1
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
2
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
3
|
Dynamics of Pivoting Electrical Waves in a Cardiac Tissue Model. Bull Math Biol 2019; 81:2649-2690. [PMID: 31201662 DOI: 10.1007/s11538-019-00623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Through a detailed mathematical analysis we seek to advance our understanding of how cardiac tissue conductances govern pivoting (spiral, scroll, rotor, functional reentry) wave dynamics. This is an important problem in cardiology since pivoting waves likely underlie most reentrant tachycardias. The problem is complex, and to advance our methods of analysis we introduce two new tools: a ray tracing method and a moving-interface model. When used in combination with an ionic model, they permit us to elucidate the role played by tissue conductances on pivoting wave dynamics. Specifically we simulate traveling electrical waves with an ionic model that can reproduce the characteristics of plane and pivoting waves in small patches of cardiac tissue. Then ray tracing is applied to the simulated pivoting waves in a manner to expose their real displacement. In this exercise we find loci with special characteristics, as well as zones where a part of a pivoting wave quickly transitions from a regenerative to a non-regenerative propagation mode. The loci themselves and the monitoring of the ionic model state variables in this zone permit to elucidate several aspects of pivoting wave dynamics. We then formulate the moving-interface model based on the information gathered with the above-mentioned analysis. Equipped with a velocity profile v(s), s: distance along of the pivoting wave contour and the steady- state action potential duration (APD) of a plane wave during entrainment, APDss(T), at period T, this simple model can predict: shape, orbit of revolution, rotation period, whether a pivoting wave will break up or not, and whether the tissue will admit pivoting waves or not. Because v(s) and APDss(T) are linked to the ionic model, dynamical analysis with the moving-interface model conveys information on the role played by tissue conductances on pivoting wave dynamics. The analysis conducted here enables us to better understand previous results on the termination of pivoting waves. We surmise the method put forth here could become a means to discover how to alter tissue conductances in a manner to terminate pivoting waves at the origin of reentrant tachycardias.
Collapse
|
4
|
Chai S, Wan X, Nassal DM, Liu H, Moravec CS, Ramirez-Navarro A, Deschênes I. Contribution of two-pore K + channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312:H1144-H1153. [PMID: 28341634 DOI: 10.1152/ajpheart.00107.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 01/12/2023]
Abstract
Two-pore K+ (K2p) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K2p channels in the heart. Comparing quantitative PCR expression of K2p channels between human heart tissue and iPSC-CMs revealed K2p1.1, K2p2.1, K2p5.1, and K2p17.1 to be higher expressed in cHVT, whereas K2p3.1 and K2p13.1 were higher in iPSC-CMs. Notably, K2p17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K2p2.1, K2p3.1, K2p6.1, and K2p17.1. Here, we report the expression level of 10 human K2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K2p17.1 as significantly reduced in niHF tissues and K2p4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias.NEW & NOTEWORTHY Two-pore K+ (K2p) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K2p channels.
Collapse
Affiliation(s)
- Sam Chai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| | - Drew M Nassal
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| | - Haiyan Liu
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| | | | - Angelina Ramirez-Navarro
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| | - Isabelle Deschênes
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; .,Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
5
|
Edwards AG, Louch WE. Species-Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546816686061. [PMID: 28469490 PMCID: PMC5392019 DOI: 10.1177/1179546816686061] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/20/2016] [Indexed: 12/17/2022]
Abstract
Although ventricular arrhythmia remains a leading cause of morbidity and mortality, available antiarrhythmic drugs have limited efficacy. Disappointing progress in the development of novel, clinically relevant antiarrhythmic agents may partly be attributed to discrepancies between humans and animal models used in preclinical testing. However, such differences are at present difficult to predict, requiring improved understanding of arrhythmia mechanisms across species. To this end, we presently review interspecies similarities and differences in fundamental cardiomyocyte electrophysiology and current understanding of the mechanisms underlying the generation of afterdepolarizations and reentry. We specifically highlight patent shortcomings in small rodents to reproduce cellular and tissue-level arrhythmia substrate believed to be critical in human ventricle. Despite greater ease of translation from larger animal models, discrepancies remain and interpretation can be complicated by incomplete knowledge of human ventricular physiology due to low availability of explanted tissue. We therefore point to the benefits of mathematical modeling as a translational bridge to understanding and treating human arrhythmia.
