germinans). To test this hypothesis, we grew seedlings of A. germinans in an outdoor experiment for ~ 12 months under four treatments spanning 0 to 55 ppt porewater salinity. We repeatedly measured seedling growth and in situ rates of leaf net photosynthesis (Asat) and stomatal conductance to water vapor (gs) at prevailing leaf temperatures, along with estimated rates of Rubisco carboxylation (Vcmax) and electron transport for RuBP regeneration (Jmax), and measured rates of leaf respiration at 25 °C (Rarea25). We developed empirical models describing the seasonal response of leaf gas exchange and photosynthetic capacity to leaf temperature and D, and the response of Rarea25 to changes in mean daily air temperature. We tested the effect of salinity on model parameters. Over time, salinity had weak or inconsistent effects on Asat, gs and Rarea25. Salinity also had little effect on the biochemical parameters of photosynthesis (Vcmax, Jmax) and individual measurements of Asat, gs, Vcmax and Jmax showed a similar response to seasonal changes in temperature and D across all salinity treatments. Individual measurements of Rarea25 showed a similar inverse relationship with mean daily air temperature across all salinity treatments. We conclude that photosynthetic responses to seasonal changes in temperature and D, as well as seasonal temperature acclimation of leaf R, are largely consistent across a range of salinities in A. germinans. These results might simplify predictions of photosynthetic and respiratory responses to temperature in young mangroves.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Martina Faciane
- Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kylie Harris
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Madison O'Toole
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Amy Neece
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Vrinda Jerome
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Mateo Colón
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Jeff Chieppa
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Ilka C Feller
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
6
|
Münzbergová Z, Kosová V, Schnáblová R, Rokaya M, Synková H, Haisel D, Wilhelmová N, Dostálek T. Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:400. [PMID: 32318088 PMCID: PMC7154175 DOI: 10.3389/fpls.2020.00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Kosová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Renáta Schnáblová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Maan Rokaya
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Nada Wilhelmová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Dostálek
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Paudel BR, Dyer AG, Garcia JE, Shrestha M. The effect of elevational gradient on alpine gingers ( Roscoea alpina and R. purpurea) in the Himalayas. PeerJ 2019; 7:e7503. [PMID: 31576232 PMCID: PMC6753920 DOI: 10.7717/peerj.7503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
There is currently enormous interest in how morphological and physiological responses of herbaceous plants may be affected by changing elevational gradient. Mountain regions provide an excellent opportunity to understand how closely related species may adapt to the conditions that rapidly change with elevation. We investigated the morphological and physiological responses of two Himalayan alpine gingers (Roscoea alpina and R. purpurea) along two different vertical transects of 400 m, R. purpurea between 2,174-2,574 m a.s.l and R. alpina between 2,675-3,079 m a.s.l. We measured the variables of plant height, leaf length, leaf area, specific leaf area, and stomata density at five plots, along the vertical transect at an elevational gap of ca. 100 m. Results revealed that with increased elevation plant height, and leaf area decreased while stomata density increased, whereas changes in specific leaf area, were not correlated with the elevation. Our results reveal that these alpine gingers undergo local adaptation by modifying their plant height, leaf area and stomata density in response to the varying selection pressure associated with the elevational gradient. Thus, the findings of this research provide valuable information on how a narrow range of elevational gradient affects the herbaceous plants at the alpine habitat of the Himalayas.
