1
|
Harasztosi C, Klenske E, Gummer AW. Vesicle traffic in the outer hair cell. Eur J Neurosci 2021; 54:4755-4767. [PMID: 34043848 DOI: 10.1111/ejn.15331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
The plasma-membrane marker FM1-43 was employed to reveal the relative significance of different types of endocytic and transcytic mechanisms in outer hair cells (OHCs) of the guinea-pig cochlea. A double-barrel local perfusion system was used to label independently the apical or synaptic pole of the isolated OHC to study mechanisms of vesicle uptake at the poles and of vesicle trafficking along and across the cell. Treatment with an inhibitor of macropino- and phagocytosis, phenylarsine oxide, or of clathrin-mediated endocytic activity, concanavalin A, significantly reduced the dye uptake at both the apical and the synaptic poles, indicating the presence of both clathrin-independent and clathrin-mediated processes at both poles. However, measurement of uptake speed in the presence of the inhibitors suggested that clathrin-independent processes contribute more extensively to endocytosis at the basal pole than the apical pole. Treatment with an inhibitor of myosin VI, 2,4,6-triiodophenol, significantly delayed both the apicobasal and the basoapical fluorescence signals. However, treatment with an inhibitor of kinesin, monastrol, or of dynein, ciliobrevin D, significantly delayed the signals only in the basoapical direction. The myosinVI inhibitor, but neither the kinesin nor dynein inhibitors, significantly delayed the signals to the subsurface cisternae. That is, myosin VI carries vesicles in both longitudinal directions as well as radially to the subsurface cisternae, whereas kinesin and dynein participate primarily in basoapical trafficking. This fundamental information is essential for elucidating recycling mechanisms of specific proteins involved in establishing, controlling and maintaining the electromechanical action of OHCs and, therefore, is vital for understanding auditory perception.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Entcho Klenske
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, Rajan G, Ladak H, Agrawal S, Rask-Andersen H. Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study. Front Cell Neurosci 2021; 15:642211. [PMID: 33796009 PMCID: PMC8008129 DOI: 10.3389/fncel.2021.642211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao Li
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Tylstedt
- Department of Olaryngology, Västerviks Hospital, Västervik, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
3
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
4
|
Triffo WJ, Palsdottir H, Song J, Morgan DG, McDonald KL, Auer M, Raphael RM. 3D Ultrastructure of the Cochlear Outer Hair Cell Lateral Wall Revealed By Electron Tomography. Front Cell Neurosci 2019; 13:560. [PMID: 31920560 PMCID: PMC6933316 DOI: 10.3389/fncel.2019.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.
Collapse
Affiliation(s)
- William Jeffrey Triffo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Radiology, Geisinger, Danville, PA, United States
| | - Hildur Palsdottir
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Gene Morgan
- Interdisciplinary Center for Electron Microscopy, University of California, Davis, Davis, CA, United States
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert M Raphael
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
5
|
Liu W, Atturo F, Aldaya R, Santi P, Cureoglu S, Obwegeser S, Glueckert R, Pfaller K, Schrott-Fischer A, Rask-Andersen H. Macromolecular organization and fine structure of the human basilar membrane - RELEVANCE for cochlear implantation. Cell Tissue Res 2015; 360:245-62. [PMID: 25663274 PMCID: PMC4412841 DOI: 10.1007/s00441-014-2098-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cochlear micromechanics and frequency tuning depend on the macromolecular organization of the basilar membrane (BM), which is still unclear in man. Novel techniques in cochlear implantation (CI) motivate further analyses of the BM. MATERIALS AND METHODS Normal cochleae from patients undergoing removal of life-threatening petro-clival meningioma and an autopsy specimen from a normal human were used. Laser-confocal microscopy, high resolution scanning (SEM) and transmission electron microscopy (TEM) were carried out in combination. In addition, one human temporal bone was decellularized and investigated by SEM. RESULTS The human BM consisted in four separate layers: (1) epithelial basement membrane positive for laminin-β2 and collagen IV, (2) BM "proper" composed of radial fibers expressing collagen II and XI, (3) layer of collagen IV and (4) tympanic covering layer (TCL) expressing collagen IV, fibronectin and integrin. BM thickness varied both radially and longitudinally (mean 0.55-1.16 μm). BM was thinnest near the OHC region and laterally. CONCLUSIONS There are several important similarities and differences between the morphology of the BM in humans and animals. Unlike in animals, it does not contain a distinct pars tecta (arcuate) and pectinata. Its width increases and thickness decreases as it travels apically in the cochlea. Findings show that the human BM is thinnest and probably most vibration-sensitive at the outer pillar feet/Deiter cells at the OHCs. The inner pillar and IHCs seem situated on a fairly rigid part of the BM. The gradient design of the BM suggests that its vulnerability increases apical wards when performing hearing preservation CI surgery.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, 751 85 Uppsala, Sweden
- Department of Neurology, Mental Health and Sensory Organs Otorhinolaryngologic Unit,, Medicine and Psychology Sapienza, Rome, Sweden
| | - Francesca Atturo
- Department of Neurology, Mental Health and Sensory Organs, Otorhinolaryngologic Unit, Medicine and Psychology, Sapienza, Rome
- Department of Surgical Sciences, Section of Otolaryngology Uppsala University Hospital, SE 751 85 Uppsala, Sweden
| | - Robair Aldaya
- Department of Otolaryngology, University of Minnesota, 121, Lions Research Bldg., 2001 Sixth St. SE, Minneapolis, MN 55455 USA
| | - Peter Santi
- Department of Otolaryngology, University of Minnesota, 121, Lions Research Bldg., 2001 Sixth St. SE, Minneapolis, MN 55455 USA
| | - Sebahattin Cureoglu
- Department of Otolaryngology, University of Minnesota, 121, Lions Research Bldg., 2001 Sixth St. SE, Minneapolis, MN 55455 USA
| | - Sabrina Obwegeser
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- University Hospital Innsbruck-Tirol Kliniken, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Kristian Pfaller
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, 751 85 Uppsala, Sweden
- Department of Neurology, Mental Health and Sensory Organs Otorhinolaryngologic Unit,, Medicine and Psychology Sapienza, Rome, Sweden
| |
Collapse
|
6
|
Kamar RI, Organ-Darling LE, Raphael RM. Membrane cholesterol strongly influences confined diffusion of prestin. Biophys J 2012; 103:1627-36. [PMID: 23083705 DOI: 10.1016/j.bpj.2012.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Prestin is the membrane motor protein that drives outer hair cell (OHC) electromotility, a process that is essential for mammalian hearing. Prestin function is sensitive to membrane cholesterol levels, and numerous studies have suggested that prestin localizes in cholesterol-rich membrane microdomains. Previously, fluorescence recovery after photobleaching experiments were performed in HEK cells expressing prestin-GFP after cholesterol manipulations, and revealed evidence of transient confinement. To further characterize this apparent confined diffusion of prestin, we conjugated prestin to a photostable fluorophore (tetramethylrhodamine) and performed single-molecule fluorescence microscopy. Using single-particle tracking, we determined the microscopic diffusion coefficient from the full time course of the mean-squared deviation. Our results indicate that prestin undergoes diffusion in confinement regions, and that depletion of membrane cholesterol increases confinement size and decreases confinement strength. By interpreting the data in terms of a mathematical model of hop-diffusion, we quantified these cholesterol-induced changes in membrane organization. A complementary analysis of the distribution of squared displacements confirmed that cholesterol depletion reduces prestin confinement. These findings support the hypothesis that prestin function is intimately linked to membrane organization, and further promote a regulatory role for cholesterol in OHC and auditory function.