Collapse
Affiliation(s)
- Andrew G Edwards
- Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway.,Center for Cardiological Innovation, Simula Research Laboratory, Lysaker, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Dick IE, Limpitikul WB, Niu J, Banerjee R, Issa JB, Ben-Johny M, Adams PJ, Kang PW, Lee SR, Sang L, Yang W, Babich J, Zhang M, Bazazzi H, Yue NC, Tomaselli GF. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels (Austin) 2015; 10:20-32. [PMID: 26176690 DOI: 10.1080/19336950.2015.1051272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca(2+) signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field.
Collapse
Affiliation(s)
- Ivy E Dick
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Worawan B Limpitikul
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jacqueline Niu
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Rahul Banerjee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - John B Issa
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manu Ben-Johny
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Paul J Adams
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,b Kwantlen Polytechnic University ; Surrey , BC Canada
| | - Po Wei Kang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Shin Rong Lee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Lingjie Sang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Wanjun Yang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jennifer Babich
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manning Zhang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Hojjat Bazazzi
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Nancy C Yue
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Gordon F Tomaselli
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,c Division of Cardiology; Department of Medicine ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| |
Collapse
|
7
|
Rinné S, Kiper AK, Schlichthörl G, Dittmann S, Netter MF, Limberg SH, Silbernagel N, Zuzarte M, Moosdorf R, Wulf H, Schulze-Bahr E, Rolfes C, Decher N. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J Mol Cell Cardiol 2015; 81:71-80. [DOI: 10.1016/j.yjmcc.2015.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
|
8
|
Friedrich C, Rinné S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med 2015; 6:937-51. [PMID: 24972929 PMCID: PMC4119356 DOI: 10.15252/emmm.201303783] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analyzing a patient with progressive and severe cardiac conduction disorder combined with idiopathic ventricular fibrillation (IVF), we identified a splice site mutation in the sodium channel gene SCN5A. Due to the severe phenotype, we performed whole-exome sequencing (WES) and identified an additional mutation in the KCNK17 gene encoding the K2P potassium channel TASK-4. The heterozygous change (c.262G>A) resulted in the p.Gly88Arg mutation in the first extracellular pore loop. Mutant TASK-4 channels generated threefold increased currents, while surface expression was unchanged, indicating enhanced conductivity. When co-expressed with wild-type channels, the gain-of-function by G88R was conferred in a dominant-active manner. We demonstrate that KCNK17 is strongly expressed in human Purkinje cells and that overexpression of G88R leads to a hyperpolarization and strong slowing of the upstroke velocity of spontaneously beating HL-1 cells. Thus, we propose that a gain-of-function by TASK-4 in the conduction system might aggravate slowed conductivity by the loss of sodium channel function. Moreover, WES supports a second hit-hypothesis in severe arrhythmia cases and identified KCNK17 as a novel arrhythmia gene.
Collapse
Affiliation(s)
- Corinna Friedrich
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Sven Zumhagen
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Nicole Silbernagel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Michael F Netter
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| | - Birgit Stallmeyer
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Marburg, Germany
| |
Collapse
|
9
|
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch 2014; 467:1055-67. [PMID: 25404566 DOI: 10.1007/s00424-014-1637-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.
Collapse
|
10
|
Gauthier LD, Greenstein JL, Winslow RL. Toward an integrative computational model of the Guinea pig cardiac myocyte. Front Physiol 2012; 3:244. [PMID: 22783206 PMCID: PMC3389778 DOI: 10.3389/fphys.2012.00244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022] Open
Abstract
The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function.
