1
|
How neural stem cells contribute to neocortex development. Biochem Soc Trans 2021; 49:1997-2006. [PMID: 34397081 PMCID: PMC8589419 DOI: 10.1042/bst20200923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The mammalian neocortex is the seat of higher cognitive functions, such as thinking and language in human. A hallmark of the neocortex are the cortical neurons, which are generated from divisions of neural progenitor cells (NPCs) during development, and which constitute a key feature of the well-organized layered structure of the neocortex. Proper formation of neocortex structure requires an orchestrated cellular behavior of different cortical NPCs during development, especially during the process of cortical neurogenesis. Here, we review the great diversity of NPCs and their contribution to the development of the neocortex. First, we review the categorization of NPCs into different classes and types based on their cell biological features, and discuss recent advances in characterizing marker expression and cell polarity features in the different types of NPCs. Second, we review the different modes of cell divisions that NPCs undergo and discuss the importance of the balance between proliferation and differentiation of NPCs in neocortical development. Third, we review the different proliferative capacities among different NPC types and among the same type of NPC in different mammalian species. Dissecting the differences between NPC types and differences among mammalian species is beneficial to further understand the development and the evolutionary expansion of the neocortex and may open up new therapeutic avenues for neurodevelopmental and psychiatric disorders.
Collapse
|
2
|
Radial Glial Cells: New Views on Old Questions. Neurochem Res 2021; 46:2512-2524. [PMID: 33725233 DOI: 10.1007/s11064-021-03296-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.
Collapse
|
3
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
4
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat Commun 2017; 8:14167. [PMID: 28139695 PMCID: PMC5290330 DOI: 10.1038/ncomms14167] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. The dynamics of progenitor cells in human neocortex development has not been studied directly. Here, the authors timelapse image human neuroepithelial (NE) and radial glial (RG) cells in embryonic brain slices and find properties of NE cells and RG that are mimicked in cerebral organoids.
Collapse
|
6
|
Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 2016; 36:2034-2043. [PMID: 27742890 PMCID: PMC5363673 DOI: 10.1177/0271678x16674487] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular-subventricular zone of the lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain. This article will review these findings with a focus on the ventricular-subventricular zone neurogenic niche and discuss potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal hypoxic/ischemic injury and stroke.
Collapse
Affiliation(s)
- Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, USA
- Department of Physics, Oakland University, Rochester, USA
| |
Collapse
|
7
|
Nagasaka A, Shinoda T, Kawaue T, Suzuki M, Nagayama K, Matsumoto T, Ueno N, Kawaguchi A, Miyata T. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Front Cell Dev Biol 2016; 4:139. [PMID: 27933293 PMCID: PMC5122735 DOI: 10.3389/fcell.2016.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called "pseudostratified." The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions toward more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young's modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse<ferret relationship in the apical-surface stiffness was maintained even in the presence of inhibitors. We also found that the stiffness of single, dissociated neuroepithelial cells is actually greater in mice (720 Pa) than in ferrets (450 Pa). Adherens junction was ultrastructurally comparable between mice and ferrets. These results show that the horizontally denser packing of neuroepithelial cell processes is a major contributor to the increased tissue-level apical stiffness in ferrets, and suggest that tissue-level mechanical properties may be achieved by balancing cellular densification and the physical properties of single cells.
Collapse
Affiliation(s)
- Arata Nagasaka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Tomoyasu Shinoda
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Makoto Suzuki
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University Hitachi, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology Nagoya, Japan
| | - Naoto Ueno
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
8
|
Akizu N, Martínez-Balbás MA. EZH2 orchestrates apicobasal polarity and neuroepithelial cell renewal. NEUROGENESIS 2016; 3:e1250034. [PMID: 28090544 DOI: 10.1080/23262133.2016.1250034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/20/2023]
Abstract
During early stages of neural development, neuroepithelial cells translocate their nuclei along the apicobasal axis in a harmonized manner with the cell cycle. How cell cycle progression and neuroepithelium polarity are coordinated remains unclear. It has been proposed that developmental cues, epigenetic mechanisms and cell cycle regulators must be linked in order to orchestrate these processes. We have recently discovered that a master epigenetic factor, EZH2 is essential to coordinate these events. EZH2 directly represses the cell cycle regulator p21WAF1/CIP in the chicken spinal cord. By doing so, EZH2 controls neural progenitor cell renewal and fine-tunes Rho signaling pathway, which is essential to maintain neuroepithelial structure. Our findings point to a new role of EZH2 during development that could have potential implication in other areas as cancer.
Collapse
Affiliation(s)
- Naiara Akizu
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona, Spain
| |
Collapse
|
9
|
Yu D, Dong Z, Gustafson WC, Ruiz‐González R, Signor L, Marzocca F, Borel F, Klassen MP, Makhijani K, Royant A, Jan Y, Weiss WA, Guo S, Shu X. Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging in vivo. Protein Sci 2016; 25:308-15. [PMID: 26549191 PMCID: PMC4815332 DOI: 10.1002/pro.2843] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022]
Abstract
Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue-shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP-labeled nucleus and tdTomato-labeled plasma membrane, time-lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two-color protein labeling in living cells and in two-color tumor labeling in mice.
Collapse
Affiliation(s)
- Dan Yu
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| | - Zhiqiang Dong
- Department of Bioengineering and Therapeutic ScienceEli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Institute of Human Genetics, University of CaliforniaSan FranciscoCalifornia
- College of Life Sciences and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - William Clay Gustafson
- Department of Pediatrics, Departments of Neurology and Neurological SurgeryUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Rubén Ruiz‐González
- Institut Químic De SarriàUniversitat Ramon Llullvia Augusta 390Barcelona08017Spain
| | - Luca Signor
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Fanny Marzocca
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Franck Borel
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Matthew P. Klassen
- Howard Hughes Medical Institute, Department of PhysiologyUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Kalpana Makhijani
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| | - Antoine Royant
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
- European Synchrotron Radiation FacilityGrenobleF‐38043France
| | - Yuh‐Nung Jan
- Howard Hughes Medical Institute, Department of PhysiologyUniversity of California – San FranciscoSan FranciscoCalifornia
| | - William A. Weiss
- Department of Pediatrics, Departments of Neurology and Neurological SurgeryUniversity of California – San FranciscoSan FranciscoCalifornia
- Helen Diller Family Comprehensive Cancer CenterUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Su Guo
- Department of Bioengineering and Therapeutic ScienceEli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Institute of Human Genetics, University of CaliforniaSan FranciscoCalifornia
| | - Xiaokun Shu
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| |
Collapse
|
10
|
Abstract
The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.