Collapse
Affiliation(s)
- R I Kamar
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | | | |
Collapse
|
7
|
Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R. Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 2012; 295:1791-811. [PMID: 23044521 DOI: 10.1002/ar.22599] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
Abstract
This is a review of the anatomical characteristics of human cochlea and the importance of variations in this anatomy to the process of cochlear implantation (CI). Studies of the human cochlea are essential to better comprehend the physiology and pathology of man's hearing. The human cochlea is difficult to explore due to its vulnerability and bordering capsule. Inner ear tissue undergoes quick autolytic changes making investigations of autopsy material difficult, even though excellent results have been presented over time. Important issues today are novel inner ear therapies including CI and new approaches for inner ear pharmacological treatments. Inner ear surgery is now a reality, and technical advancements in the design of electrode arrays and surgical approaches allow preservation of remaining structure/function in most cases. Surgeons should aim to conserve cochlear structures for future potential stem cell and gene therapies. Renewal interest of round window approaches necessitates further acquaintance of this complex anatomy and its variations. Rough cochleostomy drilling at the intricate "hook" region can generate intracochlear bone-dust-inducing fibrosis and new bone formation, which could negatively influence auditory nerve responses at a later time point. Here, we present macro- and microanatomic investigations of the human cochlea viewing the extensive anatomic variations that influence electrode insertion. In addition, electron microscopic (TEM and SEM) and immunohistochemical results, based on specimens removed at surgeries for life-threatening petroclival meningioma and some well-preserved postmortal tissues, are displayed. These give us new information about structure as well as protein and molecular expression in man. Our aim was not to formulate a complete description of the complex human anatomy but to focus on aspects clinically relevant for electric stimulation, predominantly, the sensory targets, and how surgical atraumaticity best could be reached.
Collapse
Affiliation(s)
- Helge Rask-Andersen
- Department of Otolaryngology, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
8
|
On the differential diagnosis of Ménière's disease using low-frequency acoustic biasing of the 2f1-f2 DPOAE. Hear Res 2011; 282:119-27. [PMID: 21944944 DOI: 10.1016/j.heares.2011.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023]
Abstract
We have cyclically suppressed the 2f1-f2 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Ménière's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Ménière's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative of the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Ménière's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Ménière's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Ménière's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Ménière's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Ménière's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this syndrome.
Collapse
|
9
|
Fridberger A, Von Tiedemann M, Flock Å, Flock B, Öfverstedt LG, Skoglund U. Three-dimensional structure of outer hair cell pillars. Acta Otolaryngol 2009; 129:940-5. [PMID: 19023683 DOI: 10.1080/00016480802552519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
UNLABELLED CONCLUSIONS. Electron tomography was used to generate three-dimensional reconstructions of the pillars that connect the cell membrane with the cytoskeleton of the outer hair cell. Results are consistent with the hypothesis that pillars are important for mechanically linking the membrane with the cytoskeleton. OBJECTIVE To make a qualitative assessment of the morphology of the sub-membrane pillars of cochlear outer hair cells. MATERIALS AND METHODS Guinea pig cochleae were fixed and prepared for electron microscopy using protocols described previously. Sections were imaged on an electron microscope equipped with a goniometer. The specimens were tilted through a range of 120°, and an image was acquired at each tilt angle. Filtered back-projection was used to generate three-dimensional reconstructions. RESULTS Twelve individual pillars were successfully reconstructed. Pillars often connect to the cell membrane through a thin segment, and to the cytoskeleton through a forking structure that may form a central cavity.
Collapse
|
10
|
Thornell LE, Anniko M. Cytoskeletal Organization of the Human Inner Ear: III.Expression of Actin in the Cochlea. Acta Otolaryngol 2009. [DOI: 10.3109/00016488709099004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
|
12
|
Ning Y, Suo–qiang Z, Shi–ming Y, Dong–yi H, Hong–bo Z. Distribution of Prestin on Outer Hair Cell Basolateral Surface. J Otol 2008. [DOI: 10.1016/s1672-2930(08)50020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Farahbakhsh NA, Narins PM. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change. Hear Res 2008; 241:7-17. [PMID: 18534795 PMCID: PMC2516351 DOI: 10.1016/j.heares.2008.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/10/2008] [Accepted: 04/14/2008] [Indexed: 12/01/2022]
Abstract
Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.
Collapse
Affiliation(s)
- Nasser A Farahbakhsh
- Department of Physiological Science, 621 Charles E. Young Drive S., University of California, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
14
|
The contractile segment of the abneural limbus in the gecko cochlea is enriched in vimentin. Cell Tissue Res 2007; 330:405-12. [DOI: 10.1007/s00441-007-0475-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
|
15
|
He DZZ, Zheng J, Kalinec F, Kakehata S, Santos-Sacchi J. Tuning in to the amazing outer hair cell: membrane wizardry with a twist and shout. J Membr Biol 2006; 209:119-34. [PMID: 16773497 DOI: 10.1007/s00232-005-0833-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Indexed: 11/29/2022]
Affiliation(s)
- D Z Z He
- Hair Cell Biophysics Laboratory, Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
16
|
Yu N, Zhu ML, Zhao HB. Prestin is expressed on the whole outer hair cell basolateral surface. Brain Res 2006; 1095:51-8. [PMID: 16709400 PMCID: PMC2548272 DOI: 10.1016/j.brainres.2006.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/03/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility. Previous experiments revealed that OHC electromotility and its associated nonlinear capacitance resided in the OHC lateral wall and was not detected at the apical cuticular plate and basal region. In this experiment, the distribution of prestin in adult mouse, rat, and guinea pig OHCs was re-examined by use of immunofluorescent staining and confocal microscopy. We found that prestin labeling was located at the whole OHC basolateral wall, including the basal plasma membrane. However, staining at the basal membrane was weak. As compared with the intensity at the lateral wall, the intensities of prestin labeling at the membrane at the nuclear level and basal pole were 80.5% and 61.1%, respectively. Prestin labeling was not found at the cuticular plate and stereocilia. The prestin labeling was also absent in the cytoplasm and nuclei. The OHC lateral wall above the nuclear level is composed of the plasma membrane, cortical lattice, and subsurface cisternae. By co-staining with di-8-ANEPPS, prestin labeling was found at the outer layer of the OHC lateral wall, which was further evidenced by use of a hypotonic challenge to separate the plasma membrane from the underlying subsurface cisternae. The data revealed that prestin is expressed at the whole OHC basolateral membrane. Prestin in the basal plasma membrane may provide a reservoir on the OHC surface for prestin-recycling and may also facilitate performing its hypothesized transporter function.
