1
|
Chen Y, Huang L, Qi X, Chen C. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 2019; 20:ijms20205007. [PMID: 31658625 PMCID: PMC6834171 DOI: 10.3390/ijms20205007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (INSR) has been extensively studied in the area of cell proliferation and energy metabolism. Impaired INSR activities lead to insulin resistance, the key factor in the pathology of metabolic disorders including type 2 diabetes mellitus (T2DM). The mainstream opinion is that insulin resistance begins at a post-receptor level. The role of INSR activities and trafficking in insulin resistance pathogenesis has been largely ignored. Ligand-activated INSR is internalized and trafficked to early endosome (EE), where INSR is dephosphorylated and sorted. INSR can be subsequently conducted to lysosome for degradation or recycled back to the plasma membrane. The metabolic fate of INSR in cellular events implies the profound influence of INSR on insulin signaling pathways. Disruption of INSR-coupled activities has been identified in a wide range of insulin resistance-related diseases such as T2DM. Accumulating evidence suggests that alterations in INSR trafficking may lead to severe insulin resistance. However, there is very little understanding of how altered INSR activities undermine complex signaling pathways to the development of insulin resistance and T2DM. Here, we focus this review on summarizing previous findings on the molecular pathways of INSR trafficking in normal and diseased states. Through this review, we provide insights into the mechanistic role of INSR intracellular processes and activities in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yang Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lili Huang
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Xinzhou Qi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
2
|
Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Perticone M, Hribal ML, Sciacqua A, Perticone F, Sesti G. One-Hour Postload Hyperglycemia: Implications for Prediction and Prevention of Type 2 Diabetes. J Clin Endocrinol Metab 2018; 103:3131-3143. [PMID: 30020454 DOI: 10.1210/jc.2018-00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Recently, a value of 1-hour postload glucose concentration (1-h-PG) ≥155 mg/dL (8.6 mmol/L) in individuals with normal glucose tolerance (NGT) has been found to be associated with an increased risk for future type 2 diabetes mellitus (T2DM). In this review, we analyze the implication of 1-h-PG determination in prediction of T2DM and cardiovascular disease. DESIGN A literature search was performed using MEDLINE. We included all English studies published up to February 2018 in peer-reviewed journals that examined the relationship between 1-h-PG and diabetes, cardiometabolic alterations, organ damage, and cardiovascular disease. RESULTS Several longitudinal studies have consistently shown that 1-h-PG ≥155 mg/dL can recognize individuals at increased risk for future T2DM among subjects with NGT. Additionally, we describe the pathophysiological abnormalities associated with 1-h-PG ≥155 mg/dL including impaired insulin sensitivity, β-cell dysfunction, and increased glucose intestinal absorption, which are known to be involved in T2DM pathogenesis. Importantly, numerous studies have demonstrated that a value of 1-h-PG ≥155 mg/dL in individuals with NGT is not only linked to an increased risk for future T2DM, but also able to identify those having a worse cardiovascular phenotype and an increased risk of adverse cardiovascular outcomes. CONCLUSIONS Although 1-h-PG determination is not currently recommended by the American Diabetes Association for identifying high-risk individuals, the available evidence indicates that a value of 1-h-PG ≥155 mg/dL may be a useful tool to recognize, among subjects with NGT, those at increased risk of T2DM and cardiovascular disease.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | | | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Maria Perticone
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Viale Europa, Catanzaro, Italy
| |
Collapse
|
3
|
Fiorentino TV, Sesti F, Succurro E, Pedace E, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol 2018; 55:835-842. [PMID: 29774469 DOI: 10.1007/s00592-018-1153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
Abstract
AIMS Decreased insulin clearance has been reported to be associated with insulin resistance-related disorders and incident type 2 diabetes. The aim of this study was to evaluate whether higher levels of uric acid (UA), a known risk factor of type 2 diabetes, are associated with a reduced insulin clearance. METHODS 440 non-diabetic individuals were stratified in tertiles according to serum UA levels. Insulin clearance and skeletal muscle insulin sensitivity were assessed by euglycemic hyperinsulinemic clamp. Hepatic insulin resistance was estimated by the liver IR index. RESULTS Subjects with higher levels of UA displayed an unfavorable metabolic phenotype with a worse lipid profile, increased levels of 2-h post-load glucose levels, fasting, and 2-h post-load insulin levels, hsCRP, liver IR index, and lower levels of eGFR and skeletal muscle insulin sensitivity, in comparison to individuals with lower UA