Collapse
Key Words
- APC, Adenomatous polyposis coli.
- CBD, catenin binding domain
- CK1, Casein kinase 1
- GSK3β, glycogen synthase kinase 3β
- Hh, Hedgehog
- JMD, juxtamembrane domain
- N-cadherin
- PCP, planar cell polarity
- PI3K, phosphatidylinositol 3-kinase
- PTEN, phosphatase and tensin homolog
- SHH, sonic hedgehog
- SNP, short neural precursor
- VZ, ventricular zone
- adherens junction
- differentiation
- proliferation
- wnt
- α-catenin
- β-catenin
Collapse
Affiliation(s)
- Adam M Stocker
- a Molecular Neurobiology Laboratory ; The Salk Institute ; La Jolla , CA USA
| | | |
Collapse
|
11
|
Hui SP, Nag TC, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 2015; 10:e0143595. [PMID: 26630262 PMCID: PMC4667880 DOI: 10.1371/journal.pone.0143595] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.
Collapse
Affiliation(s)
- Subhra Prakash Hui
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
- * E-mail:
| |
Collapse
|
12
|
Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25:276-85. [PMID: 25618328 DOI: 10.1016/j.tcb.2014.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
The cilium is the site of function for a variety of membrane receptors, enzymes and signal transduction modules crucial for a spectrum of cellular processes. Through targeted transport and selective gating mechanisms, the cell localizes specific proteins to the cilium that equip it for the role of sensory antenna. This capacity of the cilium to serve as a specialized compartment where specific proteins can be readily concentrated for sensory reception also makes it an ideal organelle to employ for the regulated emission of specific biological material and information. In this review we present and discuss an emerging body of evidence centered on ciliary ectosomes - bioactive vesicles released from the surface of the cilium.
Collapse
|
13
|
Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun 2013; 4:1665. [PMID: 23575669 PMCID: PMC3625970 DOI: 10.1038/ncomms2647] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/25/2013] [Indexed: 12/23/2022] Open
Abstract
The human neocortex is increased in size and complexity as compared with most other species. Neocortical expansion has recently been attributed to protracted neurogenesis by outer radial glial cells in the outer subventricular zone, a region present in humans but not in rodents. The mechanisms of human outer radial glial cell generation are unknown, but are proposed to involve division of ventricular radial glial cells; neural stem cells present in all developing mammals. Here we show that human ventricular radial glial cells produce outer radial glial cells and seed formation of the outer subventricular zone via horizontal divisions, which occur more frequently in humans than in rodents. We further find that outer radial glial cell mitotic behaviour is cell intrinsic, and that the basal fibre, inherited by outer radial glial cells after ventricular radial glial division, determines cleavage angle. Our results suggest that altered regulation of mitotic spindle orientation increased outer radial glial cell number, and ultimately neuronal number, during human brain evolution.
Collapse
|
14
|
Schulte JD, Srikanth M, Das S, Zhang J, Lathia JD, Yin L, Rich JN, Olson EC, Kessler JA, Chenn A. Cadherin-11 regulates motility in normal cortical neural precursors and glioblastoma. PLoS One 2013; 8:e70962. [PMID: 23951053 PMCID: PMC3737231 DOI: 10.1371/journal.pone.0070962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Metastasizing tumor cells undergo a transformation that resembles a process in normal development when non-migratory epithelial cells modulate the expression of cytoskeletal and adhesion proteins to promote cell motility. Here we find a mesenchymal cadherin, Cadherin-11 (CDH11), is increased in cells exiting the ventricular zone (VZ) neuroepithelium during normal cerebral cortical development. When overexpressed in cortical progenitors in vivo, CDH11 causes premature exit from the neuroepithelium and increased cell migration. CDH11 expression is elevated in human brain tumors, correlating with higher tumor grade and decreased patient survival. In glioblastoma, CDH11-expressing tumor cells can be found localized near tumor vasculature. Endothelial cells stimulate TGFβ signaling and CDH11 expression in glioblastoma cells. TGFβ promotes glioblastoma cell motility, and knockdown of CDH11 expression in primary human glioblastoma cells inhibits TGFβ-stimulated migration. Together, these findings show that Cadherin-11 can promote cell migration in neural precursors and glioblastoma cells and suggest that endothelial cells increase tumor aggressiveness by co-opting mechanisms that regulate normal neural development.
Collapse
Affiliation(s)
- Jessica D. Schulte
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Maya Srikanth
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sunit Das
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jianing Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Justin D. Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lihui Yin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York, Upstate. Syracuse, New York, United States of America
| | - John A. Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Anjen Chenn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Famulski JK, Solecki DJ. New spin on an old transition: epithelial parallels in neuronal adhesion control. Trends Neurosci 2012; 36:163-73. [PMID: 23245691 DOI: 10.1016/j.tins.2012.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022]
Abstract
During histogenesis of the vertebrate central nervous system (CNS), neuronal progenitors must interact with germinal zone (GZ) niches, differentiate, and morphologically mature, and neurons must migrate to their final positions. The extrinsic cues that control neurogenesis, specify neurons, and guide their movement are relatively well understood. However, less is known about how neurons spatiotemporally modify cell-cell interactions and cell polarization to navigate through complex, distinct cellular environments during neuronal circuit formation. Here we examine the parallels between the mechanisms controlling epithelial morphogenesis and the cell adhesion events by which neural cells organize GZ niches and direct neuronal migration. We focus on the emerging relationship between neuronal adhesive interactions and conserved cell-polarity signaling cascades.
Collapse
Affiliation(s)
- Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
16
|
Spear PC, Erickson CA. Interkinetic nuclear migration: a mysterious process in search of a function. Dev Growth Differ 2012; 54:306-16. [PMID: 22524603 DOI: 10.1111/j.1440-169x.2012.01342.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During interkinetic nuclear migration (INM), the nuclei in many epithelial cells migrate between the apical and basal surfaces, coordinating with the cell cycle, and undergoing cytokinesis at the apical surface. INM is observed in a wide variety of tissues and species. Recent advances in time-lapse microscopy have provided clues about the mechanisms and functions of INM. Whether actin or microtubules are responsible for nuclear migration is controversial. How mitosis is initiated during INM is poorly understood, as is the relationship between the cell cycle and nuclear movement. It is possible that the disagreements stem from differences in the tissues being studied, since epithelia undergoing INM vary greatly in terms of cell height and cell fates. In this review we examine the reports addressing the mode and mechanisms that regulate INM and suggest possible functions for this dramatic event.