Collapse
Affiliation(s)
| | | | - Hong-Bo Zhao
- Corresponding author. Fax: +1 859 257 5096., E-mail address: (H.-B. Zhao)
| |
Collapse
|
17
|
de Monvel JB, Brownell WE, Ulfendahl M. Lateral diffusion anisotropy and membrane lipid/skeleton interaction in outer hair cells. Biophys J 2006; 91:364-81. [PMID: 16603502 PMCID: PMC1479061 DOI: 10.1529/biophysj.105.076331] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organization of the plasma membrane of cells in lipid domains affects the way the membrane interacts with the underlying protein skeleton, which in turn affects the lateral mobility of lipid and protein molecules in the membrane. Membrane fluidity properties can be monitored by various approaches, the most versatile of which is fluorescence recovery after photobleaching (FRAP). We extended previous FRAP experiments on isolated cochlear outer hair cells (OHCs) by analyzing the two-dimensional pattern of lipid diffusion in the lateral membrane of these cells. We found that membrane lipid mobility in freshly isolated OHCs is orthotropic, diffusion being faster in the axial direction of the cell and slower in the circumferential direction. Increasing the cell's turgor pressure by osmotic challenge reduced the axial diffusion constant, but had only a slight effect on circumferential diffusion. Our results suggest that lipid mobility in the OHC plasma membrane is affected by the presence of the cell's orthotropic membrane skeleton. This effect could reflect interaction with spectrin filaments or with other membrane skeletal proteins. We also performed a number of FRAP measurements in temporal bone preparations preserving the structural integrity of the hearing organ. The diffusion rates measured for OHCs in this preparation were in good agreement with those obtained in isolated OHCs, and comparable to the mobility rates measured on the sensory inner hair cells. These observations support the idea that the plasma membranes of both types of hair cells share similar highly fluid phases in the intact organ. Lipid mobility was significantly slower in the membranes of supporting cells of the organ of Corti, which could reflect differences in lipid phase or stronger hindrance by the cytoskeleton in these membranes.
Collapse
Affiliation(s)
- J Boutet de Monvel
- Center for Hearing and Communication Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
Farahbakhsh NA, Narins PM. Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes. Hear Res 2006; 212:140-59. [PMID: 16426781 DOI: 10.1016/j.heares.2005.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 11/23/2005] [Indexed: 11/30/2022]
Abstract
We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation.
Collapse
Affiliation(s)
- Nasser A Farahbakhsh
- Department of Physiological Science, 621 Charles E. Young Drive S. University of California, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
19
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Zelenskaya A, de Monvel JB, Pesen D, Radmacher M, Hoh JH, Ulfendahl M. Evidence for a highly elastic shell-core organization of cochlear outer hair cells by local membrane indentation. Biophys J 2005; 88:2982-93. [PMID: 15653728 PMCID: PMC1305392 DOI: 10.1529/biophysj.104.052225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Cochlear outer hair cells (OHCs) are thought to play an essential role in the high sensitivity and sharp frequency selectivity of the hearing organ by generating forces that amplify the vibrations of this organ at frequencies up to several tens of kHz. This tuning process depends on the mechanical properties of the cochlear partition, which OHC activity has been proposed to modulate on a cycle-by-cycle basis. OHCs have a specialized shell-core ultrastructure believed to be important for the mechanics of these cells and for their unique electromotility properties. Here we use atomic force microscopy to investigate the mechanical properties of isolated living OHCs and to show that indentation mechanics of their membrane is consistent with a shell-core organization. Indentations of OHCs are also found to be highly nonhysteretic at deformation rates of more than 40 microm/s, which suggests the OHC lateral wall is a highly elastic structure, with little viscous dissipation, as would appear to be required in view of the very rapid changes in shape and mechanics OHCs are believed to undergo in vivo.
Collapse
Affiliation(s)
- Alexandra Zelenskaya
- Department of Clinical Neuroscience and Center for Hearing and Communication Research, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Deák L, Zheng J, Orem A, Du GG, Aguiñaga S, Matsuda K, Dallos P. Effects of cyclic nucleotides on the function of prestin. J Physiol 2005; 563:483-96. [PMID: 15649974 PMCID: PMC1665600 DOI: 10.1113/jphysiol.2004.078857] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Outer hair cells (OHCs) in the mammalian organ of Corti display electromotility, which is thought to provide the local active mechanical amplification of the cochlear response. Prestin is the key molecule responsible for OHC electromotility. Several compounds, including cGMP, have been shown to influence OHC electromotility. There are two potential cAMP/cGMP-dependent protein kinase phosphorylation sites on prestin. Whether these sites are involved in cGMP-dependent reactions is as yet unknown. In this study, prestin cDNA was transiently transfected into TSA 201 cells. Cells that expressed prestin were selected to measure non-linear capacitance (NLC), a signature of outer hair cell motility. We applied cGMP and cAMP analogues and a protein kinase G (PKG) antagonist to the cells. Furthermore, nine mutations at putative phosphorylation sites of prestin were produced. The neutral amino acid alanine replaced serine/threonine at phosphorylation sites to change the conserved phosphorylation motif in order to mimic the dephosphorylated state of prestin, whereas replacement with the negatively charged aspartic acid mimicked the phosphorylated state. The properties of such modified prestin-expressing cells were examined, through measurement of NLC and with confocal microscopy. Our data demonstrate that cGMP is significantly more influential than cAMP in modifying the non-linear, voltage-dependent charge displacement in prestin-transfected cells. The electrical properties of the single and double mutations further indicate a possible interaction between the two PKG target sites. One of these sites may influence the membrane targeting process of prestin. Finally, a new topology map of prestin is proposed.
Collapse
Affiliation(s)
- Levente Deák
- Auditory Physiology Laboratory, Department of Communication Sciences and Disorders, The Neuroscience Institute, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu X, Gao J, Guo Y, Zuo J. Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. ACTA ACUST UNITED AC 2004; 126:30-7. [PMID: 15207913 DOI: 10.1016/j.molbrainres.2004.03.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2004] [Indexed: 10/26/2022]
Abstract
Our previous characterization of prestin knockout (-/-) mice demonstrated that prestin is required for the eletromotility of outer hair cells (OHCs) and for the cochlear amplifier. Because hair-cell loss was observed in the basal 25% of cochleae in adult prestin-/- mice, it remained unclear how hair-cell loss progressed, whether hearing thresholds were elevated, and whether OHCs had normal ultra-structure in young prestin-/- mice. We report here that in prestin-/- mice, no significant hair-cell loss occurred before postnatal day 28 (P28); apoptosis of hair cells began at P28; and the loss of inner hair cells lagged behind that of OHCs. The prestin-/- mice had hearing thresholds that were significantly elevated (by approximately 25 dB) as early as P14; their thresholds at high frequencies were significantly elevated (by approximately 50 dB) at P21. The prestin heterozygous (+/-) mice displayed a significant threshold elevation (approximately 3.5 dB) at P21. In addition, transmission electronic microscopy shown that no obvious abnormality occurs in the sterocilla, lateral wall, tight junction and synapses of the outer hair cells. Our results demonstrate that the absence of prestin, not hair-cell loss, is the primary cause of high-frequency hearing threshold elevation in prestin-/- and +/- mice.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Apoptosis/physiology
- Auditory Threshold
- Evoked Potentials, Auditory, Brain Stem
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Loss, High-Frequency/pathology
- In Situ Nick-End Labeling
- Mice
- Mice, Knockout
- Molecular Motor Proteins
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- Xudong Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW There have been many recent advancements in our understanding of cochlear function within the past ten years. In particular, several mechanisms that underlie the sensitivity and sharpness of mammalian tuning have been discovered. This review focuses on these issues. RECENT FINDINGS The cochlear amplifier is essentially a positive feedback loop within the cochlea that amplifies the traveling wave. Thus, vibrations within the organ of Corti are sensed and then force is generated in synchrony to increase the vibrations. Mechanisms that generate force within the cochlea include outer hair cell electromotility and stereociliary active bundle movements. These processes can be modulated by the intracellular ionic composition, the lipid constituents of the outer hair cell plasma membrane, and the structure of the outer hair cell cytoskeleton. SUMMARY A thorough understanding of the cochlear amplifier has tremendous implications to improve human hearing. Sensorineural hearing loss is a common clinical problem and a common site of initial pathology is the outer hair cell. Loss of outer hair cells causes loss of the cochlear amplifier, resulting in progressive sensorineural hearing loss.