Collapse
Affiliation(s)
- Laura Doyle Gauthier
- Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering Baltimore, MD, USA
| | | | | |
Collapse
|
11
|
Amuzescu B, Georgescu A, Nistor G, Popescu M, Svab I, Flonta ML, Dan Corlan A. Stability and sustained oscillations in a ventricular cardiomyocyte model. Interdiscip Sci 2012; 4:1-18. [DOI: 10.1007/s12539-012-0116-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/02/2011] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
|
12
|
Nerbonne JM. Molecular Analysis of Voltage‐Gated K
+
Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
|
14
|
Goonetilleke L, Quayle J. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovasc Ther 2010; 30:e23-9. [PMID: 20946320 DOI: 10.1111/j.1755-5922.2010.00227.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Potassium (K(+) ) channels are important in cardiovascular disease both as drug targets and as a cause of underlying pathology. Voltage-dependent K(+) (K(V) ) channels are inhibited by the class III antiarrhythmic agents. Certain vasodilators work by opening K(+) channels in vascular smooth muscle cells (VSMCs), and K(+) channel activation may also be a route to improving endothelial function. The two-pore domain K(+) (K(2P) ) channels form a group of 15 known channels with an expanding list of functions in the cardiovascular system. One of these K(2P) channels, TREK-1, is the focus of this review. TREK-1 channel activity is tightly regulated by intracellular and extracellular pH, membrane stretch, polyunsaturated fatty acids (PUFAs), temperature, and receptor-coupled second messenger systems. TREK-1 channels are also activated by volatile anesthetics and some neuroprotectant agents, and they are inhibited by selective serotonin reuptake inhibitors (SSRIs) as well as amide local anesthetics. Some of the clinical cardiovascular effects and side effects of these drugs may be through their actions on TREK-1 channels. It has recently been suggested that TREK-1 channels have a role in mechano-electrical coupling in the heart. They also seem important in the vascular responses to PUFAs, and this may underlie some of the beneficial cardiovascular effects of the essential dietary fatty acids. Development of selective TREK-1 openers and inhibitors may provide promising routes for intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Lakshman Goonetilleke
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
15
|
Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL. Integrative modeling of the cardiac ventricular myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:392-413. [PMID: 20865780 DOI: 10.1002/wsbm.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. WIREs Syst Biol Med 2011 3 392-413 DOI: 10.1002/wsbm.122
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute of Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Schneider HJ, Husser O, Rihm M, Fredersdorf S, Birner C, Dhein S, Muders F, Jeron A, Goegelein H, Riegger GA, Luchner A. Safety of the novel atrial-selective K+-channel blocker AVE0118 in experimental heart failure. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:225-32. [PMID: 18972103 DOI: 10.1007/s00210-008-0361-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/29/2008] [Indexed: 11/28/2022]
Abstract
Congestive heart failure (CHF) is often associated with atrial fibrillation. The safety of many antiarrhythmic drugs in CHF is limited by proarrhythmic effects. We aimed to assess the safety of a novel atrial-selective K(+)-channel blocker AVE0118 in CHF compared to a selective (dofetilide) and a non-selective IKr blocker (terfenadine). For the induction of CHF, rabbits (n = 12) underwent rapid right ventricular pacing (330-380 bpm for 30 days). AVE0118 (1 mg/kg) dofetilide (0.02 mg/kg) and terfenadine (2 mg/kg) were administered in baseline (BL) and CHF. A six-lead ECG was continuously recorded digitally for 30 min after each drug administration. At BL, dofetilide and terfenadine significantly prolonged QTc interval (218 +/- 30 ms vs 155 +/- 8 ms, p = 0.001 and 178 +/- 23 ms vs. 153 +/- 12 ms, p = 0.01, respectively) while QTc intervals were constant after administration of AVE0118 (p = n.s.). In CHF, dofetilide and terfenadine caused torsades de pointes and symptomatic bradycardia, respectively, and prolonged QTc interval (178 +/- 30 ms vs. 153 +/- 14 ms, p = 0.02 and 157 +/- 7 ms vs. 147 +/- 10 ms, p = 0.02, respectively) even at reduced dosages, whereas no QTc-prolongation or arrhythmia was observed after full-dose administration of AVE0118. In conclusion, atrial-selective K(+)-channel blockade by AVE0118 appears safe in experimental CHF.
Collapse
Affiliation(s)
- H-J Schneider
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sridhar A, da Cunha DNQ, Lacombe VA, Zhou Q, Fox JJ, Hamlin RL, Carnes CA. The plateau outward current in canine ventricle, sensitive to 4-aminopyridine, is a constitutive contributor to ventricular repolarization. Br J Pharmacol 2007; 152:870-9. [PMID: 17700726 PMCID: PMC2078232 DOI: 10.1038/sj.bjp.0707403] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE I(Kur) (Ultra-rapid delayed rectifier current) has microM sensitivity to 4-aminopyridine (4-AP) and is an important modulator of the plateau amplitude and action potential duration in canine atria. Kv1.5 encodes I(Kur) and is present in both atria and ventricles in canines and humans. We hypothesized that a similar plateau outward current with microM sensitivity to 4-AP is present in canine ventricle. EXPERIMENTAL APPROACH We used established voltage clamp protocols and used 4-AP (50 and 100 microM) to measure a plateau outward current in normal canine myocytes isolated from the left ventricular mid-myocardium. KEY RESULTS Action potential recordings in the presence of 4-AP showed significant prolongation of action potential duration at 50 and 90% repolarization at 0.5 and 1 Hz (P<0.05), while no prolongation occurred at 2 Hz. Voltage clamp experiments revealed a rapidly activating current, similar to current characteristics of canine atrial I(Kur), in approximately 70% of left ventricular myocytes. The IC(50) of 4-AP for this current was 24.2 microM. The concentration of 4-AP used in our experiments resulted in selective blockade of an outward current that was not I(to) or I(Kr). Beta-adrenergic stimulation with isoprenaline significantly increased the 4-AP sensitive outward current density (P<0.05), suggesting a role for this current during increased sympathetic stimulation. In silico incorporation into a canine ventricular cell model revealed selective AP prolongation after current blockade. CONCLUSIONS AND IMPLICATIONS Our results support the existence of a canine ventricular plateau outward current sensitive to micromolar 4-AP and its constitutive role in ventricular repolarization.