Collapse
Affiliation(s)
- Babu Ram Paudel
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming, Yunnan, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
- Department of Botany, Prithvi Narayan Campus, Tribhuvan University, Pokhara, Gandaki, Nepal
| | - Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Jair E. Garcia
- School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Growth and Needle Properties of Young Pinus koraiensis Sieb. et Zucc. Trees across an Elevational Gradient. FORESTS 2019. [DOI: 10.3390/f10010054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better understanding of the response of plant growth to elevational gradients may shed light on how plants respond to environmental variation and on the physiological mechanisms underlying these responses. This study analyzed whole plant growth and physiological and morphological properties of needles in young Pinus koraiensis Sieb. et Zucc. trees at thirteen points along an elevational gradient ranging from 750 to 1350 m above sea level (a.s.l.) at the end of a growing season on Changbai Mountain in northeastern China. Sampling and analyses indicated the following; (1) many needle properties of P. koraiensis varied with forest type along the elevational gradient though some needle properties (e.g., intrinsic water use efficiency, concentration of chlorophyll, and leaf mass per area) did not change with elevation and forest types; (2) growth was significantly influenced by both forest type and elevation and growth of saplings in P. koraiensis and mixed broadleaved forests was greater than that in evergreen forests and increased with elevation in both forest types; (3) in P. koraiensis and mixed broadleaved forests, there were significant correlations between growth properties and light saturation point, leaf water potential, mean within-crown humidity, annual precipitation, cumulative temperature (≥5 ∘ C), within-crown air temperature, and atmospheric pressure; while in evergreen forests, the leaf C, leaf P content, net rate of light saturation in photosynthesis, water content of soil, within-crown humidity, annual precipitation, cumulative temperature (≥5 ∘ C), within-crown air temperature, and total soil P content displayed a significant relationship with plant growth. These results may help illuminate how P. koraiensis responds to environmental variation and evaluate the adaptive potential of Pinus koraiensis to climate change. Data presented here could also contribute to the more accurate estimation of carbon stocks in this area and to refinement of a plant trait database.
Collapse
|
9
|
Ishida A, Yamamura Y, Hori Y. Roles of leaf water potential and soil-to-leaf hydraulic conductance in water use by understorey woody plants. Ecol Res 2018. [DOI: 10.1007/bf02347090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Ishida
- ; Department of Biology, Faculty of Science; Tokyo Metropolitan University; Hachiohji 192-03 Japan
| | - Yasuo Yamamura
- ; Department of Biology, Faculty of Science; Ibaraki University; Mito 310 Japan
| | - Yoshimichi Hori
- ; Department of Biology, Faculty of Science; Ibaraki University; Mito 310 Japan
| |
Collapse
|
10
|
Geange SR, Briceño VF, Aitken NC, Ramirez-Valiente JA, Holloway-Phillips MM, Nicotra AB. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40665-017-0033-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Caldera HIU, De Costa WAJM, Woodward FI, Lake JA, Ranwala SMW. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient. PHYSIOLOGIA PLANTARUM 2017; 159:74-92. [PMID: 27514017 DOI: 10.1111/ppl.12486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 05/15/2023]
Abstract
Stomatal functioning regulates the fluxes of CO2 and water vapor between vegetation and atmosphere and thereby influences plant adaptation to their habitats. Stomatal traits are controlled by external environmental and internal cellular signaling. The objective of this study was to quantify the effects of CO2 enrichment (CE) on stomatal density (SD)-related properties, guard cell length (GCL) and carbon isotope ratio (δ13 C) of a range of Arabidopsis thaliana ecotypes originating from a wide altitudinal range [50-1260 m above sea level (asl)], and grown at 400 and 800 ppm [CO2 ], and thereby elucidate the possible adaptation and acclimation responses controlling stomatal traits and water use efficiency (WUE). There was a highly significant variation among ecotypes in the magnitude and direction of response of stomatal traits namely, SD and stomatal index (SI) and GCL, and δ13 C to CE, which represented a short-term acclimation response. A majority of ecotypes showed increased SD and SI with CE with the response not depending on the altitude of origin. Significant ecotypic variation was shown in all stomatal traits and δ13 C at each [CO2 ]. At 400 ppm, means of SD, SI and GCL for broad altitudinal ranges, i.e. low (<100 m), mid (100-400 m) and high (>400 m), increased with increasing altitude, which represented an adaptation response to decreased availability of CO2 with altitude. δ13 C was negatively correlated to SD and SI at 800 ppm but not at 400 ppm. Our results highlight the diversity in the response of key stomatal characters to CE and altitude within the germplasm of A. thaliana and the need to consider this diversity when using A. thaliana as a model plant.