Collapse
Affiliation(s)
- John S Oghalai
- Bobby R. Alford Department of Otorhinolaryngology & Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, NA 102, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Sziklai I. The significance of the calcium signal in the outer hair cells and its possible role in tinnitus of cochlear origin. Eur Arch Otorhinolaryngol 2004; 261:517-25. [PMID: 15609110 DOI: 10.1007/s00405-004-0745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Finely tuned changes in intracellular Ca(2+) concentration modulate a variety of cellular functions in eukaryotic cells. The cytosolic Ca(2+) concentration is also tightly controlled in the outer hair cells (OHCs), the highly specialized receptor and effector cells in the mammalian auditory epithelium, which are responsible for high sensitivity and sharp frequency discrimination in hearing. OHCs possess a complex system of transporters, pumps, exchangers, channels and binding proteins to develop and to halt the regulatory Ca(2+) signal. The crucial role of elevated intracellular Ca(2+) concentration in OHCs is to increase the efficacy of the electromechanical (electromotile) feedback via remodeling of the cortical cytoskeleton. Anomalies in the Ca(2+) signaling pathway may lead to hypersensitivity of the cochlear amplifier and subsequently trigger tinnitus of cochlear origin. This review describes the dynamics of Ca(2+) signaling in the OHCs and a model that may convey a putative mechanism of development of subjective idiopathic cochlear tinnitus.
Collapse
Affiliation(s)
- István Sziklai
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Debrecen University Health Science Center, Nagyerdei krt. 98, 4012 Debrecen, Hungary.
| |
Collapse
|
25
|
Wada H, Kimura K, Gomi T, Sugawara M, Katori Y, Kakehata S, Ikeda K, Kobayashi T. Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy. Hear Res 2004; 187:51-62. [PMID: 14698087 DOI: 10.1016/s0378-5955(03)00334-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammalian outer hair cells (OHCs) are known to respond to acoustical stimulation with elongation and contraction of the cells' cylindrical soma in vivo, and this motility is related to both the protein motors distributed along the OHC plasma membrane and the cytoskeleton beneath it. Therefore, the cytoskeleton seems to play an important role in the motility of the OHC. Recently, an atomic force microscope (AFM) was used to investigate the OHC cytoskeleton under physiological conditions. However, details were not made clear in that study. In this study, the ultrastructure of the cytoskeleton of fixed OHCs of guinea pigs, which were extracted with Triton X-100, was investigated using the AFM. As a result, the cortical cytoskeleton, which is formed by discrete oriented domains, was imaged, and circumferential filaments and cross-links were observed within the domain. Morphological change of the cytoskeleton of the OHC induced by diamide treatment was then examined using the AFM, and reduction of cross-links was observed. The examination indicates that the cortical cytoskeleton comprises circumferential actin filaments and spectrin cross-links.
Collapse
Affiliation(s)
- Hiroshi Wada
- Department of Bioengineering and Robotics, Tohoku University, Sendai, 980-8579, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ganeshina O, Vorobyev M. Contractile cochlear frame in the gecko Teratoscincus scincus. J Comp Neurol 2003; 461:539-47. [PMID: 12746867 DOI: 10.1002/cne.10717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is generally accepted that the cartilaginous frame of the reptilian cochlea has only a passive supportive function. In this study, a ribbon of contractile tissue was revealed within the cartilaginous frame of the cochlea of the gecko Teratoscincus scincus. It consisted of tightly packed cells and received an extensive blood supply. The cytoplasm of the cells was filled with cytoskeletal filaments 5-7 nm thick as revealed by electron microscopy. Isolated tissue permeabilized with Triton X-100 or glycerol reversibly contracted in the presence of ATP. Noradrenaline caused slow relaxation of the freshly isolated tissue placed in artificial perilymph. We suggest that slow motility of the contractile tissue may adjust passive cochlear mechanics to sounds of high intensities.
Collapse
Affiliation(s)
- Olga Ganeshina
- Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences, St Petersburg 194223, Russia.
| | | |
Collapse
|
27
|
Abstract
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
Collapse
Affiliation(s)
- Yehoash Raphael
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Rm 9303, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0648, USA.
| | | |
Collapse
|
28
|
Imamura SI, Adams JC. Changes in cytochemistry of sensory and nonsensory cells in gentamicin-treated cochleas. J Assoc Res Otolaryngol 2003; 4:196-218. [PMID: 12943373 PMCID: PMC3202711 DOI: 10.1007/s10162-002-2037-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Effects of a single local dose of gentamicin upon sensory and nonsensory cells throughout the cochlea were assessed by changes in immunostaining patterns for a broad array of functionally important proteins. Cytochemical changes in hair cells, spiral ganglion cells, and cells of the stria vascularis, spiral ligament, and spiral limbus were found beginning 4 days post administration. The extent of changes in immunostaining varied with survival time and with cell type and was not always commensurate with the degree to which individual cell types accumulated gentamicin. Outer hair cells, types I and II fibrocytes of the spiral ligament, and fibrocytes in the spiral limbus showed marked decreases in immunostaining for a number of constituents. In contrast, inner hair cells, type III fibrocytes and root cells of the spiral ligament, cells of the stria vascularis, and interdental cells in the spiral limbus showed less dramatic decreases, and in some cases they showed increases in immunostaining. Results indicate that, in addition to damaging sensory cells, local application of gentamicin results in widespread and disparate disruptions of a variety of cochlear cell types. Only in the case of ganglion cells was it apparent that the changes in nonsensory cells were secondary to loss or damage of hair cells. These results indicate that malfunction of the ear following gentamicin treatment is widespread and far more complex than simple loss of sensory elements. The results have implications for efforts directed toward detecting, preventing, and treating toxic effects of aminoglycosides upon the inner ear.