Collapse
Affiliation(s)
- A Sridhar
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Biophysics Program, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - D N Q da Cunha
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | - V A Lacombe
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Q Zhou
- Gene Network Sciences Ithaca, NY, USA
| | - J J Fox
- Gene Network Sciences Ithaca, NY, USA
| | - R L Hamlin
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | - C A Carnes
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Biophysics Program, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
- Author for correspondence:
| |
Collapse
|
18
|
Rudy Y, Silva JR. Computational biology in the study of cardiac ion channels and cell electrophysiology. Q Rev Biophys 2006; 39:57-116. [PMID: 16848931 PMCID: PMC1994938 DOI: 10.1017/s0033583506004227] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac cell is a complex biological system where various processes interact to generate electrical excitation (the action potential, AP) and contraction. During AP generation, membrane ion channels interact nonlinearly with dynamically changing ionic concentrations and varying transmembrane voltage, and are subject to regulatory processes. In recent years, a large body of knowledge has accumulated on the molecular structure of cardiac ion channels, their function, and their modification by genetic mutations that are associated with cardiac arrhythmias and sudden death. However, ion channels are typically studied in isolation (in expression systems or isolated membrane patches), away from the physiological environment of the cell where they interact to generate the AP. A major challenge remains the integration of ion-channel properties into the functioning, complex and highly interactive cell system, with the objective to relate molecular-level processes and their modification by disease to whole-cell function and clinical phenotype. In this article we describe how computational biology can be used to achieve such integration. We explain how mathematical (Markov) models of ion-channel kinetics are incorporated into integrated models of cardiac cells to compute the AP. We provide examples of mathematical (computer) simulations of physiological and pathological phenomena, including AP adaptation to changes in heart rate, genetic mutations in SCN5A and HERG genes that are associated with fatal cardiac arrhythmias, and effects of the CaMKII regulatory pathway and beta-adrenergic cascade on the cell electrophysiological function.
Collapse
Affiliation(s)
- Yoram Rudy
- Cardiac Bioelectricity & Arrhythmia Center, Department of Biomedical Engineering, Washington University, St. Louis, MO 63130-489, USA.
| | | |
Collapse
|
19
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
20
|
Physiology and Molecular Biology of Ion Channels Contributing to Ventricular Repolarization. CONTEMPORARY CARDIOLOGY 2003. [DOI: 10.1007/978-1-59259-362-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Makielski JC, Fozzard HA. Ion Channels and Cardiac Arrhythmia in Heart Disease. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Abstract
The normal electrophysiologic behavior of the heart is determined by ordered propagation of excitatory stimuli that result in rapid depolarization and slow repolarization, thereby generating action potentials in individual myocytes. Abnormalities of impulse generation, propagation, or the duration and configuration of individual cardiac action potentials form the basis of disorders of cardiac rhythm, a continuing major public health problem for which available drugs are incompletetly effective and often dangerous. The integrated activity of specific ionic currents generates action potentials, and the genes whose expression results in the molecular components underlying individual ion currents in heart have been cloned. This review discusses these new tools and how their application to the problem of arrhythmias is generating new mechanistic insights to identify patients at risk for this condition and developing improved antiarrhythmic therapies.
Collapse
Affiliation(s)
- Dan M Roden
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Genetic alterations of various ion channels produce heritable cardiac arrhythmias that predispose affected individuals to sudden death. The investigation of such 'channelopathies' continues to yield remarkable insights into the molecular basis of cardiac excitability. The concept of channelopathies is not restricted to genetic disorders; notably, changes in the expression or post-translational modification of ion channels underlie the fatal arrhythmias associated with heart failure. Recognizing the fundamental defects in channelopathies provides the basis for new strategies of treatment, including tailored pharmacotherapy and gene therapy.