Collapse
Affiliation(s)
- H Iroja U Caldera
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - W A Janendra M De Costa
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - F Ian Woodward
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Janice A Lake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Sudheera M W Ranwala
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
12
|
Shi Z, Haworth M, Feng Q, Cheng R, Centritto M. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AOB PLANTS 2015; 7:plv115. [PMID: 26433706 PMCID: PMC4631907 DOI: 10.1093/aobpla/plv115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 09/23/2015] [Indexed: 05/14/2023]
Abstract
Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ(13)C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves.
Collapse
Affiliation(s)
- Zuomin Shi
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Qiuhong Feng
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China Sichuan Academy of Forestry, Chengdu 610081, China
| | - Ruimei Cheng
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
13
|
Gharun M, Turnbull TL, Pfautsch S, Adams MA. Stomatal structure and physiology do not explain differences in water use among montane eucalypts. Oecologia 2015; 177:1171-81. [PMID: 25669453 DOI: 10.1007/s00442-015-3252-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
Abstract
Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.
Collapse
Affiliation(s)
- Mana Gharun
- Faculty of Agriculture and Environment, University of Sydney, Eveleigh, NSW, Australia,
| | | | | | | |
Collapse
|
14
|
Rajsnerová P, Klem K, Holub P, Novotná K, Večeřová K, Kozáčiková M, Rivas-Ubach A, Sardans J, Marek MV, Peñuelas J, Urban O. Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. TREE PHYSIOLOGY 2015; 35:47-60. [PMID: 25576757 DOI: 10.1093/treephys/tpu104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present work has explored for the first time acclimation of upper versus lower canopy leaves along an altitudinal gradient. We tested the hypothesis that restrictive climatic conditions associated with high altitudes reduce within-canopy variations of leaf traits. The investigated beech (Fagus sylvatica L.) forest is located on the southern slope of the Hrubý Jeseník Mountains (Czech Republic). All measurements were taken on leaves from upper and lower parts of the canopy of mature trees (>85 years old) growing at low (400 m above sea level, a.s.l.), middle (720 m a.s.l.) and high (1100 m a.s.l.) altitudes. Compared with trees at higher altitudes, those growing at low altitudes had lower stomatal conductance, slightly lower CO(2) assimilation rate (A(max)) and leaf mass per area (LMA), and higher photochemical reflectance index, water-use efficiency and Rubisco content. Given similar stand densities at all altitudes, the different growth conditions result in a more open canopy and higher penetration of light into lower canopy with increasing altitude. Even though strong vertical gradients in light intensity occurred across the canopy at all altitudes, lower canopy leaves at high altitudes tended to acquire the same morphological, biochemical and physiological traits as did upper leaves. While elevation had no significant effect on nitrogen (N) and carbon (C) contents per unit leaf area, LMA, or total content of chlorophylls and epidermal flavonoids in upper leaves, these increased significantly in lower leaves at higher altitudes. The increases in N content of lower leaves were coupled with similar changes in A(max). Moreover, a high N content coincided with high Rubisco concentrations in lower but not in upper canopy leaves. Our results show that the limiting role of light in lower parts of the canopy is reduced at high altitudes. A great capacity of trees to adjust the entire canopy is thus demonstrated.