levels. Moreover, subjects with higher UA concentrations exhibited decreased levels of insulin clearance even after adjustment for age, gender, BMI, eGFR, and skeletal muscle insulin sensitivity. In a multivariate regression analysis model including several confounding factors, UA concentration was an independent predictor of insulin clearance (β = - 0.145; P = 0.03). However, when liver IR index was included in the model, the independent association between UA levels and insulin clearance was not retained. Accordingly, in a mediation analysis, liver IR index was a mediator of the negative effects of UA levels on insulin clearance (t = - 2.55, P = 0.01). CONCLUSIONS Higher serum levels of UA may affect insulin clearance by impairing hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Hribal ML, Perticone F, Sesti G. Decreased insulin clearance in individuals with elevated 1-h post-load plasma glucose levels. PLoS One 2013; 8:e77440. [PMID: 24194886 PMCID: PMC3806727 DOI: 10.1371/journal.pone.0077440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
Reduced insulin clearance has been shown to predict the development of type 2 diabetes. Recently, it has been suggested that plasma glucose concentrations ≥8.6 mmol/l (155 mg/dl) at 1 h during an oral glucose tolerance test (OGTT) can identify individuals at high risk for type 2 diabetes among those who have normal glucose tolerance (NGT 1 h-high). The aim of this study was to examine whether NGT 1 h-high have a decrease in insulin clearance, as compared with NGT individuals with 1-h post-load glucose <8.6 mmol/l (l (155 mg/dl, NGT 1 h-low). To this end, 438 non-diabetic White individuals were subjected to OGTT and euglycemic-hyperinsulinemic clamp to evaluate insulin clearance and insulin sensitivity. As compared with NGT 1 h-low individuals, NGT 1 h-high had significantly higher 1-h and 2-h post-load plasma glucose and 2-h insulin levels as well as higher fasting glucose and insulin levels. NGT 1 h-high exhibited also a significant decrease in both insulin sensitivity (P<0.0001) and insulin clearance (P = 0.006) after adjusting for age, gender, adiposity measures, and insulin sensitivity. The differences in insulin clearance remained significant after adjustment for fasting glucose (P = 0.02) in addition to gender, age, and BMI. In univariate analyses adjusted for gender and age, insulin clearance was inversely correlated with body weight, body mass index, waist, fat mass, 1-h and 2-h post-load glucose levels, fasting, 1-h and 2-h post-load insulin levels, and insulin-stimulated glucose disposal. In conclusion, our data show that NGT 1 h-high have a reduction in insulin clearance as compared with NGT 1 h-low individuals; this suggests that impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia.
Collapse
Affiliation(s)
| | - Simona Frontoni
- Department of Systems Medicine, University of Rome-Tor Vergata, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
5
|
Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Hribal ML, Perticone F, Sesti G. Insulin clearance is associated with carotid artery intima–media thickness. Atherosclerosis 2013; 229:453-8. [DOI: 10.1016/j.atherosclerosis.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 11/16/2022]
|
6
|
Bertacca A, Ciccarone A, Cecchetti P, Vianello B, Laurenza I, Del Prato S, Benzi L. High insulin levels impair intracellular receptor trafficking in human cultured myoblasts. Diabetes Res Clin Pract 2007; 78:316-23. [PMID: 17644209 DOI: 10.1016/j.diabres.2007.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 06/02/2007] [Indexed: 01/18/2023]
Abstract
Chronic hyperinsulinemia is both a marker and a cause for insulin resistance. This study analyzes the effect of long-term exposure to high insulin levels on insulin-insulin receptor metabolism in human myoblasts. Cells were grown in the presence of low (107 pM, SkMC-L) or high (1430 pM, SkMC-H) insulin concentrations. Insulin receptor (IR) phosphorylation, IR internalization, dissociation and recycling, as well as insulin degradation have been investigated. Basal IR phosphorylation was higher in SkMC-H than in SkMC-L (P<0.01) but after acute insulin stimulation (10nM insulin for 10 min), IR phosphorylation increased (P<0.01) in SkMC-L, but not in SkMC-H. Chronic hyperinsulinism significantly decreased insulin-IR complex internalization (P<0.01). Nevertheless the t(1/2) value of receptor internalization was similar in both cells. Intracellular dissociation of insulin-IR complex was slightly but significantly lower in SkMC-H than in SkMC-L. Finally, SkMC-H showed a complete, but significantly delayed recycling of IR to plasma membrane (t(1/2)=20 min versus SkMC-L t(1/2)=7 min). The time course of intracellular degradation measured by HPLC, showed whenever studied, significantly (P<0.01) higher levels of intracellular intact insulin in cells exposed to high insulin concentrations. Nevertheless, the patterns of insulin degradation were over-imposable between SkMC-H and SkMC-L. In summary, continuous exposure of cultured myoblasts to high insulin levels induces subtle derangements of intracellular receptor trafficking and insulin degradation. These alterations may contribute to the insulin resistance of hyperinsulinemic states such as obesity and Type 2 Diabetes.