Collapse
Affiliation(s)
- Philip C Spear
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University California Davis, Davis, 95616, California, USA.
| | | |
Collapse
|
17
|
Spear PC, Erickson CA. Apical movement during interkinetic nuclear migration is a two-step process. Dev Biol 2012; 370:33-41. [PMID: 22884563 DOI: 10.1016/j.ydbio.2012.06.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Neural progenitor cells in the pseudostratified neuroepithelium in vertebrates undergo interkinetic nuclear migration, which results in mitotic cells localized to the apical surface. Interphase nuclei are distributed throughout the rest of the epithelium. How mitosis is coordinated with nuclear movement is unknown, and the mechanism by which the nucleus migrates apically is controversial. Using time-lapse confocal microscopy, we show that nuclei migrate apically in G2 phase via microtubules. However, late in G2, centrosomes leave the apical surface after cilia are disassembled, and mitosis initiates away from the apical surface. The mitotic cell then rounds up to the apical surface, which is an actin-dependent process. This behavior is observed in both chicken neural-tube-slice preparations and in mouse cortical slices, and therefore is likely to be a general feature of interkinetic nuclear migration. We propose a new model for interkinetic nuclear migration in which actin and microtubules are used to position the mitotic cell at the apical surface.
Collapse
Affiliation(s)
- Philip C Spear
- Department of Molecular and Cellular Biology, One Shields Ave., UC Davis, Davis, CA 95616, United States.
| | | |
Collapse
|
18
|
Wilson SL, Wilson JP, Wang C, Wang B, McConnell SK. Primary cilia and Gli3 activity regulate cerebral cortical size. Dev Neurobiol 2012; 72:1196-212. [PMID: 21976438 DOI: 10.1002/dneu.20985] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 09/15/2011] [Accepted: 09/28/2011] [Indexed: 01/15/2023]
Abstract
During neural development patterning, neurogenesis, and overall growth are highly regulated and coordinated between different brain regions. Here, we show that primary cilia and the regulation of Gli activity are necessary for the normal expansion of the cerebral cortex. We show that loss of Kif3a, an important functional component of primary cilia, leads to the degeneration of primary cilia, marked overgrowth of the cortex, and altered cell cycle kinetics within cortical progenitors. The G1 phase of the cell cycle is shortened through a mechanism likely involving reduced Gli3 activity and a resulting increase in expression of cyclin D1 and Fgf15. The defects in Gli3 activity alone are sufficient to accelerate cell cycle kinetics and cause the molecular changes seen in brains that lack cilia. Finally, we show that levels of full-length and repressor Gli3 proteins are tightly regulated during normal development and correlate with changes in expression of two known Shh-target genes, CyclinD1 and Fgf15, and with the normal lengthening of the cell cycle during corticogenesis. These data suggest that Gli3 activity is regulated through the primary cilium to control cell cycle length in the cortex and thus determine cortical size.
Collapse
Affiliation(s)
- Sandra L Wilson
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
19
|
Emsley JG, Menezes JRL, Madeiro Da Costa RF, Martinez AMB, Macklis JD. Identification of radial glia-like cells in the adult mouse olfactory bulb. Exp Neurol 2012; 236:283-97. [PMID: 22634209 DOI: 10.1016/j.expneurol.2012.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/12/2012] [Indexed: 01/08/2023]
Abstract
Immature neurons migrate tangentially within the rostral migratory stream (RMS) to the adult olfactory bulb (OB), then radially to their final positions as granule and periglomerular neurons; the controls over this transition are not well understood. Using adult transgenic mice with the human GFAP promoter driving expression of enhanced GFP, we identified a population of radial glia-like cells that we term adult olfactory radial glia-like cells (AORGs). AORGs have large, round somas and simple, radially oriented processes. Confocal reconstructions indicate that AORGs variably express typical radial glial markers, only rarely express mouse GFAP, and do not express astroglial, oligodendroglial, neuronal, or tanycyte markers. Electron microscopy provides further supporting evidence that AORGs are not immature neurons. Developmental analyses indicate that AORGs are present as early as P1, and are generated through adulthood. Tracing studies show that AORGs are not born in the SVZa, suggesting that they are born either in the RMS or the OB. Migrating immature neurons from the adult SVZa are closely apposed to AORGs during radial migration in vivo and in vitro. Taken together, these data indicate a newly-identified population of radial glia-like cells in the adult OB that might function uniquely in neuronal radial migration during adult OB neurogenesis.
Collapse
Affiliation(s)
- Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
20
|
Wilsch-Bräuninger M, Peters J, Paridaen JTML, Huttner WB. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 2012; 139:95-105. [DOI: 10.1242/dev.069294] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delamination of neural progenitors from the apical adherens junction belt of the neuroepithelium is a hallmark of cerebral cortex development and evolution. Specific cell biological processes preceding this delamination are largely unknown. Here, we identify a novel, pre-delamination state of neuroepithelial cells in mouse embryonic neocortex. Specifically, in a subpopulation of neuroepithelial cells that, like all others, exhibit apical-basal polarity and apical adherens junctions, the re-establishing of the primary cilium after mitosis occurs at the basolateral rather than the apical plasma membrane. Neuroepithelial cells carrying basolateral primary cilia appear at the onset of cortical neurogenesis, increase in abundance with its progression, selectively express the basal (intermediate) progenitor marker Tbr2, and eventually delaminate from the apical adherens junction belt to become basal progenitors, translocating their nucleus from the ventricular to the subventricular zone. Overexpression of insulinoma-associated 1, a transcription factor known to promote the generation of basal progenitors, increases the proportion of basolateral cilia. Basolateral cilia in cells delaminating from the apical adherens junction belt are preferentially found near spot-like adherens junctions, suggesting that the latter provide positional cues to basolateral ciliogenesis. We conclude that re-establishing a basolateral primary cilium constitutes the first known cell biological feature preceding neural progenitor delamination.