Collapse
Affiliation(s)
- Petra Rajsnerová
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Kateřina Novotná
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Kristýna Večeřová
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Michaela Kozáčiková
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Albert Rivas-Ubach
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, 08913 Cerdanyola del Vallès, Catalonia, Spain CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, 08913 Cerdanyola del Vallès, Catalonia, Spain CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Michal V Marek
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, 08913 Cerdanyola del Vallès, Catalonia, Spain CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| |
Collapse
|
15
|
Cruz BPD, de Castro EM, Cardoso MDG, de Souza KF, Machado SMF, Pompeu PV, Fontes MAL. Comparison of leaf anatomy and essential oils from Drimys brasiliensis Miers in a montane cloud forest in Itamonte, MG, Brazil. BOTANICAL STUDIES 2014; 55:41. [PMID: 28510932 PMCID: PMC5432844 DOI: 10.1186/s40529-014-0041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/01/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND Drimys brasiliensis Miers is native to Brazil, where it is mainly found in montane forests and flooded areas in the South and Southeast regions of the country. The objectives of the present study were to compare the leaf anatomy and the chemical constitution of the essential oils from D. brasiliensis present in two altitude levels (1900 and 2100 m), in a Montane Cloud Forest, in Itamonte, MG, Brazil. RESULTS A higher number of sclereids was observed in the mesophyll of the leaves at 1900 m altitude. At 2100 m, the formation of papillae was observed on the abaxial surface of the leaves, as well as an increase in the stomatal density and index, a reduction in leaf tissue thickness, an increase in the abundance of intercellular spaces in the mesophyll and an increase in stomatal conductance and in carbon accumulation in the leaves. Fifty-nine constituents have been identified in the oils, with the predominance of sesquiterpenes. Two trends could be inferred for the species in relation to its secondary metabolism and the altitude. The biosyntheses of sesquiterpene alcohols at 1900 m, and phenylpropanoids and epi-cyclocolorenone at 2100 m, were favored. CONCLUSIONS D. brasiliensis presented a high phenotypic plasticity at the altitude levels studied. In relation to its leaf anatomy, the species showed adaptive characteristics, which can maximize the absorption of CO2 at 2100 m altitude, where a reduction in the partial pressure of this atmospheric gas occurs. Its essential oils presented promising compounds for the future evaluation of biological potentialities.
Collapse
Affiliation(s)
- Bruna Paula da Cruz
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| | - Evaristo Mauro de Castro
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| | - Maria das Graças Cardoso
- Departamento de Química, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| | - Katiúscia Freire de Souza
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| | - Samísia Maria Fernandes Machado
- Departamento de Química, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, São Cristóvão, CEP 49100-000 SE Brazil
| | - Patrícia Vieira Pompeu
- Departamento de Ciências Florestais, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| | - Marco Aurélio Leite Fontes
- Departamento de Ciências Florestais, Universidade Federal de Lavras, Campus Universitário, Lavras, CEP 37200-000 MG Brazil
| |
Collapse
|
16
|
Zhang H, Ma J, Sun W, Chen F. Variations in stable carbon isotope composition and leaf traits of Picea schrenkiana var. tianschanica along an altitude gradient in Tianshan Mountains, northwest China. ScientificWorldJournal 2014; 2014:243159. [PMID: 25530993 PMCID: PMC4235120 DOI: 10.1155/2014/243159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022] Open
Abstract
To understand the morphological and physiological responses of leaves to changes in altitudinal gradients, we examined ten morphological and physiological characteristics in one-year-old needles of Picea schrenkiana var. tianschanica at ten points along an altitudinal gradient from 1420 to 2300 m a.s.l. on the northern slopes of the Tianshan Mountains in northwest China. Our results indicated that LA, SD, LPC, and LKC increased linearly with increasing elevation, whereas leaf δ13C, LNC, Chla+b, LDMC, LMA, and Narea varied nonlinearly with changes in altitude. With elevation below 2100 m, LNC, Narea, and Chla+b increased, while LDMC and LMA decreased with increasing altitude. When altitude was above 2100 m, these properties showed the opposite patterns. Leaf δ13C was positively correlated with Narea and LNC and negatively correlated with SD and LA, suggesting that leaf δ13C was indirectly controlled by physiological and morphological adjustments along altitudinal gradients. Based on the observed maximum values in LNC, Narea, Chla+b, and LA and the minimum values in LMA and LDMC at the elevation of 2100 m, suggesting higher photosynthetic capacity and greater potential for fast growth under superior optimum zone, we concluded that the best growing elevation for P. schrenkiana var. tianschanica in the Tianshan Mountains was approximately 2100 m.