Collapse
Affiliation(s)
- Shun-ichi Imamura
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Joe C. Adams
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| |
Collapse
|
29
|
Lin MJ, Su MC, Tan CT, Su CC, Li SY, Lin RH, Lin-Shiau SY, Hung CC, Lee SY. The effect of L-arginine on slow motility of mammalian outer hair cell. Hear Res 2003; 178:52-8. [PMID: 12684177 DOI: 10.1016/s0378-5955(03)00030-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of L-arginine on the slow motility of mammalian cochlear outer hair cells was studied in this experiment. L-Arginine (3 mM) but not D-arginine (3 mM) or other amino acids (L-aspartate or L-glutamate) induced length increases of guinea pig outer hair cell. Similarly, the membrane-permeant cGMP analogues, 8-(4-chlorophenylthio)guanosine 3':5'-cyclic monophosphate (1 mM) or 8-bromo-guanosine 3':5'-cyclic monophosphate (1 mM) induced length increases of guinea pig outer hair cells. These length increases induced by L-arginine can be attenuated by a 30 min preincubation of the cells with the nitric oxide synthase inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride (3 mM) or 7-nitroindazole (1 mM). Comparing the effects of L-arginine and ionomycin on cell length and intracellular calcium change in outer hair cells, both L-arginine and ionomycin were able to induce the elongation of outer hair cells but L-arginine did not change the fluorescence intensity of Fluo-3. Preincubation of the cells with EGTA (3 mM) for 40 min to reduce the extracellular calcium concentration did not influence the effect of L-arginine. This experiment demonstrated that nitric oxide/cGMP pathway involvement in regulating the slow motility of mammalian outer hair cells cannot be ruled out. The effect of L-arginine is independent of extracellular calcium concentration.
Collapse
Affiliation(s)
- Min-Jon Lin
- Department of Life Sciences, Chung Shan Medical University, Taichung City, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Morimoto N, Raphael RM, Nygren A, Brownell WE. Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall. Am J Physiol Cell Physiol 2002; 282:C1076-86. [PMID: 11940523 DOI: 10.1152/ajpcell.00210.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.
Collapse
Affiliation(s)
- Noriko Morimoto
- Department of Otorhinolaryngology and Communicative Science, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Heat shock protein-27 (Hsp27) is known to function as both a stress-inducible molecular chaperone and regulator of actin polymerization. For many cells in the cochlea, actin is part of the cytoskeleton and plays an important role in the maintenance of cochlear function. To understand the molecular processes by which the cochlear actin cytoskeleton is maintained and regulated during normal auditory function, we examined the expression and localization of Hsp27 in the normal rat cochlea. Reverse transcription-polymerase chain reaction and Western blot showed constitutive expression of Hsp27 in the normal rat cochlea. Immunofluorescence microscopy showed Hsp27-like staining is localized to the cuticular plate and lateral wall of outer hair cells. Hsp27-like immunostaining is also found in tension fibroblasts, in the root cells of the spiral limbus and in Reissner's membrane. The presence of Hsp27 in the actin-rich tension fibroblasts and outer hair cells suggests a potential role in the regulation and maintenance of the actin cytoskeleton in these cells. The presence of high levels of constitutive Hsp27 may also provide a mechanism for pre-protecting these cells against environmental stressors.
Collapse
Affiliation(s)
- Elena V Leonova
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506, USA
| | | | | | | |
Collapse
|
32
|
Maruyama J, Kobayashi T, Sugimoto A, Gyo K. Effects of lidocaine on basilar membrane vibration in the guinea pig. Acta Otolaryngol 2001; 121:803-7. [PMID: 11718242 DOI: 10.1080/00016480152602230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The effects of lidocaine on basilar membrane (BM) vibration and compound action potential (CAP) were studied in guinea pigs in order to elucidate the site of lidocaine action in the cochlea. BM vibration was measured with a laser Doppler vibrometer through an opening made in the lateral bony wall of the scala tympani at the basal turn. Ten min after local administration of lidocaine (250 microg) into the scala tympani, the velocity of BM vibration and the CAP amplitude decreased significantly at around the characteristic frequency of the stimulus sound (p < 0.05). The maximum decreases were 4 dB in the velocity of the BM vibration and 40 dB in the CAP amplitude. In contrast, such changes were not observed after i.v. injection of lidocaine (1.5 mg/kg). These results suggest that when lidocaine is administered locally in the cochlea it acts not only on the cochlear nerve but also on the outer hair cells.
Collapse
Affiliation(s)
- J Maruyama
- Department of Otolaryngology, Ehime University School of Medicine, Onsen-gun, Japan.
| | | | | | | |
Collapse
|
33
|
Tan CT, Lee SY, Yao CJ, Liu SH, Lin-Shiau SY. Effects of gentamicin and pH on [Ca2+]i in apical and basal outer hair cells from guinea pigs. Hear Res 2001; 154:81-7. [PMID: 11423218 DOI: 10.1016/s0378-5955(01)00222-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aminoglycosides are widely used antibiotics and frequently produce acute ototoxicity. In this study we attempted to comparatively investigate the effects of gentamicin on Ca2+ influx of apical and basal outer hair cells (OHCs) isolated from guinea-pig cochlea. Since the solution of gentamicin sulfate salt is acidic (pH 3.1-3.3), we also explored the effect of external acidification on Ca2+ influx. By means of fura-2 microspectrofluorimetry, we measured the intracellular calcium concentration ([Ca2+]i) of OHCs bathed in Hanks' balanced salt solution (pH 7.40) during either a resting state or high K+-induced depolarization. Our results show that at the resting state, the baseline [Ca2+]i in apical OHCs (94+/-2.0 nM) was slightly lower than that in basal OHCs (101.1+/-2.4 nM). By contrast, the increase in [Ca2+]i evoked by high K+ depolarization in apical OHCs was about two-fold greater than that in basal OHCs. Nifedipine (30 microM) abolished the increased [Ca2+]i in both types of OHCs, suggesting that Ca2+ influx was mainly through L-type Ca2+ channels of OHCs. While gentamicin and extracellular acidification (pH 7.14) can separately attenuate this increase in [Ca2+]i in both types of OHCs, their suppressive effects are additive in basal OHCs, but not in apical OHCs. The implications of these findings are that: (1) apical and basal OHCs behave differently in response to depolarization-increased [Ca2+]i, and (2) basal OHCs are more vulnerable to the impairment of Ca2+ entry during depolarization by a combination of gentamicin and extracellular acidification, which is correlated with the clinical observation that ototoxicity of aminoglycosides at the basal coil of OHCs is more severe than that at the apical coils. Moreover, the possibility that extracellular acidification may enhance the acute ototoxic effects of aminoglycosides should be considered especially in topical applications.
Collapse
Affiliation(s)
- C T Tan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
34
|
Santos-Sacchi J, Shen W, Zheng J, Dallos P. Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol 2001; 531:661-6. [PMID: 11251048 PMCID: PMC2278494 DOI: 10.1111/j.1469-7793.2001.0661h.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Under whole-cell voltage clamp, the effects of initial voltage conditions and membrane tension on gating charge and voltage-dependent capacitance were studied in human embryonic kidney cells (TSA201 cell line) transiently transfected with the gene encoding the gerbil protein prestin. Conformational changes in this membrane-bound protein probably provide the molecular basis of the outer hair cell (OHC) voltage-driven mechanical activity, which spans the audio spectrum. 2. Boltzmann characteristics of the charge movement in transfected cells were similar to those reported for OHCs (Q(max) = 0.99 +/- 0.16 pC, z = 0.88 +/- 0.02; n = 5, means +/- S.E.M.). Unlike that of the adult OHC, the voltage at peak capacitance (V(pkcm)) was very negative (-74.7 +/- 3.8 mV). Linear capacitance in transfected cells was 43.7 +/- 13.8 pF and membrane resistance was 458 +/- 123 Mohms. 3. Voltage steps from the holding potential preceding the measurement of capacitance-voltage functions caused a time- and voltage-dependent shift in V(pkcm). For a prepulse to -150 mV, from a holding potential of 0 mV, V(pkcm) shifted 6.4 mV, and was fitted by a single exponential time constant of 45 ms. A higher resolution analysis of this time course was made by measuring the change in capacitance during a fixed voltage step and indicated a double exponential shift (tau(0) = 51.6 ms, tau(1) = 8.5 s) similar to that of the native gerbil OHC. 4. Membrane tension, delivered by increasing pipette pressure, caused a positive shift in V(pkcm). A maximal shift of 7.5 mV was obtained with 2 kPa of pressure. The effect was reversible. 5. Our results show that the sensitivity of prestin to initial voltage and membrane tension, though present, is less than that observed in adult OHCs. It remains possible that some other interacting molecular species within the lateral plasma membrane of the native OHC amplifies the effect of tension and prior voltage on prestin's activity.