Collapse
Affiliation(s)
- Eduardo Marbán
- Institute of Molecular Cardiobiology, The Johns Hopkis University, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Zilberberg N, Ilan N, Goldstein SA. KCNKØ: opening and closing the 2-P-domain potassium leak channel entails "C-type" gating of the outer pore. Neuron 2001; 32:635-48. [PMID: 11719204 DOI: 10.1016/s0896-6273(01)00503-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Essential to nerve and muscle function, little is known about how potassium leak channels operate. KCNKØ opens and closes in a kinase-dependent fashion. Here, the transition is shown to correspond to changes in the outer aspect of the ion conduction pore. Voltage-gated potassium (VGK) channels open and close via an internal gate; however, they also have an outer pore gate that produces "C-type" inactivation. While KCNKØ does not inactivate, KCNKØ and VGK channels respond in like manner to outer pore blockers, potassium, mutations, and chemical modifiers. Structural relatedness is confirmed: VGK residues that come close during C-type gating predict KCNKØ sites that crosslink (after mutation to cysteine) to yield channels controlled by reduction and oxidization. We conclude that similar outer pore gates mediate KCNKØ opening and closing and VGK channel C-type inactivation despite their divergent structures and physiological roles.
Collapse
Affiliation(s)
- N Zilberberg
- Department of Pediatrics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | |
Collapse
|
25
|
Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2001; 2:175-84. [PMID: 11256078 DOI: 10.1038/35058574] [Citation(s) in RCA: 500] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With a bang, a new family of potassium channels has exploded into view. Although KCNK channels were discovered only five years ago, they already outnumber other channel types. KCNK channels are easy to identify because of their unique structure--they possess two preforming domains in each subunit. The new channels function in a most remarkable fashion: they are highly regulated, potassium-selective leak channels. Although leak currents are fundamental to the function of nerves and muscles, the molecular basis for this type of conductance had been a mystery. Here we review the discovery of KCNK channels, what has been learned about them and what lies ahead. Even though two-P-domain channels are widespread and essential, they were hidden from sight in plain view--our most basic questions remain to be answered.
Collapse
Affiliation(s)
- S A Goldstein
- Department of Pediatrics and Cellular and Molecular Physiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
| | | | | | | |
Collapse
|
26
|
Zilberberg N, Ilan N, Gonzalez-Colaso R, Goldstein SA. Opening and closing of KCNKO potassium leak channels is tightly regulated. J Gen Physiol 2000; 116:721-34. [PMID: 11055999 PMCID: PMC2229483 DOI: 10.1085/jgp.116.5.721] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 10/02/2000] [Indexed: 02/01/2023] Open
Abstract
Potassium-selective leak channels control neuromuscular function through effects on membrane excitability. Nonetheless, their existence as independent molecular entities was established only recently with the cloning of KCNKO from Drosophila melanogaster. Here, the operating mechanism of these 2 P domain leak channels is delineated. Single KCNKO channels switch between two long-lived states (one open and one closed) in a tenaciously regulated fashion. Activation can increase the open probability to approximately 1, and inhibition can reduce it to approximately 0.05. Gating is dictated by a 700-residue carboxy-terminal tail that controls the closed state dwell time but does not form a channel gate; its deletion (to produce a 300-residue subunit with two P domains and four transmembrane segments) yields unregulated leak channels that enter, but do not maintain, the closed state. The tail integrates simultaneous input from multiple regulatory pathways acting via protein kinases C, A, and G.
Collapse
Affiliation(s)
- N Zilberberg
- Department of Pediatrics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
27
|
Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA. Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 2000; 275:16969-78. [PMID: 10748056 DOI: 10.1074/jbc.m001948200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potassium leak conductances were recently revealed to exist as independent molecular entities. Here, the genomic structure, cardiac localization, and biophysical properties of a murine example are considered. Kcnk3 subunits have two pore-forming P domains and unique functional attributes. At steady state, Kcnk3 channels behave like open, potassium-selective, transmembrane holes that are inhibited by physiological levels of proton. With voltage steps, Kcnk3 channels open and close in two phases, one appears to be immediate and one is time-dependent (tau = approximately 5 ms). Both proton block and gating are potassium-sensitive; this produces an anomalous increase in outward flux as external potassium levels rise because of decreased proton block. Single Kcnk3 channels open across the physiological voltage range; hence they are "leak" conductances; however, they open only briefly and rarely even after exposure to agents that activate other potassium channels.