Collapse
Affiliation(s)
- Huiwen Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Jianying Ma
- Dunhuang Gobi and Desert Ecological and Environmental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- Department of Renewable Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Fahu Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Xu P, Zhang X, Zhao C, Chen L, Gao X, Yao B, Deng J, Deng Y. Foliar Responses ofAbies fargesiiFranch. To Altitude in the Taibai Mountain, China. POLISH JOURNAL OF ECOLOGY 2014. [DOI: 10.3161/104.062.0309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Martorell S, Diaz-Espejo A, Medrano H, Ball MC, Choat B. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange. PLANT, CELL & ENVIRONMENT 2014; 37:617-26. [PMID: 23937187 DOI: 10.1111/pce.12182] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 05/22/2023]
Abstract
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought.
Collapse
Affiliation(s)
- Sebastià Martorell
- Grup de Biologia de les Plantes en Condicions Mediterrànees, Universitat de les Illes Balears, Palma de Mallorca, 07122, Spain; Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | | | | | | | | |
Collapse
|
19
|
Dawson TE, Bliss LC. Intraspecific variation in the water relations of Salix arctica, an arctic-alpine dwarf willow. Oecologia 2013; 79:322-31. [DOI: 10.1007/bf00384311] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/1988] [Indexed: 11/30/2022]
|
20
|
O'Sullivan OS, Weerasinghe KWLK, Evans JR, Egerton JJG, Tjoelker MG, Atkin OK. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. PLANT, CELL & ENVIRONMENT 2013; 36:1268-1284. [PMID: 23278101 DOI: 10.1111/pce.12057] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110 m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo--these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57 °C, varying with season (e.g. winter summer). Tcrit ranged from 41 to 49 °C in summer and from 58 to 63 °C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45 °C); using these model fits, we found that the negative slope of the Q10 -T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E. pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models.
Collapse
Affiliation(s)
- Odhran S O'Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - K W Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales, 2751, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| |
Collapse
|
21
|
Nelson LA, Scheffer SJ, Yeates DK. Two new species of sympatric Fergusonina Malloch flies (Diptera: Fergusoninidae) from bud galls on high-elevation snow gums (Eucalyptus pauciflora Sieb. ex Spreng. complex) in the Australian Alps. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1440-6055.2011.00826.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Szota C, Farrell C, Koch JM, Lambers H, Veneklaas EJ. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. TREE PHYSIOLOGY 2011; 31:1052-1066. [PMID: 21908435 DOI: 10.1093/treephys/tpr085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study describes the physiological response of two co-occurring tree species (Eucalyptus marginata and Corymbia calophylla) to seasonal drought at low- and high-quality restored bauxite mine sites in south-western Australia. Seasonal changes in photosynthesis (A), stomatal conductance (g(s)), leaf water potential (ψ), leaf osmotic potential (ψ), leaf relative water content (RWC) and pressure-volume analysis were captured over an 18-month field study to (i) determine the nature and severity of physiological stress in relation to site quality and (ii) identify any physiological differences between the two species. Root system restriction at the low-quality site reduced maximum rates of gas exchange (g(s) and A) and increased water stress (midday ψ and daily RWC) in both species during drought. Both species showed high stomatal sensitivity during drought; however, E. marginata demonstrated a higher dehydration tolerance where ψ and RWC fell to -3.2 MPa and 73% compared with -2.4 MPa and 80% for C. calophylla. Corymbia calophylla showed lower g(s) and higher ψ and RWC during drought, indicating higher drought tolerance. Pressure-volume curves showed that cell-wall elasticity of E. marginata leaves increased in response to drought, while C. calophylla leaves showed lower osmotic potential at zero turgor in summer than in winter, indicating osmotic adjustment. Both species are clearly able to tolerate seasonal drought at hostile sites; however, by C. calophylla closing stomata earlier in the drought cycle, maintaining a higher water status during drought and having the additional mechanism of osmotic adjustment, it may have a greater capacity to survive extended periods of drought.