Collapse
Affiliation(s)
- Anna Bertacca
- Department of Endocrinology and Metabolism, School of Medicine, University of Pisa, Ospedale Cisanello, Via Paradisa, 2, 56124 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
The activity of calpains in lymphocytes is glucose-dependent and is decreased in diabetic patients. Blood Cells Mol Dis 2007; 40:414-9. [PMID: 17964829 DOI: 10.1016/j.bcmd.2007.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 11/20/2022]
Abstract
Calpains are nonlysosomal calcium-dependent cysteine proteases that participate in insulin secretion and action. Polymorphisms in the calpain-10 gene have been shown to increase the risk for type 2 diabetes. Since white blood cells have been used to study glucose homeostasis, the present study was carried to find out if calpains have different activity and/or expression in accessible cells such as lymphocytes of individuals with or without type 2 diabetes. Fasting blood glucose concentration was significantly higher in diabetic subjects, whereas the difference in the activity of calpains evaluated in basal and stimulating extracellular glucose concentration was significantly higher in the lymphocytes from the control group. The mRNA expression of calpain-10 was similar in the lymphocytes of both patients and controls. The protein blots showed four bands that ranged between 75 and 50 kDa; however, no statistical differences were observed in the expression of the calpain-10 isoforms between controls and patients. Data obtained showed that human lymphocytes express calpain-10 mRNA and protein, showing a similar expression between diabetic and control subjects, nevertheless in the diabetic group calpain activity was less glucose-sensitive.
Collapse
|
8
|
Morii T, Ohno Y, Hirose H, Kawabe H, Ogata T, Hirao K, Eguchi T, Maruyama T, Kanno Y, Hayashi M, Saito I, Saruta T. Cellular insulin resistance in Epstein-Barr virus-transformed lymphoblasts from young insulin-resistant Japanese men. Metabolism 2005; 54:370-5. [PMID: 15736115 DOI: 10.1016/j.metabol.2004.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The metabolic syndrome is characterized by a blunted insulin-mediated glucose uptake in various cell types. We compared the glucose uptake characteristics of Epstein-Barr virus (EBV)-transformed lymphoblasts obtained from young men with vs without metabolic and cardiovascular evidence of metabolic syndrome. From a population of 218 men, 20- to 25-year-old, 10 men with a systolic blood pressure (BP) > or =130 mm Hg and family history of hypertension were assigned to a high BP (HBP) group, and 10 with a BP < or =110 mm Hg, and no family history of hypertension was assigned to a low BP (LBP) group. Multiple clinical and metabolic characteristics were examined in both groups and compared. Peripheral lymphocytes from HBP and LBP subjects were EBV-transformed, and the glucose transporter (Glut)-mediated glucose uptake from each group was compared in lymphoblasts. Body mass index, fasting glucose, immunoreactive insulin, insulin resistance index based on a homeostasis model assessment (HOMA-R), and total and low-density lipoprotein cholesterol were significantly higher in the HBP than the LBP subgroup (whole-body insulin resistance). Baseline Glut-mediated and Glut-mediated insulin-stimulated glucose uptake by lymphoblasts from the HBP group were significantly lower than by lymphoblasts from the LBP group (cellular insulin resistance). The net increment in Glut-mediated glucose uptake by insulin was inversely correlated with HOMA-R. In conclusion, cellular insulin resistance in EBV-transformed lymphoblasts is associated with young Japanese subjects with HBP. The net increment in Glut-mediated glucose uptake by insulin in lymphoblasts may be a useful intermediate phenotype to study genetic aspects of the metabolic syndrome.