Collapse
Affiliation(s)
- J Santos-Sacchi
- Sections of Otolaryngology and Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Localization of calmodulin, a calcium binding protein, was identified in adult gerbil cochleas using paraffin section immunohistochemistry and immunogold electron microscopy with monoclonal antibody against bovine calmodulin. Immunoreactive calmodulin was abundant in inner hair cells (IHCs), outer hair cells (OHCs) and Boettcher cells of the cochleas. Other cell types containing calmodulin were marginal cells and basal cells of the stria vascularis, fibrocytes in the spiral ligament, spiral ganglion neurons and vascular smooth muscle cells. Immunogold labeling for calmodulin was observed in cuticular plate, stereocilia, and within cytoplasm of IHCs and OHCs. In OHCs the labeling was mostly observed in the region underlying lateral wall corresponding to subsurface cisterna. In IHCs the staining was diffuse in the cytoplasm and denser than that in OHCs. Boettcher cells showed dense staining along the microvillous projections facing to the intercellular spaces between Boettcher cells and Claudius cells and between the neighboring Boettcher cells. These distributions of calmodulin in the hair cells consist with the assumption that IHCs act as a true neurotransducer and OHCs as an active bi-directional mechanotransducer. The rich presence of calmodulin in Boettcher cells suggests that the cells may involve in mediating Ca(2+) regulation and play a distinctive active role in ion transport.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Calcium/metabolism
- Calmodulin/immunology
- Calmodulin/metabolism
- Cattle
- Cochlea/metabolism
- Cochlea/ultrastructure
- Gerbillinae
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- Microscopy, Immunoelectron
- Spiral Ganglion/metabolism
- Spiral Ganglion/ultrastructure
- Stria Vascularis/metabolism
- Stria Vascularis/ultrastructure
Collapse
Affiliation(s)
- K Nakazawa
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Japan.
| |
Collapse
|
36
|
Kalinec F, Zhang M, Urrutia R, Kalinec G. Rho GTPases mediate the regulation of cochlear outer hair cell motility by acetylcholine. J Biol Chem 2000; 275:28000-5. [PMID: 10862776 DOI: 10.1074/jbc.m004917200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.
Collapse
Affiliation(s)
- F Kalinec
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057, USA.
| | | | | | | |
Collapse
|
37
|
Kumagami H, Beitz E, Wild K, Zenner HP, Ruppersberg JP, Schultz JE. Expression pattern of adenylyl cyclase isoforms in the inner ear of the rat by RT-PCR and immunochemical localization of calcineurin in the organ of Corti. Hear Res 1999; 132:69-75. [PMID: 10392549 DOI: 10.1016/s0378-5955(99)00035-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most studies concerning adenylyl cyclases in the inner ear were carried out before the advent of molecular biology. In a PCR approach using cDNAs of six inner ear tissues (stria vascularis, endolymphatic sac, organ of Corti, vestibulum, cochlear and vestibular nerve) we found tissue specific expression of adenylyl cyclase isoforms. Adenylyl cyclases types 2 and 4 are predominant in the fluid controlling tissues, i.e. in the stria vascularis and endolymphatic sac. In the organ of Corti and vestibulum the Ca2+-modulated isoforms types 1, 6 and 9 were expressed. The regulation of adenylyl cyclase 9, which is the major isoform expressed in the organ of Corti, proceeds via the Ca2+-activated protein phosphatase 2B (calcineurin, PPP3). PCR with specific primers for calcineurin demonstrated its abundant expression in the organ of Corti. Using a monoclonal antibody we localized calcineurin immunochemically to the cochlear nerve, the nerve fibers and the inner hair cells. In the cochlear and vestibular nerves a characteristic neuronal expression pattern of adenylyl cyclase isoforms was observed, i.e. adenylyl cyclases types 2, 3 and 8. The functional consequences of the adenylyl cyclase expression pattern in the inner ear are discussed in conjunction with its unique sensory performance.
Collapse
Affiliation(s)
- H Kumagami
- Department of Otorhinolaryngology, University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Leonova EV, Raphael Y. Application of a platinum replica method to the study of the cytoskeleton of isolated hair cells, supporting cells and whole mounts of the organ of Corti. Hear Res 1999; 130:137-54. [PMID: 10320105 DOI: 10.1016/s0378-5955(99)00004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We adapted a method of platinum replica to study the cytoskeleton of isolated cells of the guinea pig organ of Corti. This technique combined high image resolution with the ability to visualize the three-dimensional organization of the cytoskeleton of a whole cell. The procedure includes: isolation of hair cells and supporting cells using collagenase digestion, attachment of the cells to a coverslip, detergent extraction, chemical fixation, critical point drying, platinum/carbon coating, and transmission electron microscopy analysis. By using the method of platinum replica, we confirmed the existence of structural domains in the cortical lattice of outer hair cells. Based on the analysis of the partly destroyed cortical lattice, we propose that circumferential filaments are underlined with a thin flexible network. In addition, we established that the base of each stereocilium had a cone-like expansion of actin filaments and was surrounded by a thin bundle of filaments. We also produced replicas of the protrusion of the cuticular plate into the cytoplasm (infracuticular network) and the reticular lamina cytoskeleton. Our data indicated that the platinum replica method is useful for studying structural interactions among different cytoskeletal elements in the reticular lamina, as well as the cortex of outer hair cells and the cytoskeleton of supporting cells.
Collapse
Affiliation(s)
- E V Leonova
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor 48109-0506, USA.
| | | |
Collapse
|
39
|
Koyama M, Spicer SS, Schulte BA. Immunohistochemical localization of Ca2+/Calmodulin-dependent protein kinase IV in outer hair cells. J Histochem Cytochem 1999; 47:7-12. [PMID: 9857208 DOI: 10.1177/002215549904700102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A smooth membrane system consisting of subsurface cisternae (SSC) underlies the lateral plasmalemma of auditory outer hair cells (OHCs). The SSC contain Ca-ATPase and are regarded as an intracellular Ca2+ reservoir like the sarcoplasmic reticulum of myocytes. Recently, it has been demonstrated that Ca-ATPase activity in sarcoplasmic reticulum is regulated by Ca2+/calmodulin-dependent protein kinases (CaM kinases). Here we investigated the presence of CaM kinases in OHCs and their possible association with the SSC. Inner ears collected from adult gerbils and from neonates at 2-day intervals between 0 and 20 days after birth were immunostained with antibodies specific for different CaM kinases. A polyclonal antiserum against CaM kinase IV yielded a strong immunostaining reaction along the lateral wall of OHCs. The staining appeared after the tenth postnatal day and continued into adulthood. No other site in the inner ear, including cochlear inner hair cells and vestibular hair cells, was reactive. The kinase's apparent association with the SSC strongly supports its involvement in intracellular Ca2+ homeostasis and suggests a role in regulating the OHCs' slow motile responses.