Collapse
Affiliation(s)
- Christopher Szota
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
23
|
SANGER JENNIFERC, DAVIDSON NEILJ, O'GRADY ANTHONYP, CLOSE DUGALDC. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate? AUSTRAL ECOL 2010. [DOI: 10.1111/j.1442-9993.2010.02194.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Evrendilek F, Ben-Asher J, Aydın M, Çelik I. Spatial and temporal variations in diurnal CO2fluxes of different Mediterranean ecosystems in Turkey. ACTA ACUST UNITED AC 2005. [DOI: 10.1039/b415152f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Hovenden MJ, Vander Schoor JK. Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). THE NEW PHYTOLOGIST 2004; 161:585-594. [PMID: 33873506 DOI: 10.1046/j.1469-8137.2003.00931.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Leaf morphology varies predictably with altitude, and leaf morphological features have been used to estimate average temperatures from fossil leaves. The altitude-leaf morphology relationship is confounded by the two processes of acclimation and adaptation, which reflect environmental and genetic influences, respectively. • Here we describe the relationship between altitude and leaf morphology for Southern beech, Nothofagus cunninghamii (Hook.) Oerst.. Cuttings from several trees from each of four altitudes were grown in a common glasshouse experiment, and leaf morphology related to both genotype and altitude of origin. • Genotype had a significant impact on leaf morphology, but in the field there was also a significant, overriding effect of altitude. This altitude effect disappeared in glasshouse-grown plants for all morphological variables other than leaf thickness and specific leaf area. • These results show that, while leaf length, width and area are partially controlled by genetic factors, these variables are plastic and respond to environmental influences associated with a particular altitude. Thus altitudinal trends in leaf size in N. cunninghamii are unlikely to be the result of adaptation.
Collapse
Affiliation(s)
- Mark J Hovenden
- School of Plant Science, University of Tasmania, Locked Bag 55, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
26
|
Wegner C, Wunderlich M, Kessler M, Schawe M. Foliar C:N Ratio of Ferns along an Andean Elevational Gradient1. Biotropica 2003. [DOI: 10.1111/j.1744-7429.2003.tb00605.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Wegner C, Wunderlich M, Kessler M, Schawe M. Foliar C:N Ratio of Ferns along an Andean Elevational Gradient1. Biotropica 2003. [DOI: 10.1646/03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Roderick ML, Berry SL, Noble IR, Farquhar GD. A theoretical approach to linking the composition and morphology with the function of leaves. Funct Ecol 2002. [DOI: 10.1046/j.1365-2435.1999.00368.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Roderick ML, Berry SL, Noble IR. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct Ecol 2001. [DOI: 10.1046/j.1365-2435.2000.00438.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Royer DL. Stomatal density and stomatal index as indicators of paleoatmospheric CO(2) concentration. REVIEW OF PALAEOBOTANY AND PALYNOLOGY 2001; 114:1-28. [PMID: 11295163 DOI: 10.1016/s0034-6667(00)00074-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A growing number of studies use the plant species-specific inverse relationship between atmospheric CO(2) concentration and stomatal density (SD) or stomatal index (SI) as a proxy for paleo-CO(2) levels. A total of 285 previously published SD and 145 SI responses to variable CO(2) concentrations from a pool of 176 C(3) plant species are analyzed here to test the reliability of this method. The percentage of responses inversely responding to CO(2) rises from 40 and 36% (for SD and SI, respectively) in experimental studies to 88 and 94% (for SD and SI, respectively) in fossil studies. The inconsistent experimental responses verify previous concerns involving this method, however the high percentage of fossil responses showing an inverse relationship clearly validates the method when applied over time scales of similar length. Furthermore, for all groups of observations, a positive relationship between CO(2) and SD/SI is found in only </=12% of cases. Thus, CO(2) appears to inversely affect stomatal initiation, although the mechanism may involve genetic adaptation and therefore is often not clearly expressed under short CO(2) exposure times.Experimental responses of SD and SI based on open-top chambers (OTCs) inversely relate to CO(2) less often than greenhouse-based responses (P<0.01 for both SD and SI), and should be avoided when experimental responses are required for CO(2) reconstructions. In the combined data set, hypostomatous species follow the inverse relationship more often than amphistomatous species (56 vs. 44% for SD; 69 vs. 32% for SI; P<0.03 for both comparisons). Both the SD and SI of fossil responses are equally likely to inversely relate to CO(2) when exposed to elevated versus subambient CO(2) concentrations (relative to today). This result casts doubt on previous claims that stomata cannot respond to CO(2) concentrations above present-day levels. Although the proportion of SD and SI responses inversely relating to CO(2) are similar, SD is more strongly affected by various environmental stresses, and thus SI-based CO(2) reconstructions are probably more accurate.