Collapse
Affiliation(s)
- Michaela Wilsch-Bräuninger
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Jula Peters
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Judith T. M. L. Paridaen
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| |
Collapse
|
21
|
Abstract
Cerebral cortical progenitor cells can be classified into several different types, and each progenitor type integrates cell-intrinsic and cell-extrinsic cues to regulate neurogenesis. On one hand, cell-intrinsic mechanisms that depend upon appropriate apical-basal polarity are established by adherens junctions and apical complex proteins and are particularly important in progenitors with apical processes contacting the lateral ventricle. The apical protein complexes themselves are concentrated at the ventricular surface, and apical complex proteins regulate mitotic spindle orientation and cell fate. On the other hand, remarkably little is known about how cell-extrinsic cues signal to progenitors and couple with cell-intrinsic mechanisms to instruct neurogenesis. Recent research shows that the cerebrospinal fluid, which contacts apical progenitors at the ventricular surface and bathes the apical complex of these cells, provides growth- and survival-promoting cues for neural progenitor cells in developing and adult brain. This review addresses how the apical-basal polarity of progenitor cells regulates cell fate and allows progenitors to sample diffusible signals distributed by the cerebrospinal fluid. We also review several classes of signaling factors that the cerebrospinal fluid distributes to the developing brain to instruct neurogenesis.
Collapse
Affiliation(s)
- Maria K Lehtinen
- Division of Genetics, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
22
|
Ohata S, Aoki R, Kinoshita S, Yamaguchi M, Tsuruoka-Kinoshita S, Tanaka H, Wada H, Watabe S, Tsuboi T, Masai I, Okamoto H. Dual Roles of Notch in Regulation of Apically Restricted Mitosis and Apicobasal Polarity of Neuroepithelial Cells. Neuron 2011; 69:215-30. [DOI: 10.1016/j.neuron.2010.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 02/04/2023]
|
23
|
Chopp M, Zhang ZG. Enhancing Brain Reorganization and Recovery of Function after Stroke. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Distel M, Hocking JC, Volkmann K, Köster RW. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. ACTA ACUST UNITED AC 2010; 191:875-90. [PMID: 21059852 PMCID: PMC2983064 DOI: 10.1083/jcb.201004154] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The position of the centrosome ahead of the nucleus has been considered crucial for coordinating neuronal migration in most developmental situations. The proximity of the centrosome has also been correlated with the site of axonogenesis in certain differentiating neurons. Despite these positive correlations, accumulating experimental findings appear to negate a universal role of the centrosome in determining where an axon forms, or in leading the migration of neurons. To further examine this controversy in an in vivo setting, we have generated cell type-specific multi-cistronic gene expression to monitor subcellular dynamics in the developing zebrafish cerebellum. We show that migration of rhombic lip-derived neurons is characterized by a centrosome that does not persistently lead the nucleus, but which is instead regularly overtaken by the nucleus. In addition, axonogenesis is initiated during the onset of neuronal migration and occurs independently of centrosome proximity. These in vivo data reveal a new temporal orchestration of organelle dynamics and provide important insights into the variation in intracellular processes during vertebrate brain differentiation.
Collapse
Affiliation(s)
- Martin Distel
- Helmholtz Zentrum München German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Munich-Neuherberg, Germany
| | | | | | | |
Collapse
|
25
|
Chang Y, Paramasivam M, Girgenti MJ, Walikonis RS, Bianchi E, LoTurco JJ. RanBPM regulates the progression of neuronal precursors through M-phase at the surface of the neocortical ventricular zone. Dev Neurobiol 2010; 70:1-15. [PMID: 19790105 DOI: 10.1002/dneu.20750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many of the mitoses that produce pyramidal neurons in neocortex occur at the dorsolateral surface of the lateral ventricles in the embryo. RanBPM was found in a yeast two-hybrid screen to potentially interact with citron kinase (CITK), a protein shown previously to localize to the surface of the lateral ventricles and to be essential to neurogenic mitoses. Similar to its localization in epithelia, RanBPM protein is concentrated at the adherens junctions in developing neocortex. The biochemical interaction between CITK and RanBPM was confirmed in coimmunoprecipitation and protein overlay experiments. To test for a functional role of RanPBM in vivo, we used in utero RNAi. RanBPM RNAi decreased the polarization of CITK to the ventricular surface, increased the number of cells in mitosis, and decreased the number of cells in cytokinesis. Finally, the effect of RanBPM knockdown on mitosis was reversed in embryos mutant for CITK. Together, these results indicate that RanBPM, potentially through interaction with CITK, plays a role in the progression of neocortical precursors through M-phase at the ventricular surface.
Collapse
Affiliation(s)
- Yoonjeung Chang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
26
|
Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009; 461:947-55. [PMID: 19829375 PMCID: PMC2764320 DOI: 10.1038/nature08435] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/18/2009] [Indexed: 01/12/2023]
Abstract
Asymmetric divisions of radial glia progenitors produce self-renewing radial glia and differentiating cells simultaneously in the ventricular zone (VZ) of the developing neocortex. Whereas differentiating cells leave the VZ to constitute the future neocortex, renewing radial glia progenitors stay in the VZ for subsequent divisions. The differential behaviour of progenitors and their differentiating progeny is essential for neocortical development; however, the mechanisms that ensure these behavioural differences are unclear. Here we show that asymmetric centrosome inheritance regulates the differential behaviour of renewing progenitors and their differentiating progeny in the embryonic mouse neocortex. Centrosome duplication in dividing radial glia progenitors generates a pair of centrosomes with differently aged mother centrioles. During peak phases of neurogenesis, the centrosome retaining the old mother centriole stays in the VZ and is preferentially inherited by radial glia progenitors, whereas the centrosome containing the new mother centriole mostly leaves the VZ and is largely associated with differentiating cells. Removal of ninein, a mature centriole-specific protein, disrupts the asymmetric segregation and inheritance of the centrosome and causes premature depletion of progenitors from the VZ. These results indicate that preferential inheritance of the centrosome with the mature older mother centriole is required for maintaining radial glia progenitors in the developing mammalian neocortex.