Collapse
Affiliation(s)
- Toshiyuki Morii
- Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balbis A, Baquiran G, Dumas V, Posner BI. Effect of inhibiting vacuolar acidification on insulin signaling in hepatocytes. J Biol Chem 2003; 279:12777-85. [PMID: 14688247 DOI: 10.1074/jbc.m311493200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have shown that the endosomal apparatus plays an important role in insulin signaling. Inhibition of endosomal acidification leads to a decrease in insulin-insulin receptor kinase (IRK) dissociation and insulin degradation. Thus, vacuolar pH could function as a modulator of insulin signaling in endosomes. In the present study we show that in primary hepatocytes pretreated with bafilomycin, there is an inhibition of vacuolar acidification. Incubation of these cells with insulin was followed by an augmentation of IRK activity but an inhibition of phosphatidylinositol 3-kinase/Akt activity and a decrease in insulin-induced DNA and glycogen synthesis. Bafilomycin treatment inhibited IRK recycling to the plasma membrane without affecting IRK internalization. Impaired IRK recycling correlated with a decrease in insulin signaling. We suggest that inhibiting vacuolar acidification sequesters activated IRKs in an intracellular compartment(s) where signaling is inhibited. This implies that endosomal receptor trafficking plays a role in regulating signal transduction.
Collapse
Affiliation(s)
- Alejandro Balbis
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, 3640 University Street, Suite W315, Montreal, Province of Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
10
|
Hribal ML, D'Alfonso R, Giovannone B, Lauro D, Liu YY, Borboni P, Federici M, Lauro R, Sesti G. The sulfonylurea glimepiride regulates intracellular routing of the insulin-receptor complexes through their interaction with specific protein kinase C isoforms. Mol Pharmacol 2001; 59:322-30. [PMID: 11160869 DOI: 10.1124/mol.59.2.322] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sulfonylureas may stimulate glucose metabolism by protein kinase C (PKC) activation. Because interaction of insulin receptors with PKC plays an important role in controlling the intracellular sorting of the insulin-receptor complex, we investigated the possibility that the sulfonylurea glimepiride may influence intracellular routing of insulin and its receptor through a mechanism involving PKC, and that changes in these processes may be associated with improved insulin action. Using human hepatoma Hep-G2 cells, we found that glimepiride did not affect insulin binding, insulin receptor isoform expression, and insulin-induced receptor internalization. By contrast, glimepiride significantly increased intracellular dissociation of the insulin-receptor complex, degradation of insulin, recycling of internalized insulin receptors, release of internalized radioactivity, and prevented insulin-induced receptor down-regulation. Association of PKC-betaII and -epsilon with insulin receptors was increased in glimepiride-treated cells. Selective depletion of cellular PKC-betaII and -epsilon by exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) or treatment of cells with PKC-betaII inhibitor G06976 reversed the effect of glimepiride on intracellular insulin-receptor processing. Glimepiride increased the effects of insulin on glucose incorporation into glycogen by enhancing both sensitivity and maximal efficacy of insulin. Exposing cells to TPA or G06976 inhibitor reversed these effects. Results indicate that glimepiride increases intracellular sorting of the insulin-receptor complex toward the degradative route, which is associated with both an increased association of the insulin receptor with PKCs and improved insulin action. These data suggest a novel mechanism of action of sulfonylurea, which may have a therapeutic impact on the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- M L Hribal