Collapse
Affiliation(s)
- D L. Royer
- Yale University Department of Geology and Geophysics, P.O. Box 208109, 06520-8109, New Haven, CT, USA
| |
Collapse
|
32
|
Abstract
Forests have profound effects on water resources and it is essential that water resources be jointly considered with forests wherever in the world these assets are valuable for national development or for environmental balance. However, despite a strong and often urgent need for prediction in forest hydrology, universality of scientific guidance is seldom possible across climatic boundaries, between soil types, between land management practices and, occasionally, between species of tree. This paper reviews the current state of predictability of water use by forests, of hydrological extremes and of water quality factors, all of which affect the utilization of water resources. Contrasts between climatic zones are stressed in relation to evaporation processes. In reviewing hydrological extremes and water quality, the influence of local soil- and land management is drawn out. There seems some justification for a continuation of lengthy and expensive hydrological experimentation, despite the urgency of the need for guidance in land use and land management. It is essential, however, to make maximum use of new spatial techniques that aid extrapolation from the detail provided by studies of process.
Collapse
|
33
|
Beerling DJ, Woodward FI. Stomatal Density Responses to Global Environmental Change. ADVANCES IN BIOCLIMATOLOGY_4 1996. [DOI: 10.1007/978-3-642-61132-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Rawat AS, Purohit AN. CO2 and water vapour exchange in four alpine herbs at two altitudes and under varying light and temperature conditions. PHOTOSYNTHESIS RESEARCH 1991; 28:99-108. [PMID: 24414969 DOI: 10.1007/bf00054123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/1991] [Indexed: 06/03/2023]
Abstract
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.
Collapse
Affiliation(s)
- A S Rawat
- High Altitude Plant Physiology Research Centre, H.N.B. Garhwal University, 246174, U. P., Srinagar Garhwal, India
| | | |
Collapse
|
35
|
Friend A, Woodward F. Evolutionary and Ecophysiological Responses of Mountain Plants to the Growing Season Environment. ADV ECOL RES 1990. [DOI: 10.1016/s0065-2504(08)60053-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
The nutritional status of plants from high altitudes : A worldwide comparison. Oecologia 1989; 81:379-391. [PMID: 28311193 DOI: 10.1007/bf00377088] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1989] [Accepted: 07/04/1989] [Indexed: 10/24/2022]
Abstract
Are plants at high altitudes short in nutrients? In order to answer this question the mineral nutrient content of leaves from over 150 plant species from 9 different mountain areas of all major climatic zones were analyzed (Kjeldahl nitrogen in all, phosphate in half of the samples, K, Mg, Mn, Ca in the Alps only). The majority of data are from herbaceous perennials, but shrubs and trees were studied as well. N-partitioning was studied in 45 herbaceous species from contrasting altitudes in the Alps. The survey falls into three categories: (1) comparisons of whole communities of species from contrasting altitudes, (2) analysis of altitudinal gradients, and (3) additional collections from high altitude sites alone. Unlike the other mineral nutrients, nitrogen content follows consistent altitudinal and latitudinal trends. The higher altitude sample always had higher N content per unit leaf area, irrespective of life form, wherever comparable plants (the same or related species) were investigated at contrasting altitudes. N content per unit dry weight (%) increased with altitude in herbaceous plants (in some species >4%), but was remarkably stable in evergreen woody plants (around 1%). The mean fraction of total plant N allocated to leaves of herbaceous plants in the Alps was the same at low and high