1
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Esmat M, Abdel-Aal AA, Shalaby MA, Badawi M, Elaskary H, Yousif AB, Fahmy MEA. Efficacy of clofazimine and nitazoxanide combination in treating intestinal cryptosporidiosis and enhancing intestinal cellular regeneration in immunocompromised mice. Food Waterborne Parasitol 2022; 27:e00161. [PMID: 35601881 PMCID: PMC9118138 DOI: 10.1016/j.fawpar.2022.e00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidium is a widely distributed food and water-borne enteric protozoan that affects a wide range of vertebrates, resulting in life-threatening consequences, particularly in immunocompromised hosts. The lack of effective anti-cryptosporidial drugs may be related to the parasite's unique intestinal location, plus the lack of studies on the process by which the protozoan is able to impair intestinal cellular function. The present work aimed to assess the effect of clofazimine (CFZ), an FDA-approved drug for the treatment of leprosy, as an anti-cryptosporidial drug, using transmission electron microscopy (TEM) and an immunocompromised mouse model. The affected intestinal mucosa with parasitic stages in the infected non-treated group showed signs of severe cellular degeneration, including the loss of tight junctions, deformed and damaged microvilli and irregularly distributed nuclei with a severely vacuolated cytoplasm. Comparatively, nitazoxanide (NTZ) monotherapy showed the lowest efficacy as the drug was associated with the lowest rate of oocyst shedding. In addition, NTZ treatment failed to achieve the return of complete cellular function; abnormalities were evident in the microvilli, cytoplasmic organelles and nuclear features. Clofazimine demonstrated an improvement of the mucosal cellular components, including mitochondria and significantly reduced oocyst shedding. Combined treatment with low-dose CFZ and half-dose NTZ resulted in a significant improvement in the enterocyte cellular structures with an absence of intracellular parasitic stages. These results indicate that CFZ, a safe and readily prescribed drug, effectively reduces cryptosporidiosis when used in combination with only half the dose of NTZ. Used in combination, these drugs were shown to be efficient in regaining intestinal cellular activity following Cryptosporidium-induced functional damage in an immunocompromised mouse model.
Collapse
Affiliation(s)
- Marwa Esmat
- Department of Medical Parasitology, Faculty of Medicine, Misr University for Science and Technology, 6th October city, Egypt
| | - Amany A. Abdel-Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt
- Department of Postgraduate Studies & Scientific Research, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Maisa A. Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Manal Badawi
- Department of Pathology, National Research center, Giza, Egypt
| | - Hala Elaskary
- Depatment of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed Badawi Yousif
- Department of Medical Parasitology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | | |
Collapse
|
3
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
4
|
Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa. Microorganisms 2021; 9:microorganisms9071430. [PMID: 34361866 PMCID: PMC8303630 DOI: 10.3390/microorganisms9071430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Apicomplexa are unicellular eukaryotes that parasitise a wide spectrum of invertebrates and vertebrates, including humans. In their hosts, they occupy a variety of niches, from extracellular cavities (intestine, coelom) to epicellular and intracellular locations, depending on the species and/or developmental stages. During their evolution, Apicomplexa thus developed an exceptionally wide range of unique features to reach these diversified parasitic niches and to survive there, at least long enough to ensure their own transmission or that of their progeny. This review summarises the current state of knowledge on the attachment/invasive and nutrient uptake strategies displayed by apicomplexan parasites, focusing on trophozoite stages of their so far poorly studied basal representatives, which mostly parasitise invertebrate hosts. We describe their most important morphofunctional features, and where applicable, discuss existing major similarities and/or differences in the corresponding mechanisms, incomparably better described at the molecular level in the more advanced Apicomplexa species, of medical and veterinary significance, which mainly occupy intracellular niches in vertebrate hosts.
Collapse
|
5
|
Yu X, Guo F, Mouneimne RB, Zhu G. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion. J Infect Dis 2021; 221:1816-1825. [PMID: 31872225 DOI: 10.1093/infdis/jiz684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cryptosporidium is a genus of apicomplexan parasites, the causative agents of cryptosporidiosis in humans and/or animals. Although most apicomplexans parasitize within the host cell cytosols, Cryptosporidium resides on top of host cells, but it is embraced by a double-layer parasitophorous vacuole membrane derived from host cell. There is an electron-dense band to separate the parasite from host cell cytoplasm, making it as an intracellular but extracytoplasmic parasite. However, little is known on the molecular machinery at the host cell-parasite interface. METHODS Cryptosporidium parvum at various developmental stages were obtained by infecting HCT-8 cells cultured in vitro. Immunofluorescence assay was used to detect CpEF1α with a polyclonal antibody and host cell F-actin with rhodamine-phalloidin. Recombinant CpEF1α protein was used to evaluate its effect on the invasion by the parasite. RESULTS We discovered that a C parvum translation elongation factor 1α (CpEF1α) was discharged from the invading sporozoites into host cells, forming a crescent-shaped patch that fully resembles the electron-dense band. At the same time, host cell F-actin aggregated to form a globular-shaped plug beneath the CpEF1α patch. The CpEF1α patch remained for most of the time but became weakened and dissolved upon the completion of the invasion process. In addition, recombinant CpEF1α protein could effectively interfere the invasion of sporozoites into host cells. CONCLUSIONS CpEF1α plays a role in the parasite invasion by participating in the formation of electron-dense band at the base of the parasite infection site.
Collapse
Affiliation(s)
- Xue Yu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rola Barhoumi Mouneimne
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
O’Shaughnessy WJ, Hu X, Beraki T, McDougal M, Reese ML. Loss of a conserved MAPK causes catastrophic failure in assembly of a specialized cilium-like structure in Toxoplasma gondii. Mol Biol Cell 2020; 31:881-888. [PMID: 32073987 PMCID: PMC7185968 DOI: 10.1091/mbc.e19-11-0607] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are important organizing centers that control diverse cellular processes. Apicomplexan parasites like Toxoplasma gondii have a specialized cilium-like structure called the conoid that organizes the secretory and invasion machinery critical for the parasites' lifestyle. The proteins that initiate the biogenesis of this structure are largely unknown. We identified the Toxoplasma orthologue of the conserved kinase ERK7 as essential to conoid assembly. Parasites in which ERK7 has been depleted lose their conoids late during maturation and are immotile and thus unable to invade new host cells. This is the most severe phenotype to conoid biogenesis yet reported, and is made more striking by the fact that ERK7 is not a conoid protein, as it localizes just basal to the structure. ERK7 has been recently implicated in ciliogenesis in metazoan cells, and our data suggest that this kinase has an ancient and central role in regulating ciliogenesis throughout Eukaryota.