Collapse
Affiliation(s)
- M Koyama
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
40
|
Fridberger A, Flock A, Ulfendahl M, Flock B. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 1998; 95:7127-32. [PMID: 9618550 PMCID: PMC22763 DOI: 10.1073/pnas.95.12.7127] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 microm (SE 2 microm). Partial or complete recovery was seen within 30-45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.
Collapse
Affiliation(s)
- A Fridberger
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
41
|
Abstract
Outer hair cell (OHC) electromotility appears to be central to mammalian hearing and originates within its lateral wall. The OHC lateral wall is a unique trilaminate structure consisting of the plasma membrane (PM), the cortical lattice (CL), and the subsurface cisternae (SSC). We selectively labeled and imaged the lateral wall components in the isolated guinea pig OHC under confocal microscopy. The PM was labeled with a voltage-sensitive dye, di-8-ANEPPS; the SSC was labeled with the sphingomyelin precursor, NBD-C6-ceramide; and F-actin in the CL was labeled with conjugates of phalloidin. Interactions among the three layers were evaluated with the micropipette aspiration technique. The PM was tethered to the CL and SSC until, at a critical deformation pressure, the PM separated, allowing visualization of the extracisternal space, and ultimately formed a vesicle. After detaching, the stiffness parameter of the PM was 22% of that of the intact lateral wall. We conclude that the lateral wall PM is more compliant than the CL/SSC complex. The data clarify the structural basis for electromotile force coupling in the OHC lateral wall.
Collapse
|
42
|
Coling DE, Bartolami S, Rhee D, Neelands T. Inhibition of calcium-dependent motility of cochlear outer hair cells by the protein kinase inhibitor, ML-9. Hear Res 1998; 115:175-83. [PMID: 9472746 DOI: 10.1016/s0378-5955(97)00194-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calcium ionophore ionomycin has been shown to induce length increases of guinea pig outer hair cells (Dulon et al., 1990). We have demonstrated that these length increases can be inhibited by a 30 min preincubation of the cells with the protein kinase inhibitor ML-9. At either 30 or 60 s after ionomycin application, the effect of ML-9 was dose-dependent with a half maximal response at approximately 0.3 microM. No effect on cell length was detected after 30 min incubation with 0.5 and 5 microM ML-9 alone. However, with 50 and 500 microM ML-9, significant contraction in cell length was observed. 50 microM ML-9 did not interfere with the ability of ionomycin to elevate fluorescence of the calcium indicator Fluo-3, nor did it alter the ability of cells to exclude propidium iodide from their nuclei. Treatment with 500 microM ML-9 resulted in impaired cell morphology. The data support the hypothesis that protein kinase activity regulates calcium-dependent processes that affect shape changes of outer hair cells. They are consistent with the involvement of the calcium/calmodulin-dependent enzyme, myosin light chain kinase, a known target of ML-9, but do not preclude the possibility of another intracellular target for ML-9.
Collapse
Affiliation(s)
- D E Coling
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506, USA.
| | | | | | | |
Collapse
|
43
|
Flock A, Scarfone E, Ulfendahl M. Vital staining of the hearing organ: Visualization of cellular structure with confocal microscopy. Neuroscience 1998; 83:215-28. [PMID: 9466411 DOI: 10.1016/s0306-4522(97)00335-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells inside the intact organ of Corti were labelled with fluorescent probes reflecting various aspects of structure and function. The dyes were introduced into the perilymphatic space by perfusion of the scala tympani of the temporal bone from the guinea-pig maintained in isolation. The dyes were able to diffuse through the basilar membrane and into the organ of Corti where they were spontaneously absorbed by the sensory and supporting cells. Confocal microscopic observation was made through an opening in the apex of the cochlea. A number of different dyes were used; a carbocyanine dye which stains mitochondria; two styryl dyes which are absorbed by the cell membranes and calcein, a cytoplasmic marker that fluoresces in vital cells. Extracellular space was stained by a cell-impermeant Dextran fluorescein. The most striking finding was that the membrane dyes preferentially stained the sensory cells and neural elements whereas the staining of the supporting cells was faint. The cytoplasmic dye in general stained sensory and supporting cells to the same extent. By tilting the organ, a view could be obtained from the side like a radial section through the organ. Outer and inner hair cells with their sensory hairs, nerve fibres and nerve endings, especially under the inner hair cells, could be seen in profile. Introduction of a high molecular weight Dextran into the endolymphatic space outlined the tectorial membrane which was seen in negative contrast. The simultaneous perfusion with a membrane dye stained the hair cells and their sensory hairs. Merging of the two images gave the possibility to examine, in the living tissue, the cilia to tectorial membrane relationship. Of general interest is the finding that the membrane dyes preferentially stained the sensory and neural elements of the nervous system, represented here by the hair cells and nerve fibres of the inner ear.
Collapse
Affiliation(s)
- A Flock
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Adachi M, Iwasa KH. Effect of diamide on force generation and axial stiffness of the cochlear outer hair cell. Biophys J 1997; 73:2809-18. [PMID: 9370475 PMCID: PMC1181183 DOI: 10.1016/s0006-3495(97)78310-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We found that diamide, which affects spectrin, reduces the axial stiffness of the cochlear outer hair cell, the cylindrically shaped mechanoreceptor cell with a unique voltage-sensitive motility. This effect thus provides a means of examining the relationship between the stiffness and the motility of the cell. For measuring axial stiffness and force production, we used an experimental configuration in which an elastic probe was attached to the cell near the cuticular plate and the other end of the cell was held with a patch pipette in the whole-cell recording mode. Diamide at concentrations of up to 5 mM reduced the axial stiffness in a dose-dependent manner to 165 nN per unit strain from 502 nN for untreated cells. The isometric force elicited by voltage pulses under whole-cell voltage clamp was also reduced to 35 pN/mV from 105 pN/mV for untreated cells. Thus the isometric force was approximately proportional to the axial stiffness. Our observations suggest a series connection between the motor and cytoskeletal elements and can be explained by the area motor model previously proposed for the outer hair cell.
Collapse
Affiliation(s)
- M Adachi
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892-0922, USA
| | | |
Collapse
|
45
|
Heinrich UR, Maurer J, Gosepath K, Mann W. Electron microscopic localization of nitric oxide I synthase in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol 1997; 254:396-400. [PMID: 9332897 DOI: 10.1007/bf01642558] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitric oxide synthase (NOS) activity has been detected previously in the mammalian cochlea at a light microscopic level. Here we present results of electron microscopic analysis for post-embedding immunoreactivity of neural-type NOS I in the cochlea of the guinea pig. Strong enzyme immunoreactivity was identified in the cytoplasm of inner and outer hair cells. Gold-labeled NOS I antibodies were mainly located in electron-dense areas of the cytoplasm, whereas electron-lucent regions of the receptor cells were nearly free from any immunoreactivity. In both types of hair cells anti-NOS I antibodies were also visible in the cuticular plates, hair bundles and nuclei. Further ultrastructural analysis revealed that the submembranous cisternae of the outer hair cells were nearly free from any reaction product, demonstrating that the whole cytoplasm of this hair cell was not immunoreactive. Other NOS I immunoreactivity was identified in the cuticular plates of the inner and outer pillar cells and in the cytoskeletal elements located in the apical parts of Deiter cells, forming the lamina reticularis or in cytoskeletal-containing regions in basal Deiter cells. Anti-NOS antibodies were visible in the nuclei of various cell types. Our findings suggest that nitric oxide produced by NO I synthase in the organ of Corti may act as a modulator of hair cell physiology during the processes of signal transduction with frequency selectivity.