Collapse
Affiliation(s)
- C M Lopes
- Section of Developmental Biology and Biophysics, Departments of Pediatrics and Cellular and Molecular Physiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
In the mammalian heart, Ca2+-independent, depolarization-activated potassium (K+) currents contribute importantly to shaping the waveforms of action potentials, and several distinct types of voltage-gated K+ currents that subserve this role have been characterized. In most cardiac cells, transient outward currents, Ito,f and/or Ito,s, and several components of delayed reactivation, including IKr, IKs, IKur and IK,slow, are expressed. Nevertheless, there are species, as well as cell-type and regional, differences in the expression patterns of these currents, and these differences are manifested as variations in action potential waveforms. A large number of voltage-gated K+ channel pore-forming (alpha) and accessory (beta, minK, MiRP) subunits have been cloned from or shown to be expressed in heart, and a variety of experimental approaches are being exploited in vitro and in vivo to define the relationship(s) between these subunits and functional voltage-gated cardiac K+ channels. Considerable progress has been made in defining these relationships recently, and it is now clear that distinct molecular entities underlie the various electrophysiologically distinct repolarizing K+ currents (i.e. Ito,f, Ito,s, IKr, IKs, IKur, IK,slow, etc.) in myocyardial cells.
Collapse
Affiliation(s)
- J M Nerbonne
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St Louis, MO 63110, USA.
| |
Collapse
|
29
|
Winslow RL, Scollan DF, Holmes A, Yung CK, Zhang J, Jafri MS. Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu Rev Biomed Eng 2000; 2:119-55. [PMID: 11701509 PMCID: PMC1403490 DOI: 10.1146/annurev.bioeng.2.1.119] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers.
Collapse
Affiliation(s)
- R L Winslow
- Whitaker Biomedical Engineering Institute, Department of Biomedical Engineering, Center for Computational Medicine and Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Kim Y, Bang H, Kim D. TBAK-1 and TASK-1, two-pore K(+) channel subunits: kinetic properties and expression in rat heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1669-78. [PMID: 10564119 DOI: 10.1152/ajpheart.1999.277.5.h1669] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mammalian K(+) channel subunit (TBAK-1/TASK-1) containing two pore domains and four transmembrane segments and whose mRNA is highly expressed in the heart has been cloned recently. TBAK-1 and TASK-1 are identical except for the additional nine amino acids in the NH(2) terminus of TBAK-1. We examined their kinetic properties, pH sensitivity, and regional cardiac mRNA expression and determined whether a native cardiac K(+) channel with similar kinetic properties was present. When TBAK-1 or TASK-1 was transiently expressed in COS-7 cells, time- and voltage-independent whole cell currents were observed. Single-channel conductances of TBAK-1 and TASK-1 were 14.6 +/- 1.0 and 13.8 +/- 2.8 pS, respectively, at -80 mV in 140 mM extracellular K(+), and the mean open times were 0.8 +/- 0.1 and 0.6 +/- 0.1 ms, respectively. Both TBAK-1 and TASK-1 were highly sensitive to extracellular pH such that a decrease from 7.2 to 6.4 reduced their open probability (P(o)) by 81 +/- 14% and 80 +/- 16%, whereas a decrease in intracellular pH from 7.2 to 6.4 reduced the P(o) by 42 +/- 10% and 47 +/- 12%, respectively. TBAK-1/TASK-1 mRNA was expressed in all regions of the rat heart, with the highest level of expression in the right atrium. A 14-pS K(+) channel with kinetic properties similar to those of TBAK-1/TASK-1 was identified in rat atrial and ventricular cells. These results indicate that TBAK-1/TASK-1 represents a functional native K(+) channel in the rat heart.