Collapse
Affiliation(s)
| | - Xiaoyu Hu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Tsebaot Beraki
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Matthew McDougal
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Michael L. Reese
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
7
|
Jenwithisuk R, Kangwanrangsan N, Tachibana M, Thongkukiatkul A, Otsuki H, Sattabongkot J, Tsuboi T, Torii M, Ishino T. Identification of a PH domain-containing protein which is localized to crystalloid bodies of Plasmodium ookinetes. Malar J 2018; 17:466. [PMID: 30545367 PMCID: PMC6291999 DOI: 10.1186/s12936-018-2617-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background For the success of the malaria control and eradication programme it is essential to reduce parasite transmission by mosquito vectors. In the midguts of mosquitoes fed with parasite-infected blood, sexual-stage parasites fertilize to develop into motile ookinetes that traverse midgut epithelial cells and reside adjacent the basal lamina. Therefore, the ookinete is a promising target of transmission-blocking vaccines to break the parasite lifecycle in mosquito vectors. However, the molecular mechanisms of ookinete formation and invasion of epithelial cells have not been fully elucidated. A unique structure called the crystalloid body has been identified in the ookinete cytoplasm by electron microscopy, but its biological functions remain unclear. Methods A recombinant protein of a novel molecule, designated as crystalloid body specific PH domain-containing protein of Plasmodium yoelii (PyCryPH), was synthesized using a wheat germ cell-free system. Specific rabbit antibodies against PyCryPH were obtained to characterize the expression and localization of PyCryPH during sexual-stage parasite development. In addition, PyCryPH knockout parasites were generated by targeted gene disruption to examine PyCryPH function in mosquito-stage parasite development. Results Western blot and immunofluorescence assays using specific antibodies showed that PyCryPH is specifically expressed in zygotes and ookinetes. By immunoelectron microscopy it was demonstrated that PyCryPH is localized within crystalloid bodies. Parasites with a disrupted PyCryPH gene developed normally into ookinetes and formed oocysts on the basal lamina of midguts. In addition, the number of sporozoites residing in salivary glands was comparable to that of wild-type parasites. Conclusions CryPH, containing a signal peptide and PH domain, is predominantly expressed in zygotes and ookinetes and is localized to crystalloid bodies in P. yoelii. CryPH accumulates in vesicle-like structures prior to the appearance of typical crystalloid bodies. Unlike other known crystalloid body localized proteins, CryPH does not appear to have a multiple domain architecture characteristic of the LAP/CCp family proteins. Although CryPH is highly conserved among Plasmodium, Babesia, Theileria, and Cryptosporidium, PyCryPH is dispensable for the development of invasive ookinetes and sporozoites in mosquito bodies. Electronic supplementary material The online version of this article (10.1186/s12936-018-2617-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachaneeporn Jenwithisuk
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Amporn Thongkukiatkul
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Hitoshi Otsuki
- Division of Medical Zoology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
8
|
Melicherová J, Hofmannová L, Valigurová A. Response of cell lines to actual and simulated inoculation with Cryptosporidium proliferans. Eur J Protistol 2017; 62:101-121. [PMID: 29316479 DOI: 10.1016/j.ejop.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The need for an effective treatment against cryptosporidiosis has triggered studies in the search for a working in vitro model. The peculiar niche of cryptosporidia at the brush border of host epithelial cells has been the subject of extensive debates. Despite extensive research on the invasion process, it remains enigmatic whether cryptosporidian host-parasite interactions result from an active invasion process or through encapsulation. We used HCT-8 and HT-29 cell lines for in vitro cultivation of the gastric parasite Cryptosporidium proliferans strain TS03. Using electron and confocal laser scanning microscopy, observations were carried out 24, 48 and 72 h after inoculation with a mixture of C. proliferans oocysts and sporozoites. Free sporozoites and putative merozoites were observed apparently searching for an appropriate infection site. Advanced stages, corresponding to trophozoites and meronts/gamonts enveloped by parasitophorous sac, and emptied sacs were detected. As our observations showed that even unexcysted oocysts became enveloped by cultured cell projections, using polystyrene microspheres, we evaluated the response of cell lines to simulated inoculation with cryptosporidian oocysts to verify innate and parasite-induced behaviour. We found that cultured cell encapsulation of oocysts is induced by parasite antigens, independent of any active invasion/motility.
Collapse
Affiliation(s)
- Janka Melicherová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
9
|
Lin RQ, Lillehoj HS, Lee SK, Oh S, Panebra A, Lillehoj EP. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections. Vet Parasitol 2017; 243:79-84. [PMID: 28807316 DOI: 10.1016/j.vetpar.2017.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022]
Abstract
Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field.
Collapse
Affiliation(s)
- Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China; Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Seung Kyoo Lee
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sungtaek Oh
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alfredo Panebra
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
10
|
Singh RS, Walia AK, Kanwar JR. Protozoa lectins and their role in host–pathogen interactions. Biotechnol Adv 2016; 34:1018-1029. [DOI: 10.1016/j.biotechadv.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
|
11
|
Aldeyarbi HM, Karanis P. Electron microscopic observation of the early stages of Cryptosporidium parvum asexual multiplication and development in in vitro axenic culture. Eur J Protistol 2015; 52:36-44. [PMID: 26587578 DOI: 10.1016/j.ejop.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
The stages of Cryptosporidium parvum asexual exogenous development were investigated at high ultra-structural resolution in cell-free culture using transmission electron microscopy (TEM). Early C. parvum trophozoites were ovoid in shape, 1.07 × 1.47 μm(2) in size, and contained a large nucleus and adjacent Golgi complex. Dividing and mature meronts containing four to eight developing merozoites, 2.34 × 2.7 μm(2) in size, were observed within the first 24h of cultivation. An obvious peculiarity was found within the merozoite pellicle, as it was composed of the outer plasma membrane with underlying middle and inner membrane complexes. Further novel findings were vacuolization of the meront's residuum and extension of its outer pellicle, as parasitophorous vacuole-like membranes were also evident. The asexual reproduction of C. parvum was consistent with the developmental pattern of both eimerian coccidia and Arthrogregarinida (formerly Neogregarinida). The unique cell-free development of C. parvum described here, along with the establishment of meronts and merozoite formation, is the first such evidence obtained from in vitro cell-free culture at the ultrastructural level.
Collapse
Affiliation(s)
- Hebatalla M Aldeyarbi
- University of Cologne, Center for Anatomy, Institute I, Joseph-Stelzmann-Street 9, 50937 Cologne, Germany; Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Panagiotis Karanis
- University of Cologne, Medical School, Cologne, Germany; Thousand Talents Plan of the Chinese Government, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.
| |
Collapse
|
12
|
Dasgupta S, Auth T, Gov NS, Satchwell TJ, Hanssen E, Zuccala ES, Riglar DT, Toye AM, Betz T, Baum J, Gompper G. Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 2015; 107:43-54. [PMID: 24988340 PMCID: PMC4184798 DOI: 10.1016/j.bpj.2014.05.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/25/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022] Open
Abstract
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.