Collapse
|
27
|
Kosodo Y, Huttner WB. Basal process and cell divisions of neural progenitors in the developing brain. Dev Growth Differ 2009; 51:251-61. [DOI: 10.1111/j.1440-169x.2009.01101.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Focal reduction of alphaE-catenin causes premature differentiation and reduction of beta-catenin signaling during cortical development. Dev Biol 2009; 328:66-77. [PMID: 19389371 DOI: 10.1016/j.ydbio.2009.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 02/03/2023]
Abstract
Cerebral cortical precursor cells reside in a neuroepithelial cell layer that regulates their proliferation and differentiation. Global disruptions in epithelial architecture induced by loss of the adherens junction component alphaE-catenin lead to hyperproliferation. Here we show that cell autonomous reduction of alphaE-catenin in the background of normal precursors in vivo causes cells to prematurely exit the cell cycle, differentiate into neurons, and migrate to the cortical plate, while normal neighboring precursors are unaffected. Mechanistically, alphaE-catenin likely regulates cortical precursor differentiation by maintaining beta-catenin signaling, as reduction of alphaE-catenin leads to reduction of beta-catenin signaling in vivo. These results demonstrate that, at the cellular level, alphaE-catenin serves to maintain precursors in the proliferative ventricular zone, and suggest an unexpected function for alphaE-catenin in preserving beta-catenin signaling during cortical development.
Collapse
|
29
|
Corbin JG, Gaiano N, Juliano SL, Poluch S, Stancik E, Haydar TF. Regulation of neural progenitor cell development in the nervous system. J Neurochem 2008; 106:2272-87. [PMID: 18819190 DOI: 10.1111/j.1471-4159.2008.05522.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian telencephalon, which comprises the cerebral cortex, olfactory bulb, hippocampus, basal ganglia, and amygdala, is the most complex and intricate region of the CNS. It is the seat of all higher brain functions including the storage and retrieval of memories, the integration and processing of sensory and motor information, and the regulation of emotion and drive states. In higher mammals such as humans, the telencephalon also governs our creative impulses, ability to make rational decisions, and plan for the future. Despite its massive complexity, exciting work from a number of groups has begun to unravel the developmental mechanisms for the generation of the diverse neural cell types that form the circuitry of the mature telencephalon. Here, we review our current understanding of four aspects of neural development. We first begin by providing a general overview of the broad developmental mechanisms underlying the generation of neuronal and glial cell diversity in the telencephalon during embryonic development. We then focus on development of the cerebral cortex, the most complex and evolved region of the brain. We review the current state of understanding of progenitor cell diversity within the cortical ventricular zone and then describe how lateral signaling via the Notch-Delta pathway generates specific aspects of neural cell diversity in cortical progenitor pools. Finally, we review the signaling mechanisms required for development, and response to injury, of a specialized group of cortical stem cells, the radial glia, which act both as precursors and as migratory scaffolds for newly generated neurons.
Collapse
Affiliation(s)
- Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Fish JL, Dehay C, Kennedy H, Huttner WB. Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 2008; 121:2783-93. [PMID: 18716282 DOI: 10.1242/jcs.023465] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relative brain size differs markedly between species. This variation might ultimately result from differences in the cell biology of neural progenitors, which might underlie their different proliferative potential. On the basis of the cell-biological properties of neural progenitors of animals of varying brain size and complexity (namely, Drosophila melanogaster, rodents and primates), we hypothesize that the evolution of four related cell-biological features has contributed to increases in neuron number. Three of these features-the pseudostratification of the progenitor layer, the loss of (Inscuteable-mediated) mitotic-spindle rotation and the evolution of proteins (such as Aspm) that maintain the precision of symmetric progenitor division-affect the mode of cell division in the apically dividing progenitors of the ventricular zone. The fourth feature, however, concerns the evolution of the basally dividing progenitors of the subventricular zone. In rodents, these basal (or intermediate) progenitors lack cell polarity, whereas in primates a subpopulation of radial, presumably polarized, progenitors has evolved (outer-subventricular-zone progenitors). These cells undergo basal mitoses and are thought to retain epithelial characteristics. We propose the epithelial-progenitor hypothesis, which argues that evolutionary changes that promote the maintenance of epithelial features in neural progenitors, including outer-subventricular-zone progenitors, have been instrumental in the expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Jennifer L Fish
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
31
|
Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, Attardo A, Mora-Bermúdez F, Arii T, Clarke JDW, Huttner WB. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 2008; 27:3151-63. [PMID: 18971946 DOI: 10.1038/emboj.2008.227] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 10/02/2008] [Indexed: 11/09/2022] Open
Abstract
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang RL, Zhang ZG, Chopp M. Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 2008; 55:345-52. [PMID: 18632119 DOI: 10.1016/j.neuropharm.2008.05.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/10/2008] [Accepted: 05/20/2008] [Indexed: 01/18/2023]
Abstract
The subventricular zone (SVZ) of the lateral ventricle contains neural stem and progenitor cells that generate neuroblasts, which migrate to the olfactory bulb where they differentiate into interneurons. Ischemic stroke induces neurogenesis in the SVZ and these cells migrate to the boundary of the ischemic lesion. This article reviews current data on cytokinetics, signaling pathways and vascular niche that are involved in processes of proliferation, differentiation, and migration of neural progenitor cells after stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | |
Collapse
|
33
|
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 2008; 508:28-44. [PMID: 18288691 PMCID: PMC2635107 DOI: 10.1002/cne.21669] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage plane orientation. Precursor cell divisions with a cleavage plane orientation that is perpendicular with respect to the ventricular surface (vertical) are predicted to be symmetric, while divisions with a cleavage plane orientation that is parallel to the surface (horizontal) are predicted to be asymmetric neurogenic divisions. However, analysis of cleavage plane orientation at the ventricle suggests that the number of predicted neurogenic divisions might be insufficient to produce large amounts of cortical neurons. To understand factors that correlate with the symmetry of cell divisions, we examined rat neocortical precursor cells in situ through real-time imaging, marker analysis, and electrophysiological recordings. We find that cleavage plane orientation is more closely associated with precursor cell type than with daughter cell fate, as commonly thought. Radial glia cells in the VZ primarily divide with a vertical orientation throughout cortical development and undergo symmetric or asymmetric self-renewing divisions depending on the stage of development. In contrast, most intermediate progenitor cells divide in the subventricular zone with a horizontal orientation and produce symmetric daughter cells. We propose a model for predicting daughter cell fate that considers precursor cell type, stage of development, and the planar segregation of fate determinants.