Collapse
Affiliation(s)
- Y Kim
- Department of Physiology, Chicago Medical School, Finch University of Health Sciences, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
31
|
Geelen P, Drolet B, Lessard E, Gilbert P, O'Hara GE, Turgeon J. Concomitant Block of the Rapid (I(Kr)) and Slow (I(Ks)) Components of the Delayed Rectifier Potassium Current is Associated With Additional Drug Effects on Lengthening of Cardiac Repolarization. J Cardiovasc Pharmacol Ther 1999; 4:143-150. [PMID: 10684535 DOI: 10.1177/107424849900400303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND: The delayed rectifier potassium current, which comprises both a rapid (I(Kr)) and as slow (I(Ks)) component, is a major outward current involved in repolarization of cardiac myocytes. I(Kr) is the target of most drugs that prolong repolarization, whereas electrophysiological effects resulting from combined block of I(Kr) and I(Ks) still need to be characterized. METHODS AND RESULTS: Studies in isolated, buffer-perfused guinea pig hearts were undertaken to compare lengthening of cardiac repolarization under conditions of I(Kr) block alone, I(Ks) Block alone, or combined block of I(Kr) and I(Ks). In protocol A, isolated perfusion with N-acetylprocainamide (NAPA) (I(Kr) block), indapamide (I(Ks) block), or combined NAPA/indapamide was performed at a pacing cycle length of 250 msec. Increases in monophasic action potential duration measured at 90% polarization (MAPD(90)) from baseline after perfusion with NAPA 100 µmol/L (IC(50) for block of I(Kr)) was 19 +/- 6 msed (P <.05), after indapamide 100 µmol/L (EC(50) for block of I(Ks)) 13 +/- 2 msec (P <.05), but 42 +/- 5 msec after combined NAPA 100 µmol/L and indapamide 100 µmol/L (P <.05 vs. baseline and isolated administrations), suggesting the possibility of excessive lengthening of cardiac repolarization by blocking both I(Kr) and I(Ks). As well, in protocol B where sequential perfusions with dofetilide (I(Kr) blocker), dofetilide/indapamide, and indapamide in the same hearts were used, combined dofetilide/indapamide infusion showed a greater increase in MAPD(90) during all pacing cycles studied (250 to 150 msec). CONCLUSIONS: Combined I(Kr) and I(Ks) block may lead to excessive lengthening of cardiac repolarization. This may predispose patients to proarrhythmia during coadministration of drugs.
Collapse
Affiliation(s)
- P Geelen
- Quebec Heart Institute, Sainte-Foy, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Chapter 12 Potassium Channels with Two P Domains. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
34
|
Abstract
As in neurons, depolarization-activated, Ca2+-independent outward K+ currents play prominent roles in shaping the waveforms of action potentials in myocardial cells. Several different types of voltage-gated K+ currents that contribute to the distinct phases of action potential repolarization have been characterized in myocardial cells isolated from different species, as well as in cells isolated from different regions of the heart in the same species. Important among these are the transient outward current, I(to), similar to the neuronal K+ current IA, and several components of delayed rectification, including I(Kr)[IK(rapid)], I(Ks)(IK(slow)], and I(Kur)[IK(ultrarapid)]. The properties of these currents in different species and cell types are remarkably similar, suggesting that the molecular correlates of functional voltage-gated K+ channel types are also the same. A number of voltage-gated K+ channel (Kv) pore-forming (alpha) and accessory (beta) subunits have now been cloned from heart cDNA libraries, and a variety of experimental approaches are being exploited to determine the molecular relationships between these subunits and functional voltage-gated myocardial K+ channels. Considerable progress has been made recently in defining these relationships, and the results obtained to date indeed suggest that distinct molecular entities underlie the different types of voltage-gated K+ channels characterized electrophysiologically in myocardial cells. Marked changes in the densities and/or the properties of voltage-gated K+ currents occur during normal cardiac development, as well as in conjunction with myocardial damage or disease, and there is considerable interest in understanding the molecular mechanisms underlying these changes. Although there is evidence for transcriptional, translational, and posttranslational regulation of functional voltage-gated K+ channel expression, we are only beginning to understand the underlying mechanisms; further studies focussed on delineating the molecular mechanisms controlling functional K+ channel expression are clearly warranted.
Collapse
Affiliation(s)
- J M Nerbonne
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA
| |
Collapse
|
35
|
Casis O, Iriarte M, Gallego M, Sánchez-Chapula JA. Differences in regional distribution of K+ current densities in rat ventricle. Life Sci 1998; 63:391-400. [PMID: 9714426 DOI: 10.1016/s0024-3205(98)00287-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of the present work is to study the ionic mechanisms for the regional differences in action potential duration in rat ventricle. This regional diversity has been related to differences in the regional distribution of some potassium currents in several species. Single cells were obtained by enzymatic dispersion of tissue segments from rat ventricular muscle. Whole cell voltage-clamp methods were used to identify the K+ currents involved in action potential repolarisation in the different regions. 4-Aminopiridine, TEA and voltage protocols were used to isolate the following potassium currents: transient outward, Ito, delayed rectifier, Ik, and sustained current, Iss. In the present work, we have studied the distribution of these three repolarising currents, and that of the inward rectifier, Ikl, in the free wall of the right ventricle, the subepicardium of the apex of the left ventricle and in the subendocardium of the base of the left ventricle. Action potential duration was longer in the left than in the right ventricle, and in the former it was longer in the subendocardium of the base than in the subepicardium of the apex. The main difference was in the phase 1, suggesting the implication of Ito. This was confirmed with voltage-clamp experiments. In conclusion, this work shows that Ito current density is higher in the regions with the shorter action potential, whereas there are no differences in the regional distribution of Ik, Iss or Ikl.