Collapse
Affiliation(s)
- Sabyasachi Dasgupta
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Thorsten Auth
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel; Centre de Recherche, Institut Curie, Paris, France
| | | | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth S Zuccala
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David T Riglar
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Timo Betz
- Centre de Recherche, Institut Curie, Paris, France
| | - Jake Baum
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
13
|
Valigurová A, Paskerova GG, Diakin A, Kováčiková M, Simdyanov TG. Protococcidian Eleutheroschizon duboscqi, an Unusual Apicomplexan Interconnecting Gregarines and Cryptosporidia. PLoS One 2015; 10:e0125063. [PMID: 25915503 PMCID: PMC4411025 DOI: 10.1371/journal.pone.0125063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
This study focused on the attachment strategy, cell structure and the host-parasite interactions of the protococcidian Eleutheroschizon duboscqi, parasitising the polychaete Scoloplos armiger. The attached trophozoites and gamonts of E. duboscqi were detected at different development stages. The parasite develops epicellularly, covered by a host cell-derived, two-membrane parasitophorous sac forming a caudal tipped appendage. Staining with Evans blue suggests that this tail is protein-rich, supported by the presence of a fibrous substance in this area. Despite the ultrastructural evidence for long filaments in the tail, it stained only weakly for F-actin, while spectrin seemed to accumulate in this area. The attachment apparatus consists of lobes arranged in one (trophozoites) or two (gamonts) circles, crowned by a ring of filamentous fascicles. During trophozoite maturation, the internal space between the parasitophorous sac and parasite turns translucent, the parasite trilaminar pellicle seems to reorganise and is covered by a dense fibrous glycocalyx. The parasite surface is organised in broad folds with grooves in between. Micropores are situated at the bottom of the grooves. A layer of filaments organised in bands, underlying the folds and ending above the attachment fascicles, was detected just beneath the pellicle. Confocal microscopy, along with the application of cytoskeletal drugs (jasplakinolide, cytochalasin D, oryzalin) confirmed the presence of actin and tubulin polymerised forms in both the parasitophorous sac and the parasite, while myosin labelling was restricted to the sac. Despite positive tubulin labelling, no microtubules were detected in mature stages. The attachment strategy of E. duboscqi shares features with that of cryptosporidia and gregarines, i.e. the parasite itself conspicuously resembles an epicellularly located gregarine, while the parasitophorous sac develops in a similar manner to that in cryptosporidia. This study provides a re-evaluation of epicellular development in other apicomplexans and directly compares their niche with that of E. duboscqi.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- * E-mail:
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Timur G. Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1–12, Moscow, 119234, Russian Federation
| |
Collapse
|
14
|
Bessoff K, Spangenberg T, Foderaro JE, Jumani RS, Ward GE, Huston CD. Identification of Cryptosporidium parvum active chemical series by Repurposing the open access malaria box. Antimicrob Agents Chemother 2014; 58:2731-9. [PMID: 24566188 PMCID: PMC3993250 DOI: 10.1128/aac.02641-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/20/2014] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan parasites Cryptosporidium parvum and Cryptosporidium hominis are major etiologic agents of human cryptosporidiosis. The infection is typically self-limited in immunocompetent adults, but it can cause chronic fulminant diarrhea in immunocompromised patients and malnutrition and stunting in children. Nitazoxanide, the current standard of care for cryptosporidiosis, is only partially efficacious for children and is no more effective than a placebo for AIDS patients. Unfortunately, financial obstacles to drug discovery for diseases that disproportionately affect low-income countries and technical limitations associated with studies of Cryptosporidium biology impede the development of better drugs for treating cryptosporidiosis. Using a cell-based high-throughput screen, we queried the Medicines for Malaria Venture (MMV) Open Access Malaria Box for activity against C. parvum. We identified 3 novel chemical series derived from the quinolin-8-ol, allopurinol-based, and 2,4-diamino-quinazoline chemical scaffolds that exhibited submicromolar potency against C. parvum. Potency was conserved in a subset of compounds from each scaffold with varied physicochemical properties, and two of the scaffolds identified exhibit more rapid inhibition of C. parvum growth than nitazoxanide, making them excellent candidates for further development. The 2,4-diamino-quinazoline and allopurinol-based compounds were also potent growth inhibitors of the related apicomplexan parasite Toxoplasma gondii, and a good correlation was observed in the relative activities of the compounds in the allopurinol-based series against T. gondii and C. parvum. Taken together, these data illustrate the utility of the Open Access Malaria Box as a source of both potential leads for drug development and chemical probes to elucidate basic biological processes in C. parvum and other apicomplexan parasites.
Collapse
Affiliation(s)
- Kovi Bessoff
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Jenna E. Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Rajiv S. Jumani
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Christopher D. Huston
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
15
|
Life cycle ofCryptosporidium murisin two rodents with different responses to parasitization. Parasitology 2013; 141:287-303. [DOI: 10.1017/s0031182013001637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThis study focuses on mapping the life cycle ofCryptosporidium murisin two laboratory rodents; BALB/c mice and the southern multimammate ratMastomys coucha, differing in their prepatent and patent periods. Both rodents were simultaneously experimentally inoculated with viable oocysts ofC. muris(strain TS03). Animals were dissected and screened for the presence of the parasite using a combined morphological approach and nested PCR (SSU rRNA) at different times after inoculation. The occurrence of first developmental stages ofC. murisin stomach was detected at 2·5 days post-infection (dpi). The presence of Type II merogony, appearing 36 h later than Type I merogony, was confirmed in both rodents. Oocysts exhibiting different size and thickness of their wall were observed from 5 dpi onwards in stomachs of both host models. The early phase of parasitization in BALB/c mice progressed rapidly, with a prepatent period of 7·5–10 days; whereas inM. coucha, the developmental stages ofC. muriswere first observed 12 h later in comparison with BALB/c mice and prepatent period was longer (18–21 days). Similarly, the patent periods of BALB/c mice andM. couchadiffered considerably, i.e. 10–15 daysvschronic infection throughout the life of the host, respectively.
Collapse
|
16
|
Matsubayashi M, Teramoto-Kimata I, Uni S, Lillehoj HS, Matsuda H, Furuya M, Tani H, Sasai K. Elongation factor-1α is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum. J Biol Chem 2013; 288:34111-34120. [PMID: 24085304 DOI: 10.1074/jbc.m113.515544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Food and Nutrition, Osaka Yuhigaoka Gakuen Junior College, Tennoji-ku, Osaka 543-0073, Japan; Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Isao Teramoto-Kimata
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Shigehiko Uni
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hyun S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705
| | - Haruo Matsuda
- Laboratory of Immunobiology, Department of Molecular and Applied Biosciences, Graduate School of Biosphere Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Masaru Furuya
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Hiroyuki Tani
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
17
|
Koh W, Clode PL, Monis P, Thompson RCA. Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors 2013; 6:270. [PMID: 24330483 PMCID: PMC3848567 DOI: 10.1186/1756-3305-6-270] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/15/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In natural aquatic environments biofilms are known to act as environmental reservoirs for Cryptosporidium parvum oocysts. However, the fate of these oocysts within biofilms has yet to be determined. METHODS This study aimed to identify if biofilms have the ability to support the multiplication of Cryptosporidium by measuring the change in parasite number over time using quantitative polymerase chain reaction (qPCR) and detecting the possible extracellular developmental stages using a combination of confocal microscopy and immunolabelling techniques. Pseudomonas aeruginosa biofilm flow cell systems were established and C. parvum oocysts were constantly supplied over a six day period. RESULTS A significant (P<0.001) increase in Cryptosporidium was detected as the biofilm matured, with the total number of C. parvum multiplying 2-3 fold during this period. With this, various Cryptosporidium developmental stages (sporozoites, trophozoites, type I and II meronts) were identified from the biofilm. CONCLUSION This is the first study demonstrating that biofilms not only serve as an environmental reservoir for oocysts, but are also capable of supporting the multiplication of Cryptosporidium over time in an aquatic environment.