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome-Tor Vergata, Rome-Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Benzi L, Ciccarone AM, Cecchetti P, DiCianni G, Caricato F, Trincavelli L, Volpe L, Navalesi R. Intracellular hyperinsulinism: a metabolic characteristic of obesity with and without Type 2 diabetes: intracellular insulin in obesity and Type 2 diabetes. Diabetes Res Clin Pract 1999; 46:231-7. [PMID: 10624789 DOI: 10.1016/s0168-8227(99)00100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that intracellular insulin may carry out some insulin mediated actions, including glucose transport. As intracellular insulin has never been quantitatively assessed in human cells, we evaluated its concentrations in monocytes from normal subjects (n = 7) and obese patients without (n = 9) and with Type 2 diabetes mellitus (n = 10). After the incubation of cells with labeled insulin for 60 min at 37 degrees C, intracellular intact insulin concentrations were measured by HPLC and expressed as pmol x 10(-6). Insulin concentrations were higher (ANOVA P < 0.01) within cells from obese (115.4 +/- 26.4 pmol x 10(-6)/2 x 10(5) cells) and obese diabetic patients (93.2 +/- 36.3 pmol x 10(-6)/2 x 10(5) cells) compared with normal cells (28.5 +/- 13.1 pmol x 10(-6)/2 x 10(5) cells). Moreover, after insulin was removed from the incubation medium the decrease of intracellular insulin was significantly lower (P < 0.01) in cells from both obese and obese diabetic patients than in normal subjects. Intracellular undissociated insulin-insulin receptor complexes on average, increased 2-fold (P < 0.01) in cells from insulin resistant patients compared with normal cells. Finally, in downregulated cells from obese and obese diabetic patients, the recycling of the internalized insulin receptor was completely disrupted. In conclusion, monocytes from obese patients with and without Type 2 diabetes mellitus, present increased intracellular insulin concentrations and these conditions are associated with a significant impairment of insulin receptor processing. Increased intracellular insulin concentration in cells from these patients may be necessary in order to overcome insulin resistance.
Collapse
Affiliation(s)
- L Benzi
- Department of Metabolic Disease, University of Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gletsu NA, Field CJ, Clandinin MT. Obese mice have higher insulin receptor levels in the hepatocyte cell nucleus following insulin stimulation in vivo with an oral glucose meal. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:251-60. [PMID: 10452959 DOI: 10.1016/s0925-4439(99)00043-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Internalization of the insulin receptor occurs following insulin binding at the cell surface, which serves to attenuate the insulin signal as well as modulate the number of surface insulin receptors. Obese animals exhibit decreased cell surface insulin receptor number as well as defects in insulin receptor internalization and processing. The insulin receptor may also translocates to the nucleus of hepatocytes and adipocytes following stimulation of cells with insulin. The objective of this study was to determine if insulin receptor trafficking to the hepatocyte cell nucleus could be observed in vivo and whether this process was altered in obese compared to lean mice. Mice were fasted for 12 h to reduce serum insulin to basal levels. Animals were then given an oral meal of glucose to stimulate the binding of insulin to receptor in vivo. Hepatocyte plasma membrane and nuclei were fractionated to purity following the glucose meal. Levels of insulin receptor were determined using insulin binding assays and a Western blotting assay using anti-insulin receptor antibody. As the amount of serum insulin increased following the glucose meal, a corresponding increase in nuclear insulin binding occurred in lean animals but not obese animals (P<0.05). Following the glucose meal, insulin receptor detected in the cell nucleus was increased in obese compared to lean mice (P<0.05). Thus insulin receptor translocation to the nucleus was demonstrated in vivo following a glucose meal in hepatocytes of both lean and obese animals. It is suggested that serum hyperglycemia and hyperinsulinemia in obese mice increased translocation of the insulin receptor to the nucleus.