Collapse
Affiliation(s)
- Stephen C Noctor
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
34
|
Sunabori T, Tokunaga A, Nagai T, Sawamoto K, Okabe M, Miyawaki A, Matsuzaki Y, Miyata T, Okano H. Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. J Cell Sci 2008; 121:1204-12. [DOI: 10.1242/jcs.025064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During brain development, neural progenitor cells extend across the thickening brain wall and undergo mitosis. To understand how these two completely different cellular events are coordinated, we focused on the transcription pattern of the nestin gene (Nes), which encodes an intermediate filament protein strongly expressed in neural progenitor cells. To visualize nestin expression in vivo, we generated transgenic mice that expressed a destabilized fluorescent protein under the control of Nes second intronic enhancer (E/nestin:dVenus). During the neurogenic stage, when the brain wall thickens markedly, we found that nestin was regulated in a cell-cycle-dependent manner. Time-lapse imaging showed that nestin gene expression was upregulated during G1-S phase, when the neural progenitor cells elongate their fibers. However, nestin expression dramatically declined in G2-M phase, when progenitor cells round up to undergo mitosis. The cell-cycle-dependent phosphorylation of an upstream regulator class III POU transcription factor (Pou3f2 or Brn2) reduced its binding activity to the nestin core enhancer element and was therefore responsible for the decreased Nes transcription in G2-M phase. Collectively, these findings demonstrate precisely orchestrated gene regulation that correlates with the 3D morphological changes in neural progenitor cells in vivo.
Collapse
Affiliation(s)
- Takehiko Sunabori
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Solution Oriented Research for Evolutional Science and Technology (SORST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akinori Tokunaga
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Solution Oriented Research for Evolutional Science and Technology (SORST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Takeharu Nagai
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
- Laboratory for Nanosystems Physiology, Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812, Japan
| | - Kazunobu Sawamoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaru Okabe
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Solution Oriented Research for Evolutional Science and Technology (SORST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
35
|
Nishizawa Y, Imafuku H, Saito K, Kanda R, Kimura M, Minobe S, Miyazaki F, Kawakatsu S, Masaoka M, Ogawa M, Miyata T. Survey of the morphogenetic dynamics of the ventricular surface of the developing mouse neocortex. Dev Dyn 2008; 236:3061-70. [PMID: 17948308 DOI: 10.1002/dvdy.21351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To understand the morphogenetic dynamics of the inner surface of the embryonic pallial (neocortical) wall, we immunohistochemically surveyed the cellular endfeet facing the lateral ventricle and found that the average endfoot area was minimal at embryonic day (E)12 in mice. This endfoot narrowing at E12 may represent a change in the mode of cell production at the surface from a purely proliferative mode that retains all daughter cells to a more differentiation-directed mode that allows some daughter cells to leave the surface. The apices of cells undergoing mitosis were 1.5-3.9 times larger than the overall cell apices and 6.7-8.7 times smaller than the cross-sectional area of mitotic somata. En face time-lapse monitoring of each endfoot permitted observation of its cell cycle-dependent size changes, division, and relationships with neighboring endfeet. Planar divisions oriented along the lateral-medial axis were less abundant than those oriented along the rostral-caudal axis at E10 and E11, but basal body distribution in each endfoot was random.
Collapse
Affiliation(s)
- Yuji Nishizawa
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xie Z, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 2008; 56:79-93. [PMID: 17920017 DOI: 10.1016/j.neuron.2007.08.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/23/2007] [Accepted: 08/31/2007] [Indexed: 12/13/2022]
Abstract
Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.
Collapse
Affiliation(s)
- Zhigang Xie
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
37
|
Miyata T. Development of three-dimensional architecture of the neuroepithelium: role of pseudostratification and cellular 'community'. Dev Growth Differ 2007; 50 Suppl 1:S105-12. [PMID: 18070110 DOI: 10.1111/j.1440-169x.2007.00980.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses the development of the neuroepithelium (NE) and its derivative ventricular zone (VZ), from which the central nervous system (CNS) is formed. First, the histological features of the NE and VZ are summarized, highlighting the phenomenon of pseudostratification, which is achieved by polarization and interkinetic nuclear migration (INM) of neural progenitor cells. Next, our current understanding of the cellular and molecular mechanisms and biological significance of INM and pseudostratification are outlined. The recent three-dimensional time-lapse observations revealing heterogeneity in cell lineages within the NE and VZ are also described, focusing on the neuronal lineage. Finally, the necessity of comprehensive studies on cell-cell interactions in the NE/VZ is discussed, as well as the importance of electrophysiological and biomechanical approaches. In particular, we suggest that a systems biology approach to the NE/VZ as a cellular 'community' may be fruitful.
Collapse
Affiliation(s)
- Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
38
|
Tamai H, Shinohara H, Miyata T, Saito K, Nishizawa Y, Nomura T, Osumi N. Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes Cells 2007; 12:983-96. [PMID: 17825043 DOI: 10.1111/j.1365-2443.2007.01113.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mammalian cerebral cortex develops from proliferative neuroepithelial cells that exhibit a cell cycle-dependent nuclear movement (interkinetic nuclear migration; INM). Pax6 transcription factor plays pivotal roles in various aspects of corticogenesis. From live observation using cultured cortical slices from the Pax6 mutant rat, we identified the premature descent of S phase cells, the unsteady ascent or descent of G2 phase cells, and ectopic cell division within the basal side of the ventricular zone (VZ). The centrosome normally stayed at the most apical side, apart from the nucleus, in the neuroepithelial cell during the S to G2 phase, while the Pax6 mutant showed unstable movement of the centrosome associated with an abnormal INM. Our results suggest the possibility that Pax6 regulates the INM by stabilizing the centrosome at the apical side.
Collapse
Affiliation(s)
- Hiroshi Tamai
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8:427-37. [PMID: 17514196 DOI: 10.1038/nrn2151] [Citation(s) in RCA: 1188] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.