Collapse
|
18
|
Ehrenman K, Wanyiri JW, Bhat N, Ward HD, Coppens I. Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell Microbiol 2013; 15:1182-97. [PMID: 23311949 DOI: 10.1111/cmi.12107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
Abstract
Cryptosporidium spp. are responsible for devastating diarrhoea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes.Pharmacological blockade of NPC1L1 function by ezetimibe or moderate downregulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut's lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell.
Collapse
Affiliation(s)
- Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
19
|
Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, Riglar DT, Rogers KL, Whitchurch CB, Ralph SA, Speed TP, Baum J. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One 2012; 7:e46160. [PMID: 23049965 PMCID: PMC3458004 DOI: 10.1371/journal.pone.0046160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.
Collapse
Affiliation(s)
- Elizabeth S. Zuccala
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander M. Gout
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chaitali Dekiwadia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Danushka S. Marapana
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Fiona Angrisano
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David T. Riglar
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L. Rogers
- Imaging Facility, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Cynthia B. Whitchurch
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Terence P. Speed
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jake Baum
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Valentini E, Cherchi S, Possenti A, Dubremetz JF, Pozio E, Spano F. Molecular characterisation of a Cryptosporidium parvum rhoptry protein candidate related to the rhoptry neck proteins TgRON1 of Toxoplasma gondii and PfASP of Plasmodium falciparum. Mol Biochem Parasitol 2012; 183:94-9. [DOI: 10.1016/j.molbiopara.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
21
|
Xiao D, Yin C, Zhang Q, Li JH, Gong PT, Li SH, Zhang GC, Gao YJ, Zhang XC. Selection and identification of a new adhesion protein of Cryptosporidium parvum from a cDNA library by ribosome display. Exp Parasitol 2011; 129:183-9. [DOI: 10.1016/j.exppara.2011.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
22
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
23
|
|
24
|
Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization. Infect Immun 2010; 78:2927-36. [PMID: 20457792 DOI: 10.1128/iai.00077-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Internalization of the obligate intracellular apicomplexan parasite, Cryptosporidium parvum, results in the formation of a unique intramembranous yet extracytoplasmic niche on the apical surfaces of host epithelial cells, a process that depends on host cell membrane extension. We previously demonstrated that efficient C. parvum invasion of biliary epithelial cells (cholangiocytes) requires host cell actin polymerization and localized membrane translocation/insertion of Na(+)/glucose cotransporter 1 (SGLT1) and of aquaporin 1 (Aqp1), a water channel, at the attachment site. The resultant localized water influx facilitates parasite cellular invasion by promoting host-cell membrane protrusion. However, the molecular mechanisms by which C. parvum induces membrane translocation/insertion of SGLT1/Aqp1 are obscure. We report here that cultured human cholangiocytes express several nonmuscle myosins, including myosins IIA and IIB. Moreover, C. parvum infection of cultured cholangiocytes results in the localized selective aggregation of myosin IIB but not myosin IIA at the region of parasite attachment, as assessed by dual-label immunofluorescence confocal microscopy. Concordantly, treatment of cells with the myosin light chain kinase inhibitor ML-7 or the myosin II-specific inhibitor blebbistatin or selective RNA-mediated repression of myosin IIB significantly inhibits (P < 0.05) C. parvum cellular invasion (by 60 to 80%). Furthermore ML-7 and blebbistatin significantly decrease (P < 0.02) C. parvum-induced accumulation of SGLT1 at infection sites (by approximately 80%). Thus, localized actomyosin-dependent membrane translocation of transporters/channels initiated by C. parvum is essential for membrane extension and parasite internalization, a phenomenon that may also be relevant to the mechanisms of cell membrane protrusion in general.
Collapse
|
25
|
Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. Cryptosporidium and cryptosporidiosis. ADVANCES IN PARASITOLOGY 2009; 59:77-158. [PMID: 16182865 DOI: 10.1016/s0065-308x(05)59002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptosporidium is one of the most common enteric protozoan parasites of vertebrates with a wide host range that includes humans and domestic animals. It is a significant cause of diarrhoeal disease and an ubiquitous contaminant of water which serves as an excellent vehicle for transmission. A better understanding of the development and life cycle of Cryptosporidium, and new insights into its phylogenetic relationships, have illustrated the need to re-evaluate many aspects of the biology of Cryptosporidium. This has been reinforced by information obtained from the recent successful Cryptosporidium genome sequencing project, which has emphasised the uniqueness of this organism in terms of its parasite life style and evolutionary biology. This chapter provides an up to date review of the biology, biochemistry and host parasite relationships of Cryptosporidium.
Collapse
Affiliation(s)
- R C A Thompson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Borowski H, Clode PL, Thompson RCA. Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium. Trends Parasitol 2008; 24:509-16. [PMID: 18801703 DOI: 10.1016/j.pt.2008.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/16/2008] [Accepted: 08/15/2008] [Indexed: 01/22/2023]
Abstract
Host-cell invasion by Cryptosporidium is a complex process that requires many different factors derived from both the parasite and the host cell. However, the exact natures of the processes have yet to be resolved. Here, research on different components of the invasion process is put in context, and the sequence of events and pathways associated with the establishment of Cryptosporidium in its unique niche is clarified. In addition, initial parasite-host contact, host-cell invasion and host-cell responses are described. The roles of parasite and host-cell-derived components in the invasion process are examined, as is the question of whether Cryptosporidium actively invades cells and to what extent host-cell responses are involved.
Collapse
Affiliation(s)
- Hanna Borowski
- Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | | | | |
Collapse
|
27
|
O'Hara SP, Small AJ, Chen XM, LaRusso NF. Host cell actin remodeling in response to Cryptosporidium. Subcell Biochem 2008; 47:92-100. [PMID: 18512344 DOI: 10.1007/978-0-387-78267-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptosporidium exhibits a complex strategy to invade and establish productive infection sites, involving complimentary parasite and host cell processes. While the work regarding host cell actin remodeling has greatly enhanced our understanding of the molecular pathways involved in the parasite induced actin reorganization, the specific function of host cell actin remodeling is still equivocal. We contend that host cell actin polymerization contributes to the development of productive C. parvum infection sites by generating membrane protrusion events, which may assist in the retention of the parasite at the apical surface within the unique extracytoplasmic niche. With our current understanding of the molecular pathways initiating actin remodeling upon C. parvum interactions with host cells, the next logical step is to determine the upstream events resulting in PI3K activation and the specific role of actin remodeling in parasite development, a process that may have implications beyond host-pathogen interactions.