Collapse
|
46
|
Liu Y, Rao D, Fechter LD. Correspondence between middle frequency auditory loss in vivo and outer hair cell shortening in vitro. Hear Res 1997; 112:134-40. [PMID: 9367235 DOI: 10.1016/s0378-5955(97)00110-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aromatic hydrocarbon, toluene, has been reported to disrupt auditory system function both in occupational epidemiological and in laboratory animal investigations. This agent, along with several other organic solvents, impairs hearing preferentially at middle frequencies - a finding that distinguishes these agents from the traditional high frequency impairment observed with ototoxic drugs such as aminoglycoside antibiotics and cisplatin. Prior investigations performed in vivo have identified the outer hair cell as a probable target for toluene exposure. The purpose of this investigation was to determine directly whether outer hair cells isolated from the guinea pig cochlea show morphological alterations consistent with the toxic response seen in physiological studies with toluene exposure. The effect of toluene superfusion on outer hair cell shortening was assessed for cells harvested from different locations within the cochlea. Control studies included assessment of cell shortening among outer hair cells exposed to trimethyltin and cells exposed to benzene. Trimethyltin disrupts high frequency hearing preferentially and benzene does not produce hearing loss in vivo. Toluene at a concentration of 100 microM produced a marked shortening of outer hair cells although the effect was significantly greater among cells isolated from the apical half of the cochlea than from the basal half of the cochlea. By contrast, trimethyltin at the same concentration produced a preferential shortening among outer hair cells from the base of the cochlea. Benzene (100 microM) did not disrupt outer hair cell length of cells harvested from the apex. The results indicate that intrinsic features of outer hair cells contribute significantly to the site of ototoxic impairment observed in vivo for toluene.
Collapse
Affiliation(s)
- Y Liu
- Toxicology Program, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | |
Collapse
|
47
|
Abstract
Recent findings in auditory research have significantly changed our views of the processes involved in hearing. Novel techniques and new approaches to investigate the mammalian cochlea have expanded our knowledge about the mechanical events occurring at physiologically relevant stimulus intensities. Experiments performed in the apical, low-frequency regions demonstrate that although there is a change in the mechanical responses along the cochlea, the fundamental characteristics are similar across the frequency range. The mechanical responses to sound stimulation exhibit tuning properties comparable to those measured intracellularly or from nerve fibres. Non-linearities in the mechanical responses have now clearly been observed at all cochlear locations. The mechanics of the cochlea are vulnerable, and dramatic changes are seen especially when the sensory hair cells are affected, for example, following acoustic overstimulation or exposure to ototoxic compounds such as furosemide. The results suggest that there is a sharply tuned and vulnerable response related to the hair cells, superimposed on a more robust, broadly tuned response. Studies of the micromechanical behaviour down to the cellular level have demonstrated significant differences radially across the hearing organ and have provided new information on the important mechanical interactions with the tectorial membrane. There is now ample evidence of reverse transduction in the auditory periphery, i.e. the cochlea does not only receive and detect mechanical stimuli but can itself produce mechanical motion. Hence, it has been shown that electrical stimulation elicits motion within the cochlea very similar to that evoked by sound. In addition, the presence of acoustically-evoked displacements of the hearing organ have now been demonstrated by several laboratories.
Collapse
Affiliation(s)
- M Ulfendahl
- King Gustav V Research Institute, Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|
48
|
Zine A, Schweitzer L. Localization of proteins associated with the outer hair cell plasma membrane in the gerbil cochlea. Neuroscience 1997; 80:1247-54. [PMID: 9284074 DOI: 10.1016/s0306-4522(97)00163-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is substantial evidence that the motility of mammalian outer hair cells is generated close to or within the plasma membrane. Several analogies between the outer hair cell cortical lattice and the membrane-related cytoskeleton of erythrocytes have been noted. In erythrocytes a member of the anion exchanger protein family, AE1, also known as Band 3, is involved in membrane-cytoskeleton linkage via Protein 4.1. In the following paper, the presence of these two proteins in gerbilline outer hair cells is confirmed by western blot. Furthermore, co-localization of these two proteins was detected in the lateral wall of outer hair cells by immunofluorescence and postembedding electron immunohistochemistry. Band 3 is restricted to this region, whereas Protein 4.1 has a somewhat more dispersed distribution. Thus, the structure of these sensory receptor cells may result from an adaptation of a strategy used by other motile cells. The proteins investigated likely have a support function and may comprise "pillars" seen between the lateral plasma membrane and the cytoskeleton in micrographs of outer hair cells. The possibility that Band 3 comprises "protein particles" seen in the lateral plasma membrane, or maybe directly involved in the voltage-dependent force generation in outer hair cells, is also discussed.
Collapse
Affiliation(s)
- A Zine
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Kentucky, U.S.A
| | | |
Collapse
|
49
|
Gil-Loyzaga P. Histochemistry of glycoconjugates of the auditory receptor-functional implications. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1997; 32:1-80. [PMID: 9304696 DOI: 10.1016/s0079-6336(97)80008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Gil-Loyzaga
- Center for Cell Culture, Faculty of Medicine, Complutense University of Madrid, Spain
| |
Collapse
|
50
|
Hu BH, Henderson D. Changes in F-actin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure. Hear Res 1997; 110:209-18. [PMID: 9282903 DOI: 10.1016/s0378-5955(97)00075-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been found that 'conditioning' noise exposures can render the inner ear more resistant to traumatic noise exposures. To explore the possible mechanisms underlying this phenomenon, filamentous actin (F-actin), labeled by rhodamine-phalloidin, was examined in the chinchilla cochlea using confocal fluorescence microscopy. The conditioning noise was 0.5 kHz octave band noise (OBN) at 90 dB SPL for 6 h/day and the high-level noise was the same noise but at 105 dB SPL for 4 h. A variety of pathological changes were found in the chinchilla cochlea after exposure to noise. Subjects exposed to conditioning noise (1 day or 10 days) and only high-level noise showed an increase in F-actin labeling than unexposed controls. By contrast, subjects who had 5 days quiet after the 10-day conditioning exposure exhibited a decrease in F-actin labeling. Interestingly, subjects exposed to high-level noise with prior 10-day conditioning exposure also showed a decrease in F-actin labeling in the cuticular plate and the stereocilia. The F-actin decreases in the stereocilia and the cuticular plates may decrease the mechanical rigidity of the organ of Corti. A more pliable organ of Corti may have reduced the possibility of fracture or ripping of cell junctions during the motion of the basilar membrane induced by acoustic overstimulation.
Collapse
Affiliation(s)
- B H Hu
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|