Collapse
Affiliation(s)
- N A Gletsu
- Department of Agricultural, Food and Nutritional Science, Nutrition and Metabolism Research Group, University of Alberta, 4-10 Agriculture/Forestry Building, Edmonton, Alta T6G 2P5, Canada
| | | | | |
Collapse
|
13
|
Ciccarone A, Cecchetti P, Orsini P, Cianni GD, Coppini A, Merante D, Navalesi R, Benzi L. Effects of gliquidone and glibenclamide on metabolic response and insulin receptor interaction in monocytes from patients with type 2 diabetes mellitus. Curr Ther Res Clin Exp 1999. [DOI: 10.1016/s0011-393x(99)80008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Klöting I, Voigt B, Kovács P. Metabolic features of newly established congenic diabetes-prone BB.SHR rat strains. Life Sci 1998; 62:973-9. [PMID: 9515554 DOI: 10.1016/s0024-3205(98)00017-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The well-known association of hypertension and diabetes mellitus and the lack of suitable animal models to study diabetic hypertension prompted us to transfer 4 chromosomal regions with quantitative trait loci (QTLs) for blood pressure of the spontaneously hypertensive SHR rat onto the genetic background of the diabetes-prone and normotensive BB/OK rat. Four congenic strains developed are named as BB. Sa (Chr.1), BB.Bp2 (Chr.18), BB.1K (Chr.20) and BB.Xs (Chr.X). Because the systolic blood pressure is significantly elevated in all congenics, renal related traits were investigated in serum and urine. Comparing BB/OK and their congenic derivatives, significant differences were found in all serum and in 7 out of 8 urine constituents studied. Most significant differences were found between BB/OK and BB.Bp2 rats. Significant differences were also found between the different congenic strains indicating that each congenic strain has its own phenotype and that each chromosomal region contains most probably further QTLs for some of the traits studied.
Collapse
Affiliation(s)
- I Klöting
- Department of Laboratory Animal Science, Institute of Pathophysiology, University of Greifswald, Karlsburg, Germany.
| | | | | |
Collapse
|
15
|
Malminiemi K, Lahtela J, Malminiemi O, Ala-Kaila K, Huupponen R. Insulin sensitivity in a long-term crossover trial with celiprolol and other antihypertensive agents. J Cardiovasc Pharmacol 1998; 31:140-5. [PMID: 9456288 DOI: 10.1097/00005344-199801000-00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of a vasodilating beta-blocker, celiprolol, on insulin sensitivity and cardiovascular risk factors were compared with those of another beta1-selective adrenoceptor blocker, calcium channel blockers, and angiotensin-converting enzyme (ACE) inhibitors. A randomized 21-month crossover trial was carried out with 25 patients with dyslipidemia receiving antihypertensive monotherapy. The study consisted of a 3-month active run-in period and two treatment periods, during which the patients received celiprolol (200-400 mg daily) or the control drug for 12 and 6 months in a crossover manner. A hyperinsulinemic euglycemic clamp and an oral glucose tolerance test (OGTT) were performed every 6 months. According to the clamp tests, the insulin-sensitivity index increased on average by 32% (p < 0.0001) during celiprolol treatment compared with that with the other antihypertensive agents, including ACE inhibitors. In OGTT, area under the incremental glucose curve decreased by 36% (p = 0.002) during celiprolol treatment, whereas insulin secretion diminished on average by 26% (p = 0.006). The mean decrease in fasting serum triglycerides was 11% (NS), whereas the high-density lipoprotein to low-density lipoprotein (HDL/LDL) ratio increased by 15% (p = 0.012). The results suggest that celiprolol improves insulin sensitivity of hypertensive patients with dyslipidemia in long-term therapy.
Collapse
Affiliation(s)
- K Malminiemi
- Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
16
|
Henriksen EJ, Jacob S, Fogt DL, Youngblood EB, Gödicke J. Antihypertensive agent moxonidine enhances muscle glucose transport in insulin-resistant rats. Hypertension 1997; 30:1560-5. [PMID: 9403583 DOI: 10.1161/01.hyp.30.6.1560] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sympatholytic antihypertensive agent moxonidine, a centrally acting selective I1-imidazoline receptor modulator (putative agonist), may be beneficial in hypertensive patients with insulin resistance. In the present study, the effects of chronic in vivo moxonidine treatment of obese Zucker rats--a model of severe glucose intolerance, hyperinsulinemia and insulin resistance, and dyslipidemia--on whole-body glucose tolerance, plasma lipids, and insulin-stimulated skeletal muscle glucose transport activity (2-deoxyglucose uptake) were investigated. Moxonidine was administered by gavage for 21 consecutive days at 2, 6, or 10 mg/kg body weight. Body weights in control and moxonidine-treated groups were matched, except at the highest dose, at which final body weight was 17% lower in the moxonidine-treated animals compared with controls. The moxonidine-treated (6 and 10 mg/kg) obese animals had significantly lower fasting plasma levels of insulin (17% and 19%, respectively) and free fatty acids (36% and 28%, respectively), whereas plasma glucose was not altered. During an oral glucose tolerance test, the glucose response (area under the curve) was 47% and 67% lower, respectively, in the two highest moxonidine-treated obese groups. Moreover, glucose transport activity in the isolated epitrochlearis muscle stimulated by a maximally effective insulin dose (13.3 nmol/L) was 39% and 70% greater in the 6 and 10 mg/kg moxonidine-treated groups, respectively (P<.05 for all effects). No significant alterations in muscle glucose transport were elicited by 2 mg/kg moxonidine. These findings indicate that in the severely insulin-resistant and dyslipidemic obese Zucker rat, chronic in vivo treatment with moxonidine can significantly improve, in a dose-dependent manner, whole-body glucose tolerance, possibly as a result of enhanced insulin-stimulated skeletal muscle glucose transport activity and reduced circulating free fatty acids.