Collapse
Affiliation(s)
- Steven P O'Hara
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
28
|
Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Šlapeta J. Cryptosporidia: Epicellular parasites embraced by the host cell membrane. Int J Parasitol 2008; 38:913-22. [DOI: 10.1016/j.ijpara.2007.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/30/2007] [Accepted: 11/08/2007] [Indexed: 11/16/2022]
|
29
|
VALIGUROVÁ ANDREA, HOFMANNOVÁ LADA, KOUDELA BŘETISLAV, VÁVRA JIŘÍ. An Ultrastructural Comparison of the Attachment Sites Between Gregarina steini and Cryptosporidium muris. J Eukaryot Microbiol 2007; 54:495-510. [DOI: 10.1111/j.1550-7408.2007.00291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Bhat N, Joe A, PereiraPerrin M, Ward HD. Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. J Biol Chem 2007; 282:34877-87. [PMID: 17905738 DOI: 10.1074/jbc.m706950200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptosporidium sp. cause human and animal diarrheal disease worldwide. The molecular mechanisms underlying Cryptosporidium attachment to, and invasion of, host cells are poorly understood. Previously, we described a surface-associated Gal/GalNAc-specific lectin activity in sporozoites of Cryptosporidium parvum. Here we describe p30, a 30-kDa Gal/GalNAc-specific lectin isolated from C. parvum and Cryptosporidium hominis sporozoites by Gal-affinity chromatography. p30 is encoded by a single copy gene containing a 906-bp open reading frame, the deduced amino acid sequence of which predicts a 302-amino acid, 31.8-kDa protein with a 22-amino acid N-terminal signal sequence. The p30 gene is expressed at 24-72 h after infection of intestinal epithelial cells. Antisera to recombinant p30 expressed in Escherichia coli react with an approximately 30-kDa protein in C. parvum and C. hominis. p30 is localized to the apical region of sporozoites and is predominantly intracellular in both sporozoites and intracellular stages of the parasite. p30 associates with gp900 and gp40, Gal/GalNAc-containing mucin-like glycoproteins that are also implicated in mediating infection. Native and recombinant p30 bind to Caco-2A cells in a dose-dependent, saturable, and Gal-inhibitable manner. Recombinant p30 inhibits C. parvum attachment to and infection of Caco-2A cells, whereas antisera to the recombinant protein also inhibit infection. Taken together, these findings suggest that p30 mediates C. parvum infection in vitro and raise the possibility that this protein may serve as a target for intervention.
Collapse
Affiliation(s)
- Najma Bhat
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
31
|
SIDDALL MARKE, DESSER SHERWINS. Gametogenesis and Sporogonic Development ofHaemogregarina balli(Apicomplexa: Adeleina: Haemogregarinidae) in the LeechPlacobdella ornata. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1990.tb01257.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
LUKES JULIUS. Life Cycle ofGoussia pannonica(Molnar, 1989) (Apicomplexa, Eimeriorina), an Extracytoplasmic Coccidium from the White BreamBlicca bjoerkna. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1992.tb04836.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
SIDDALL MARKE, DESSER SHERWINS. Ultrastructure of Gametogenesis and Sporogony ofHaemogregarina(sensu lato)myoxocephali(Apicomplexa: Adeleina) in the Marine LeechMalmiana scorpii. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1992.tb04849.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
O'Hara SP, Huang BQ, Chen XM, Nelson J, LaRusso NF. DISTRIBUTION OF CRYPTOSPORIDIUM PARVUM SPOROZOITE APICAL ORGANELLES DURING ATTACHMENT TO AND INTERNALIZATION BY CULTURED BILIARY EPITHELIAL CELLS. J Parasitol 2005; 91:995-9. [PMID: 16419739 DOI: 10.1645/ge-495r.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although accumulating evidence supports an active role for host cells during Cryptosporidium parvum invasion of epithelia, our knowledge of the underlying parasite-specific processes triggering such events is limited. In an effort to better understand the invasion strategy of C. parvum, we characterized the presence and distribution of the apical organelles (micronemes, dense granules, and rhoptry) through the stages of attachment to, and internalization by, human biliary epithelia, using serial-section electron microscopy. Novel findings include an apparent organized rearrangement of micronemes upon host cell attachment. The apically segregated micronemes were apposed to a central microtubule-like filamentous structure, and the more distal micronemes localized to the periphery and apical region of the parasite during internalization, coinciding with the formation of the anterior vacuole. The morphological observations presented here extend our understanding of parasite-specific processes that occur during attachment to, and internalization by, host epithelial cells.
Collapse
Affiliation(s)
- Steven P O'Hara
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
35
|
Umemiya R, Fukuda M, Fujisaki K, Matsui T. ELECTRON MICROSCOPIC OBSERVATION OF THE INVASION PROCESS OF CRYPTOSPORIDIUM PARVUM IN SEVERE COMBINED IMMUNODEFICIENCY MICE. J Parasitol 2005; 91:1034-9. [PMID: 16419745 DOI: 10.1645/ge-508r.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cryptosporidium parvum mainly invades the intestinal epithelium and causes watery diarrhea in humans and calves. However, the invasion process has not yet been clarified. In the present study, the invasion process of C. parvum in severe combined immunodeficiency (SCID) mice was examined. Infected mice were necropsied; the ilea were double-fixed routinely and observed by scanning and transmission electron microscopy. In addition, the microvillus membrane was observed by ruthenium red staining. Scanning electron micrographs showed elongation of the microvilli at the periphery of the parasite. The microvilli were shown to be along the surface of the parasite in higher magnification. Transmission electron microscopy confirmed that the invading parasites were located among microvilli. Parasites existed in the parasitophorous vacuole formed by the microvillus membrane. The parasite pellicle attached to the host cell membrane at the bottom of the parasite, and then the pellicle and host cell membrane became unclear. Subsequently, the pellicle became complicated and formed a feeder organelle. In addition, invasion of the parasite was not observed in either a microvillus or the cytoplasm of the host cell. Therefore, C. parvum invades among microvilli, is covered with membranes derived from numerous microvilli, and develops within the host cell.
Collapse
Affiliation(s)
- Rika Umemiya
- Health Sciences, Graduate School of Health Sciences, Kyorin University, Hachioji-shi, Tokyo, Japan.