Collapse
Affiliation(s)
- Bradley J Molyneaux
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
40
|
Carney RSE, Bystron I, López-Bendito G, Molnár Z. Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct Funct 2007; 212:37-54. [PMID: 17717697 DOI: 10.1007/s00429-007-0142-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 04/30/2007] [Indexed: 11/26/2022]
Abstract
Embryonic germinal zones of the dorsal and ventral telencephalon generate cortical neurons during the final week of gestation in rodent and during several months in human. Whereas the vast majority of cortical interneurons originate from the ventral telencephalon, excitatory neurons are locally generated within the germinal zone of the dorsal telencephalon, the future cerebral cortex, itself. However, a number of studies have described proliferating cells external to the ventricular and subventricular germinal zones in the developing dorsal telencephalon. In this study, we performed a comprehensive cell density analysis of such 'extra-ventricular proliferating cells' (EVPCs) during corticogenesis in rat and human using a mitotic marker anti-phospho-histone H3. Subsequently, we performed double-labelling studies with other mitotic and cell type specific markers to undertake phenotypic characterisation of EVPCs. Our findings show: (1) the densities of extra-ventricular H3-positive (H3+) cells were surprisingly similar in preplate stage rat and human; (2) extra-ventricular proliferation continues during mid-and late corticogenesis in rat and in early fetal human cortex; and (3) extra-ventricular cells appear to be mitotic precursors as they are not immunoreactive for a panel of early post-mitotic and cell type-specific markers, although (4) a subset of EVPCs are proliferating microglia. These data suggest that some aspects of early corticogenesis are conserved between rodent and human despite marked differences in the duration of neurogenesis and the anatomical organisation of the developing cerebral cortex.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | |
Collapse
|
41
|
Miyata T. Morphology and mechanics of daughter cells "delaminating" from the ventricular zone of the developing neocortex. Cell Adh Migr 2007; 1:99-101. [PMID: 19262086 DOI: 10.4161/cam.1.2.4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the development of the murine neocortex, time-lapse imaging and microsurgical experiments demonstrate that distinct mechanical forces may be acting on the migration of delaminating daughter cells. Bipolar daughter cells transform into a unipolar morphology as they detach from the inner ventricular surface along the embryonic cerebral wall. Twisting and stretching of their distally remaining pial process establishes a spring-like mechanism that efficiently pulls the soma of these transforming cells to the outer pial surface. The significance of this physical contraction observed in transforming bipolar cells is highlighted when compared to the migration of pin-like daughter cells that lack a pial process. While bipolar and pin-like cells each initially appear epithelial with a ventricular process integrated into the adherence junction meshwork at the ventricular surface, the pin-like cells instead show a transient adventricular somal movement. Consequently, pin-like cells exit from the ventricular zone much more slowly than bipolar cells. Thus, these contrasting movements of daughter cells suggest that differential pulling forces may act separately on their pial and ventricular processes as they delaminate from the telencephalic germinal zone.
Collapse
Affiliation(s)
- Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
42
|
McLaughlin ME, Kruger GM, Slocum KL, Crowley D, Michaud NA, Huang J, Magendantz M, Jacks T. The Nf2 tumor suppressor regulates cell-cell adhesion during tissue fusion. Proc Natl Acad Sci U S A 2007; 104:3261-6. [PMID: 17360635 PMCID: PMC1801999 DOI: 10.1073/pnas.0700044104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Indexed: 01/02/2023] Open
Abstract
Tissue fusion, the morphogenic process by which epithelial sheets are drawn together and sealed, has been extensively studied in Drosophila. However, there are unique features of mammalian tissue fusion that remain poorly understood. Notably, detachment and apoptosis occur at the leading front in mammals but not in invertebrates. We found that in the mouse embryo, expression of the Nf2 tumor suppressor, merlin, is dynamically regulated during tissue fusion: Nf2 expression is low at the leading front before fusion and high across the fused tissue bridge. Mosaic Nf2 mutants exhibit a global defect in tissue fusion characterized by ectopic detachment and increased detachment-induced apoptosis (anoikis). By contrast with core components of the junctional complex, we find that merlin is required specifically for the assembly but not the maintenance of the junctional complex. Our work reveals that regulation of Nf2 expression is a previously unrecognized means of controlling adhesion at the leading front, thereby ensuring successful tissue fusion.
Collapse
Affiliation(s)
- Margaret E. McLaughlin
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Genevieve M. Kruger
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelly L. Slocum
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20185; and
| | - Denise Crowley
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20185; and
| | - Norman A. Michaud
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
| | - Jennifer Huang
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Margaret Magendantz
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler Jacks
- *Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20185; and
| |
Collapse
|
43
|
Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. ACTA ACUST UNITED AC 2007; 176:483-95. [PMID: 17283184 PMCID: PMC2063983 DOI: 10.1083/jcb.200608137] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1–enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1–bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.
Collapse
Affiliation(s)
- Véronique Dubreuil
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
44
|
Abstract
The mitotic spindle is the cellular scaffold that facilitates proper segregation of genetic material during cell division. Far from being static, the spindle is a dynamically regulated tool that can alter its size, shape and position during mitosis. Work in both insect and vertebrate systems has shown that regulation of this structure involves an array of highly conserved proteins. Moreover, it is now clear that tight regulation of the spindle during the process of neurogenesis is paramount to proper cell division and generation of the nervous system as a whole.
Collapse
Affiliation(s)
- Joshua J Buchman
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | | |
Collapse
|
45
|
Miyata T. Asymmetric cell division during brain morphogenesis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:121-42. [PMID: 17585499 DOI: 10.1007/978-3-540-69161-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The division patterns of neural progenitor cells in developing vertebrate brains have traditionally been classified into three types: (i) "symmetric" divisions producing two progenitor cells (P/P division), (ii) "symmetric" divisions producing two neurons (N/N division), and (iii) "asymmetric" divisions producing one progenitor cell and one neuron (P/N division). Many studies examining the mechanism(s) regulating P/N divisions have focused on mitotic cleavage orientation and the possible uneven distribution of cell-fate determining molecules such as Numb. Although these two factors may intrinsically determine daughter cell fate arising from M-phase progenitor cells, no unified explanations have yet to be put forth incorporating all available data. In this review, I will discuss recent advances in techniques allowing the more detailed monitoring of daughter cell behavior in a heterogeneously pseudostratified neuroepithelium that demonstrate previously unrecognized asymmetries in P/P divisions. Careful observations of daughter cell behavior suggest that, immediately after their birth at the apical surface of the neuroepithelium, generated cells may not yet be fate committed but rather integrate extrinsic and intrinsic signals during GI phase before continuing down a developmental pathway.