altitude (1/3 of total). Leaf N (%) from the regional upper limits of higher plant life reveals a latitudinal decrease from subarctic to equatorial mountains, which may be related to the duration of annual leaf activity. Since mean N content per leaf area hardly differs between the uppermost sites, life span expectation (sink-duration) seems to control carbon investments rather than N input per leaf area. The growth of leaves at high altitude seems to be controlled in a way that leads to comparatively high nutrient contents, which in turn support high metabolic activity. Inherent developmental growth constraints inhibit nutrient dilution in the plant body and thus defy the application of classical concepts of plant-nutrient versus soil-nutrient relations developed for lowlands and in particular for cultivated plants. The results re-emphasize the global significance of links between nitrogen content, leaf sclerophylly, leaf longevity and photosynthetic capacity.
Collapse
|
37
|
|
38
|
GILFEDDER L. Factors influencing the maintenance of an inverted Eucalyptus coccifera tree-line on the Mt Wellington Plateau, Tasmania. AUSTRAL ECOL 1988. [DOI: 10.1111/j.1442-9993.1988.tb00998.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Körner C, Farquhar GD, Roksandic Z. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 1988; 74:623-632. [PMID: 28311772 DOI: 10.1007/bf00380063] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1987] [Indexed: 11/29/2022]
Abstract
Carbon 13/12 isotope ratios have been determined from leaves of a hundred C3 plant species (or ecotypes) from all major mountain ranges of the globe, avoiding drought stressed areas. A general increase in 13C content was found with increasing altitude, i.e. overall discrimination against the heavy isotope is reduced at high elevation. The steepest decline of discrimination is observed in taxa typically ranging to highest elevations (e.g. the genus Ranunculus). Mean δ 13C for all samples collected between 2500 and 5600 m altitude is-26.15‰ compared to the lowland average of-28.80‰ (P<0.001). Forbs from highest elevations reach-24‰. According to theory of 13C discrimination this indicates decreasing relative limitation of carbon uptake by carboxylation. In other words, we estimate that the ratio of internal to external partial pressure of CO2 (p i /p a )in leaves of high elevation plants is lower than in leaves of low altitude. These results confirm recent gas exchange analyses in high and low elevation plants.
Collapse
Affiliation(s)
- Ch Körner
- Institut für Botanik, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - G D Farquhar
- Plant Environmental Biology, Research School of Biological Sciences, Australian National University, G.P.O. Box 475, 2601, Canberra, A.C.T., Australia
| | - Z Roksandic
- Plant Environmental Biology, Research School of Biological Sciences, Australian National University, G.P.O. Box 475, 2601, Canberra, A.C.T., Australia
| |
Collapse
|
40
|
|
41
|
Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 1986; 69:577-588. [DOI: 10.1007/bf00410366] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1985] [Indexed: 11/27/2022]
|
42
|
Küppers M, Matyssek R, Schulze ED. Diurnal variations of light-saturated CO2 assimilation and intercellular carbon dioxide concentration are not related to leaf water potential. Oecologia 1986; 69:477-480. [DOI: 10.1007/bf00377072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1986] [Indexed: 10/26/2022]
|
43
|
Körner C. Humidity responses in forest trees: Precautions in thermal scanning surveys. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf02269459] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Ullmann I, Lange OL, Ziegler H, Ehleringer J, Schulze ED, Cowan IR. Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia. Oecologia 1985; 67:577-587. [DOI: 10.1007/bf00790030] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1985] [Indexed: 11/30/2022]
|