Collapse
Affiliation(s)
- E J Henriksen
- Department of Physiology, University of Arizona, Tucson 85721-0093, USA.
| | | | | | | | | |
Collapse
|
17
|
Benzi L, Cecchetti P, Ciccarone AM, Nardone A, Merola E, Maggiorelli R, Campi F, Di Cianni G, Navalesi R. Inhibition of endosomal acidification in normal cells mimics the derangements of cellular insulin and insulin-receptor metabolism observed in non-insulin-dependent diabetes mellitus. Metabolism 1997; 46:1259-65. [PMID: 9361682 DOI: 10.1016/s0026-0495(97)90227-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dissociation of the insulin-insulin receptor complex plays a crucial role in the processing of both insulin and the insulin receptor, and the acidification of endocytic vesicles may be the mechanism by which internalized insulin is dissociated from its receptor and properly sorted and processed. Internalized insulin-insulin receptor complexes are abnormally processed in cells from patients with non-insulin-dependent diabetes mellitus (NIDDM). Accordingly, to further investigate the mechanisms of the derangements observed in NIDDM cells, we examined the effects of the ionophore monensin, which inhibits endosomal acidification, on the cellular processing of insulin and insulin receptor in monocytes from control subjects (n = 12) and NIDDM patients (n = 14). This study confirms that monocytes from NIDDM patients, compared with cells from normal controls, had reduced binding (P < .01), internalization (P < .01), and degradation (P < .01) of insulin. In addition, the release of intracellular radioactivity was slower (P < .01), and recycling of the insulin receptor was inhibited (P < .01). Moreover, these defects were associated with a significant (P < .01) decrease of dissociation of the internalized insulin-insulin receptor complex. In cells from normal controls, incubation with monensin decreased insulin binding (P < .01), but not insulin internalization. High-performance liquid chromatography (HPLC) analysis of intracellular radioactivity showed that after monensin intracellular intact insulin significantly increased (P < .01), thus suggesting a decrease of intracellular insulin degradation. Moreover, insulin receptor recycling was completely disrupted. All of these derangements were associated with a significant decrease (P < .01) of dissociation of insulin-insulin receptor complexes. On the contrary, in diabetic monocytes, monensin had no significant additional effect on NIDDM-linked alterations. Comparison of the results obtained in cells from NIDDM patients to those found in monensin-treated normal cells demonstrates that NIDDM and monensin gave rise to a superimposable impairment of dissociation of the intracellular insulin-insulin receptor complex, associated with similar abnormal sorting and processing of insulin and its receptor. The only defect present in NIDDM cells but not in monensin-treated cells is the decrease of insulin internalization, which thus seems independent of the action of monensin on the processing of internalized insulin-insulin receptor complex. These results suggest that the impairment of dissociation of the insulin-insulin receptor complex may play a crucial role in the subsequent altered processing of insulin and insulin receptor. Moreover, they raise the question as to a possible similar alteration of the same intracellular mechanism by NIDDM and monensin, and point out that the derangements found in cells from NIDDM patients could be localized within the endosomal apparatus and consist mainly of a defective acidification of its interior.
Collapse
Affiliation(s)
- L Benzi
- Department of Metabolic Diseases, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|