Collapse
Affiliation(s)
- Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
46
|
Reugels AM, Boggetti B, Scheer N, Campos-Ortega JA. Asymmetric localization of Numb:EGFP in dividing neuroepithelial cells during neurulation inDanio rerio. Dev Dyn 2006; 235:934-48. [PMID: 16493689 DOI: 10.1002/dvdy.20699] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the neural plate and tube of the zebrafish embryo, cells divide with their mitotic spindles oriented parallel to the plane of the neuroepithelium, whilst in the neural keel and rod, the spindle is oriented perpendicular to it. This change is achieved by a 90 degrees rotation of the mitotic spindle. We cloned zebrafish homologues of the gene for the Drosophila cell fate determinant Numb, and analyzed the localization of EGFP fusion proteins in vivo in dividing neuroepithelial cells during neurulation. Whereas Numb isoform 3 and the related protein Numblike are localized in the cytoplasm, Numb isoform 1 is localized to the cell membrane. Time-lapse analyses showed that Numb 1 is distributed uniformly around the cell cortex in dividing cells during plate and keel stages, but becomes localized at the basolateral membrane of some dividing cells during the transition from neural rod to tube. Using in vitro mutagenesis and Numb:EGFP deletion constructs, we showed that the first 196 amino acids of Numb are sufficient for this localization. Furthermore, we found that an 11-amino acid insertion in the PTB domain is essential for localization to the cortex, whereas amino acids 2-12 mediate the basolateral localization in the neural tube stage.
Collapse
Affiliation(s)
- Alexander M Reugels
- Institut für Entwicklungsbiologie, Universität zu Köln, 50923 Köln, Germany.
| | | | | | | |
Collapse
|
47
|
Moreels M, Vandenabeele F, Deryck L, Lambrichts I. Radial glial cells derived from the neonatal rat spinal cord: morphological and immunocytochemical characterization. ACTA ACUST UNITED AC 2006; 68:361-9. [PMID: 16505582 DOI: 10.1679/aohc.68.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radial glial cells are transiently bipolar cells in the developing central nervous system, best known for their role in guiding migrating neurons. The aim of the present study was to investigate phenotypic characteristics of these bipolar precursor cells in a mixed glial cell culture system derived from the rat neonatal spinal cord. Morphological characterization was assessed by cell-specific immunocytochemical markers (nestin, vimentin, 3CB2) and transmission electron microscopy. Our study yielded substantial evidence showing that the bipolar cells exhibit immunocytochemical and ultrastructural features of radial glial cells. Immunohistochemistry of the neonatal rat spinal cord using the same cell-specific markers suggested these cells are likely derived from the subependymal zone, ventral commissure, and dorsomedial septum. We believe our data recommend this mixed glial culture system to be a valuable tool in studying radial glial cells in vitro.
Collapse
Affiliation(s)
- Marjan Moreels
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Laboratory of Histology
| | | | | | | |
Collapse
|
48
|
Pearson RA, Lüneborg NL, Becker DL, Mobbs P. Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 2006; 25:10803-14. [PMID: 16291954 PMCID: PMC6725838 DOI: 10.1523/jneurosci.2312-05.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early retinal development, progenitor cells must divide repeatedly to expand the progenitor pool. During G(1) and G(2) of the cell cycle, progenitor cell nuclei migrate back-and-forth across the proliferative zone in a process termed interkinetic nuclear movement. Because division can only occur at the ventricular surface, factors that affect the speed of nuclear movement could modulate the duration of the cell cycle. Gap-junctional coupling and gap junction-dependent Ca(2+) activity are common features of proliferating cells in the immature nervous system. Furthermore, both gap-junctional coupling and changes in [Ca(2+)](i) have been shown to be positively correlated with the migration of a number of immature cell types. Using time-lapse confocal microscopy, we describe the nature and rate of progenitor cell interkinetic nuclear movement. We show that nuclear movement is usually, but not always, associated with Ca(2+) transients and that buffering of these transients with BAPTA slows movement. Furthermore, we show for the first time that gap-junctional communication is an important requirement for the maintenance of normal nuclear movement in retinal progenitor cells. Conventional blockers of gap junctions and transfection of cells with dominant-negative constructs of connexin 43 (Cx43) and Cx43-specific antisense oligodeoxynucleotides (asODNs) all act to slow interkinetic nuclear movement. The gap junction mimetic peptide Gap26 also acts to slow movement, an effect that we show may be attributable to the blockade of gap junction hemichannels.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 2006; 26:1045-56. [PMID: 16421324 PMCID: PMC3249619 DOI: 10.1523/jneurosci.4499-05.2006] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proliferative ventricular zone (VZ) is the main source of projection neurons for the overlying cerebral neocortex. The number and diversity of neocortical neurons is determined, in part, by factors controlling the proliferation and specification of VZ cells during embryonic development. We used a variety of methods, including in utero electroporation with specific cellular markers, computer-assisted serial EM cell reconstruction, and time-lapse multiphoton imaging to characterize the molecular and morphological characteristics of the VZ constituents and to capture their behavior during cell division. Our analyses reveal at least two types of dividing cells in the VZ: (1) radial glial cells (RGCs) that span the entire neocortical wall and maintain contact both at the ventricular and pial surfaces throughout mitotic division, and (2) short neural precursors (SNPs) that possess a ventricular endfoot and a basal process of variable length that is retracted during mitotic division. These two precursor cell classes are present concomitantly in the VZ, but their relative number changes over the course of cortical neurogenesis. Moreover, the SNPs are morphologically, ultrastructurally and molecularly distinct from dividing RGCs. For example, SNPs are marked by their preferential expression of the tubulin alpha-1 promoter whereas RGCs instead express the glutamate-aspartate transporter and brain lipid binding protein promoters. In contrast to recent studies that suggest that RGCs are the sole type of VZ precursor, the present study indicates that the VZ in murine dorsal telencephalon is similar to that in human and nonhuman primates, because it contains multiple types of neuronal precursors.
Collapse
Affiliation(s)
- Jonathan S Gal
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zhang RL, Zhang ZG, Chopp M. Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 2005; 11:408-16. [PMID: 16151043 DOI: 10.1177/1073858405278865] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article reviews current data on the induction of neurogenesis after stroke in the adult brain. The discussion of neurogenesis is divided into production, migration, and survival of these newly formed cells. For production, the subpopulations and the types of cell division are presented. Discussion of cell migration entails presenting data on both the pathways as well as the molecular targeting of newly formed neural progenitor cells to sites of injury. The role of the vascular and the astrocytic microenvironment in promoting the survival and integration of progenitor cells is also presented. Cell-based and pharmacological therapies designed to restore neurological function that promote neurogenesis are described. These therapies also induce angiogenesis and astrocytic changes that brain tissue, which prime the ischemic brain to foster the survival of the newly formed progenitor cells. Signaling pathways that regulate neurogenesis and angiogenesis are also addressed. This review summarizes recent data on neurogenesis and provides insight into the potential for restorative treatments of stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|