| | | | | | | |
Collapse
|
36
|
Matsubayashi M, Kimata I, Iseki M, Lillehoj HS, Matsuda H, Nakanishi T, Tani H, Sasai K, Baba E. Cross-reactivities with Cryptosporidium spp. by chicken monoclonal antibodies that recognize avian Eimeria spp. Vet Parasitol 2005; 128:47-57. [PMID: 15725532 DOI: 10.1016/j.vetpar.2004.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 10/26/2022]
Abstract
In a previous study, we have developed several chicken monoclonal antibodies (mAbs) against Eimeria acervulina (EA) in order to identify potential ligand molecules of Eimeria. One of these mAbs, 6D-12-G10, was found to recognize a conoid antigen of EA sporozoites and significantly inhibited the sporozoite invasions of host T lymphocytes in vitro. Furthermore, some of these chicken mAbs showed cross-reactivities with several different avian Eimeria spp. and the mAb 6D-12-G10 also demonstrated cross-reactivities with the tachyzoites of Neospora caninum and Toxoplasma gondii. Cryptosporidium spp. are coccidian parasites closely related to Eimeria spp., and especially C. parvum is an important cause of diarrhea in human and mammals. In the present study, to assess that the epitopes recognized by these chicken mAbs could exist on Cryptosporidium parasites, we examined the cross-reactivity of these mAbs with Cryptosporidium spp. using an indirect immunofluorescent assay (IFA) and Western blotting analyses. In IFA by chicken mAbs, the mAb 6D-12-G10 only showed a immunofluorescence staining at the apical end of sporozoites of C. parvum and C. muris, and merozoites of C. parvum. Western blotting analyses revealed that the mAb 6D-12-G10 reacted with the 48-kDa molecular weight band of C. parvum and C. muris oocyst antigens, 5D-11 reacted the 155 kDa of C. muris. Furthermore, these epitopes appeared to be periodate insensitive. These results indicate that the target antigen recognized by these chicken mAbs might have a shared epitope, which is present on the apical complex of apicomplexan parasites.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Food and Nutrition, Osaka Joshi-Gakuen Junior College, Tennoji-ku, Osaka 543-0073, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson JK, Schmidt J, Gelberg HB, Kuhlenschmidt MS. Microbial adhesion of Cryptosporidium parvum sporozoites: purification of an inhibitory lipid from bovine mucosa. J Parasitol 2004; 90:980-90. [PMID: 15562596 PMCID: PMC2579925 DOI: 10.1645/ge-231r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cryptosporidium parvum is a protozoan pathogen of humans and livestock worldwide. Its ability to infect a wide range of species raises questions as to the involvement of a specific host cell receptor for parasite-host recognition. To investigate the mechanism of parasite-host cell recognition, we have developed an in vitro cell suspension binding assay to investigate adhesion of C. parvum sporozoites to host cells. Morphologic features of binding events observed with this assay were identical to those described in natural infections. Glycoconjugates, Madin Darby bovine kidney (MDBK) cell fractions, and plasma membrane vesicles (PMVs) were screened for their ability to block binding of sporozoites to MDBK cells. Mucins, MDBK cell fractions, and PMVs exhibited dose-dependent inhibition of sporozoite binding. The major inhibitory fraction from MDBK cells was found to be insoluble in aqueous medium, nonsaponifiable, and lacking carbohydrate moieties, nitrogen, and phosphorus. Its inhibitory effect was resistant to heat, protease digestion, and glycosidase treatment, suggesting that the inhibitory activity is a lipid or a lipid-like component. The inhibitory activity was purified from MDBK cells, and in larger amounts from bovine small intestinal mucosa, by organic solvent extraction, semipreparative high-pressure liquid chromatography, and preparative high-performance thin-layer chromatography. Biochemical analyses, thin-layer chromatography staining techniques, mass spectrometry, and elemental analysis were used to partially characterize the purified lipid. These results indicate that a host intestinal lipid(s) or a lipid-like component(s) may play an important role in the early stages of host cell invasion by C. parvum.
Collapse
Affiliation(s)
- Julie K Johnson
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
38
|
Petry F. Structural analysis of Cryptosporidium parvum. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:586-601. [PMID: 15525433 DOI: 10.1017/s1431927604040929] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Indexed: 05/24/2023]
Abstract
Cryptosporidium parvum (Apicomplexa, formerly Sporozoa) is the causative agent of cryptosporidiosis, an enteric disease of substantial medical and veterinary importance. C. parvum shows a number of unique features that differ from the rest of the class of coccidea in which it is currently grouped taxonomically. Differences occur in the overall structure of the transmission form and the invasive stages of the parasite, its intracellular location, the presence of recently described additional extracellular stages, the host range and target cell tropism, the ability to autoinfection, the nonresponsiveness to anticoccidial drugs, the immune response of the host, and immunochemical and genetic characteristics. These differences have an important impact on the infectivity, the epidemiology, the therapy, and the taxonomy of the parasite. The present article describes the structural analysis of the parasite using light and electron microscopy with an emphasis on structural details unique to C. parvum.
Collapse
Affiliation(s)
- Franz Petry
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
39
|
Hijjawi NS, Meloni BP, Ng'anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RCA. Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 2004; 34:769-77. [PMID: 15157759 DOI: 10.1016/j.ijpara.2004.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 04/08/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The present study describes the complete in vitro development of Cryptosporidium parvum (cattle genotype) in RPMI-1640 maintenance medium devoid of host cells. This represents the first report in which Cryptosporidium is shown to multiply, develop and complete its life cycle without the need for host cells. Furthermore, cultivation of Cryptosporidium in diphasic medium consisting of a coagulated new born calf serum base overlaid with maintenance medium greatly increased the total number of Cryptosporidium stages. Type I and II meronts were detected giving rise to two morphologically different merozoites. Type I meronts, which appear as grape-like clusters as early as 48 h post culture inoculation, release merozoites, which are actively motile, and circular to oval in shape. Type II meronts group in a rosette-like pattern and could not be detected until day 3 of culturing. Most of the merozoites released from type II meronts are generally spindle-shaped with pointed ends, while others are rounded or pleomorphic. In contrast to type I, merozoites from type II meronts are less active and larger in size. Sexual stages (micro and macrogamonts) were observed within 6-7 days of culturing. Microgamonts were darker than macrogamonts, with developing microgametes, which could be seen accumulating at the periphery. Macrogamonts have a characteristic peripheral nucleus and smooth outer surface. Oocysts at different levels of sporulation were seen 8 days post culture inoculation. Cultures were terminated after 4 months when the C. parvum life cycle was still being perpetuated with the presence of large numbers of excysting and intact oocysts. Culture-derived oocysts obtained after 46 days p.i. were infective to 7- to 8-day-old ARC/Swiss mice. The impact of C. parvum developing in cell-free culture is very significant and will facilitate many aspects of Cryptosporidium research.
Collapse
Affiliation(s)
- N S Hijjawi
- World Health Organization Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang BQ, Chen XM, LaRusso NF. CRYPTOSPORIDIUM PARVUM ATTACHMENT TO AND INTERNALIZATION BY HUMAN BILIARY EPITHELIA IN VITRO: A MORPHOLOGIC STUDY. J Parasitol 2004; 90:212-21. [PMID: 15165040 DOI: 10.1645/ge-3204] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.
Collapse
Affiliation(s)
- Bing Q Huang
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic and Foundation, 200 First Street, Southwest, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
41
|
Carey CM, Lee H, Trevors JT. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. WATER RESEARCH 2004; 38:818-862. [PMID: 14769405 DOI: 10.1016/j.watres.2003.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 10/06/2003] [Accepted: 10/22/2003] [Indexed: 05/24/2023]
Abstract
Cryptosporidium parvum and Cryptosporidium hominis are obligate enteric protozoan parasites which infect the gastrointestinal tract of animals and humans. The mechanism(s) by which these parasites cause gastrointestinal distress in their hosts is not well understood. The risk of waterborne transmission of Cryptosporidium is a serious global issue in drinking water safety. Oocysts from these organisms are extremely robust, prevalent in source water supplies and capable of surviving in the environment for extended periods of time. Resistance to conventional water treatment by chlorination, lack of correlation with biological indicator microorganisms and the absence of adequate methods to detect the presence of infectious oocysts necessitates the development of consistent and effective means of parasite removal from the water supply. Additional research into improving water treatment and sewage treatment practices is needed, particularly in testing the efficiency of ozone in oocyst inactivation. Timely and efficient detection of infectious C. parvum and C. hominis oocysts in environmental samples requires the development of rapid and sensitive techniques for the concentration, purification and detection of these parasites. A major factor confounding proper detection remains the inability to adequately and efficiently concentrate oocysts from environmental samples, while limiting the presence of extraneous materials. Molecular-based techniques are the most promising methods for the sensitive and accurate detection of C. parvum and C. hominis. With the availability of numerous target sequences, RT-PCR will likely emerge as an important method to assess oocyst viability. In addition, a multiplex PCR for the simultaneous detection of C. parvum, C. hominis and other waterborne pathogens such as Giardia lamblia would greatly benefit the water industry and protect human health.
Collapse
Affiliation(s)
- C M Carey
- Department of Environmental Biology, University of Guelph, Guelph, Ont, Canada N1G 2W1
| | | | | |
Collapse
|
42
|
O'Hara SP, Yu JR, Lin JJC. A novel Cryptosporidium parvum antigen, CP2, preferentially associates with membranous structures. Parasitol Res 2004; 92:317-27. [PMID: 14727189 DOI: 10.1007/s00436-003-1057-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 11/24/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
The present study addresses the cloning and characterization of a Cryptosporidium parvum antigen, CP2. Sequencing of cDNA and genomic clones revealed a novel gene capable of coding a message of 2,136 nucleotides flanked by 28 and 140 nucleotides of the 5'- and 3'-noncoding regions, respectively. The deduced amino acid sequence suggests that CP2 is a secreted and/or membrane protein. Immunofluorescence microscopy detected CP2 enrichment in sporozoites that subsequently appeared to encase type I meronts in infected HCT-8 cells. Immunogold electron microscopy revealed that CP2 consistently localized to membranous structures throughout development. In addition, progression from macrogametocyte to sporulated oocyst revealed CP2 initially at the periphery of amylopectin-like granules, in the cytoplasm and discrete vesicles, the parasitophorous vacuole, on the surface of sporozoites, and finally on the parasitophorous vacuole membrane (PVM). The observed expression pattern suggests that CP2 may be involved in the invasion process and/or PVM integrity.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Base Sequence
- Cell Line
- Cloning, Molecular
- Cryptosporidium parvum/genetics
- Cryptosporidium parvum/growth & development
- Cryptosporidium parvum/immunology
- Cryptosporidium parvum/metabolism
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Genes, Protozoan
- Glycosylation
- Humans
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Open Reading Frames
- Protein Sorting Signals
- Transcription Initiation Site
- Vacuoles/metabolism
Collapse
Affiliation(s)
- Steven P O'Hara
- Department of Biological Sciences, University of Iowa, 138 Biology Building, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
43
|
Harris JR, Adrian M, Petry F. Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle. Micron 2003; 34:65-78. [PMID: 12801539 DOI: 10.1016/s0968-4328(03)00020-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From an EM study of thin sections, the rod-like microneme organelles within conventionally glutaraldehyde fixed Cryptosporidium parvum sporozoites have been shown to undergo a shape change to a more spherical structure when the sporozoites age in vitro for a period of approximately 12 to 24 h. This correlates with the shape change of intact sporozoites, from motile hence viable thin banana-shaped cells to swollen pear-shaped cells, shown by differential interference contrast light microscopy of unstained unfixed and glutaraldehyde-fixed samples, as well as by thin section EM of fixed sporozoites. From negatively stained EM specimens of unfixed and fixed sporozoites the cellular shape change has been confirmed as has the rod to sphere micronemal shape change. Intact micronemes released directly from sporozoites exclude negative stain and appear as smooth-surfaced electron transparent particles. Biochemically purified rod-shaped C. parvum micronemes are shown to be fragile organelles that inevitably undergo variable damage during isolation, storage and subsequent specimen preparation for EM study. In the absence of glutaraldehyde fixation, damaged micronemes allow the negative stain to enter and loose their contents and during storage undergo a rod-to-sphere shape transformation. Glutaraldehyde-fixed micronemes maintain the rod shape; intact fixed micronemes still exclude negative stain but damaged micronemes reveal a complex quasi-helical arrangement of internal protein within the rod-like micronemes. Loss of this internal organized structure appears to be responsible for the micronemal shape change. This interpretation has been advanced from mutually supportive data obtained from cryoelectron microscopy of unstained vitrified samples, conventional air-dry negative staining and cryo-negative staining. Attempts to biochemically solubilize the micronemal content by lysis and ultrasonication, and separate it from the micronemal membranes, have so far met with limited success as the internal material tends to remain as a disorganized cluster of particles upon release.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099 Mainz, Germany
| | | | | |
Collapse
|
44
|
Pollok RCG, McDonald V, Kelly P, Farthing MJG. The role of Cryptosporidium parvum-derived phospholipase in intestinal epithelial cell invasion. Parasitol Res 2003; 90:181-6. [PMID: 12783305 DOI: 10.1007/s00436-003-0831-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 01/10/2003] [Indexed: 11/25/2022]
Abstract
In the Cryptosporidium parvum-infected intestinal epithelial cell, the parasite occupies an unusual extracytoplasmic location at the luminal surface, but how the invading zoites interact with the host cell to achieve this niche is poorly understood. This study examined the role of secretory phospholipase A(2) (sPLA(2)), a known virulence factor for several pathogenic microorganisms, in establishing C. parvum intracellularly. Initially, it was established that there was sPLA(2) activity in homogenates of C. parvum oocysts. C. parvum reproduction in two human enterocyte cell lines was significantly reduced by a specific PLA inhibitor, p-bromophenacylbromide, and by sheep anti-sPLA(2) antibodies developed against PLA(2) of bee ( Apis mellifera) venom. Treatment of either C. parvum sporozoites or enterocytes with sPLA(2) derived from cobra ( Naja naja) venom before initiation of infection increased the numbers of intracellular parasites. Thus, C. parvum PLA(2 )may play an important part in establishing the parasite within the enterocyte.
Collapse
Affiliation(s)
- R C G Pollok
- Department of Gastroenterology, St George's Hospital Medical School, Cranmer Terrace, London, SW17 ORE, UK.
| | | | | | | |
Collapse
|
45
|
Abstract
The in vitro cultivation of protozoan parasites of the genus Cryptosporidium has advanced significantly in recent years. These obligate, intracellular parasites colonize the epithelium of the digestive and respiratory tracts, are often difficult to obtain in significant numbers, produce durable oocysts that defy conventional chemical disinfection methods, and are persistently infectious when stored at refrigerated temperatures (4 to 8 degrees C). While continuous culture and efficient life cycle completion (oocyst production) have not yet been achieved in vitro, routine methods for parasite preparation and cell culture infection and assays for parasite life cycle development have been established. Parasite yields may be limited, but in vitro growth is sufficient to support a variety of research studies, including assessing potential drug therapies, evaluating oocyst disinfection methods, and characterizing life cycle stage development and differentiation.
Collapse
Affiliation(s)
- Michael J Arrowood
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30341, USA.
| |
Collapse
|
46
|
Macnish MG, Morgan UM, Behnke JM, Thompson RCA. Failure to infect laboratory rodent hosts with human isolates of Rodentolepis (= Hymenolepis) nana. J Helminthol 2002; 76:37-43. [PMID: 12018194 DOI: 10.1079/joh200198] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Confusion exists over the species status and host-specificity of the tapeworm Rodentolepis (= Hymenolepis) nana. It has been described as one species, R. nana, found in both humans and rodents. Others have identified a subspecies; R. nana var. fraterna, describing it as morphologically identical to the human form but only found in rodents. The species present in Australian communities has never been identified with certainty. Fifty one human isolates of Rodentolepis (= Hymenolepis) nana were orally inoculated into Swiss Q, BALB/c, A/J, CBA/ CAH and nude (hypothymic) BALB/c mice, Fischer 344 and Wistar rats and specific pathogen free (SPF) hamsters. Twenty four human isolates of R. nana were cross-tested in flour beetles, Tribolium confusum. No adult worms were obtained from mice, rats or hamsters, even when immunosuppressed with cortisone acetate. Only one of the 24 samples developed to the cysticercoid stage in T. confusum; however, when inoculated into laboratory mice the cysticercoids failed to develop into adult worms. The large sample size used in this study, and the range of techniques employed for extraction and preparation of eggs provide a comprehensive test of the hypothesis that the human strain of R. nana is essentially non-infective to rodents.
Collapse
Affiliation(s)
- M G Macnish
- WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and Division of Veterinary and Biomedical Sciences, Murdoch University, Western Australia, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
The Apicomplexa are a phylum of diverse obligate intracellular parasites including Plasmodium spp., the cause of malaria; Toxoplasma gondii and Cryptosporidium parvum, opportunistic pathogens of immunocompromised individuals; and Eimeria spp. and Theileria spp., parasites of considerable agricultural importance. These protozoan parasites share distinctive morphological features, cytoskeletal organization, and modes of replication, motility, and invasion. This review summarizes our current understanding of the cytoskeletal elements, the properties of cytoskeletal proteins, and the role of the cytoskeleton in polarity, motility, invasion, and replication. We discuss the unusual properties of actin and myosin in the Apicomplexa, the highly stereotyped microtubule populations in apicomplexans, and a network of recently discovered novel intermediate filament-like elements in these parasites.
Collapse
Affiliation(s)
- Naomi S Morrissette
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
48
|
Riggs MW, Schaefer DA, Kapil SJ, Barley-Maloney L, Perryman LE. Efficacy of monoclonal antibodies against defined antigens for passive immunotherapy of chronic gastrointestinal cryptosporidiosis. Antimicrob Agents Chemother 2002; 46:275-82. [PMID: 11796330 PMCID: PMC127040 DOI: 10.1128/aac.46.2.275-282.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum is an important cause of diarrhea in humans and calves and can persistently infect immunocompromised hosts. Presently, there are no consistently effective parasite-specific drugs for cryptosporidiosis. We hypothesized that neutralizing monoclonal antibodies (MAbs) targeting the apical complex and surface antigens CSL, GP25-200, and P23 could passively immunize against cryptosporidiosis. We recently reported that a formulation of MAbs 3E2 (anti-CSL), 3H2 (anti-GP25-200), and 1E10 (anti-P23) provided significant additive prophylactic efficacy over that of the individual MAbs in neonatal ICR mice. In the present study, these MAbs were evaluated for therapeutic efficacy against persistent infection in adult gamma interferon-depleted SCID mice. 3E2 demonstrated the most significant and consistent therapeutic effect, reducing intestinal infection in two experiments. In one experiment, 3E2 plus 3H2 and 3E2 plus 3H2 plus 1E10 also significantly reduced infection; however, no significant increase in efficacy over 3E2 alone was apparent. The results indicate that anti-CSL MAb 3E2 has highly significant efficacy in reducing, but not eliminating, persistent C. parvum infection.
Collapse
Affiliation(s)
- Michael W Riggs
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | | | |
Collapse
|
49
|
Langer RC, Schaefer DA, Riggs MW. Characterization of an intestinal epithelial cell receptor recognized by the Cryptosporidium parvum sporozoite ligand CSL. Infect Immun 2001; 69:1661-70. [PMID: 11179341 PMCID: PMC98070 DOI: 10.1128/iai.69.3.1661-1670.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Cryptosporidium parvum is a leading cause of diarrhea in humans and neonatal calves. The absence of approved parasite-specific drugs, vaccines, and immunotherapies for cryptosporidiosis relates in part to limited knowledge on the pathogenesis of zoite attachment and invasion. We recently reported that the C. parvum apical complex glycoprotein CSL contains a zoite ligand for intestinal epithelial cells which is defined by monoclonal antibody (MAb) 3E2. In the present study, the host cell receptor for CSL was characterized. For these studies, a panel of epithelial and mesenchymal cell lines was examined for permissiveness to C. parvum and the ability to bind CSL. Cells of epithelial origin were significantly more permissive and bound significantly greater quantities of CSL than cells of mesenchymal origin. Caco-2 intestinal cells were selected from the epithelial panel for further characterization of the CSL receptor. Immunoelectron microscopy demonstrated that CSL bound initially to the surface of Caco-2 cells and was rapidly internalized. The molecule bound by CSL was identified as an 85-kDa Caco-2 cell surface protein by radioimmunoprecipitation and CSL affinity chromatography. Sporozoite incubation with the isolated 85-kDa protein reduced binding of MAb 3E2. Further, attachment and invasion were significantly inhibited when sporozoites were incubated with the 85-kDa protein prior to inoculation onto Caco-2 cells. These observations indicate that the 85-kDa protein functions as a Caco-2 cell receptor for CSL. CSL also bound specifically to intestinal epithelium from calves, indicating receptor expression in a second important host species. Molecular characterization of the CSL receptor may lead to novel avenues for disrupting ligand-receptor interactions in the pathogenesis of C. parvum infection.
Collapse
Affiliation(s)
- R C Langer
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
50
|
Cevallos AM, Bhat N, Verdon R, Hamer DH, Stein B, Tzipori S, Pereira ME, Keusch GT, Ward HD. Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun 2000; 68:5167-75. [PMID: 10948140 PMCID: PMC101770 DOI: 10.1128/iai.68.9.5167-5175.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Cryptosporidium parvum is a significant cause of diarrheal disease worldwide. Attachment to and invasion of host intestinal epithelial cells by C. parvum sporozoites are crucial steps in the pathogenesis of cryptosporidiosis. The molecular basis of these initial interactions is unknown. In order to identify putative C. parvum adhesion- and invasion-specific proteins, we raised monoclonal antibodies (MAbs) to sporozoites and evaluated them for inhibition of attachment and invasion in vitro. Using this approach, we identified two glycoproteins recognized by 4E9, a MAb which neutralized C. parvum infection and inhibited sporozoite attachment to intestinal epithelial cells in vitro. 4E9 recognized a 40-kDa glycoprotein named gp40 and a second, >220-kDa protein which was identified as GP900, a previously described mucin-like glycoprotein. Glycoproteins recognized by 4E9 are localized to the surface and apical region of invasive stages and are shed in trails from the parasite during gliding motility. The epitope recognized by 4E9 contains alpha-N-acetylgalactosamine residues, which are present in a mucin-type O-glycosidic linkage. Lectins specific for these glycans bind to the surface and apical region of sporozoites and block attachment to host cells. The surface and apical localization of these glycoproteins and the neutralizing effect of the MAb and alpha-N-acetylgalactosamine-specific lectins strongly implicate these proteins and their glycotopes as playing a role in C. parvum-host cell interactions.
Collapse
Affiliation(s)
- A M Cevallos
- Division of Geographic Medicine and Infectious Diseases, Tupper Research Institute, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|