Collapse
Affiliation(s)
- O Casis
- University of the Basque Country, School of Pharmacy, Department of Physiology, Bilbao, Spain.
| | | | | | | |
Collapse
|
36
|
Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 1998; 17:3297-308. [PMID: 9628867 PMCID: PMC1170668 DOI: 10.1093/emboj/17.12.3297] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TWIK-1, TREK-1 and TASK K+ channels comprise a class of pore-forming subunits with four membrane-spanning segments and two P domains. Here we report the cloning of TRAAK, a 398 amino acid protein which is a new member of this mammalian class of K+ channels. Unlike TWIK-1, TREK-1 and TASK which are widely distributed in many different mouse tissues, TRAAK is present exclusively in brain, spinal cord and retina. Expression of TRAAK in Xenopus oocytes and COS cells induces instantaneous and non-inactivating currents that are not gated by voltage. These currents are only partially inhibited by Ba2+ at high concentrations and are insensitive to the other classical K+ channel blockers tetraethylammonium, 4-aminopyridine and Cs+. A particularly salient feature of TRAAK is that they can be stimulated by arachidonic acid (AA) and other unsaturated fatty acids but not by saturated fatty acids. These channels probably correspond to the functional class of fatty acid-stimulated K+ currents that recently were identified in native neuronal cells but have not yet been cloned. These TRAAK channels might be essential in normal physiological processes in which AA is known to play an important role, such as synaptic transmission, and also in pathophysiological processes such as brain ischemia. TRAAK channels are stimulated by the neuroprotective drug riluzole.
Collapse
Affiliation(s)
- M Fink
- Institut de Pharmacologie Moléculaire et Cellulaire-CNRS-UPR 411, Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC. Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin Electrophysiol 1997; 20:388-96. [PMID: 9058843 DOI: 10.1111/j.1540-8159.1997.tb06198.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The molecular basis of the potassium ion (K+) channels that generate repolarization in heart tissue remains uncertain, in part because of the molecular diversity of the voltage-gated K+ channel family. In our investigation, we used fluorescent labeled oligonucleotide probes to perform in situ hybridization studies on enzymatically isolated myocytes to determine the identity, regional distribution, and cellular distribution of voltage-gated K+ channel, alpha-subunit mRNA expressed in ferret heart. The regions studied were from the sinoatrial node (SA), right and left atrium, right and left ventricle, and interatrial and interventricular septa. Kv1.5 and Kv1.4 were the most widely distributed K+ channel transcripts in the ferret heart (present in approximately 70%-86% and approximately 46%-95% of tested myocytes, respectively), followed by Kv1.2, Kv2.1, and Kv4.2. In addition, many myocytes contain transcripts for Kv1.3, Kv2.2, Kv4.1, Kv5.1, and members of the Kv3 family. Kv1.1, Kv1.6, and Kv6.1 were rarely expressed in working myocytes, but were more commonly expressed in SA nodal cells. Two other transcripts whose genes have been implicated in the long QT syndrome, erg and KvLQT1, were common in all regions (approximately 41%-58% and 52%-72%, respectively). These results show that both the diversity and heterogeneity of K+ channel mRNA in heart tissue is greater than previously suspected.
Collapse
Affiliation(s)
- M V Brahmajothi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina USA
| | | | | | | | | |
Collapse
|
38
|
Yue L, Feng J, Li GR, Nattel S. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization. J Physiol 1996; 496 ( Pt 3):647-62. [PMID: 8930833 PMCID: PMC1160853 DOI: 10.1113/jphysiol.1996.sp021716] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Depolarizing pulses positive to 0 mV elicit a transient outward current (Ito) and a sustained 'pedestal' current in canine atrial myocytes. The pedestal current was highly sensitive to 4-aminopyridine (4-AP) and TEA, with 50% inhibitory concentrations (EC50) of 5.3 +/- 0.7 and 307 +/- 25 microM, respectively. When the pedestal current was separated from Ito with prepulses or by studying current sensitive to 10 mM TEA, it showed very rapid activation and deactivation. We therefore designated the current IKur,d, for 'ultrarapid delayed rectifier, dog'. IKur,d inactivation was bi-exponential, with mean time constants of 609 +/- 91 and 5563 +/- 676 ms during a 20 s pulse to +40 mV. 2. The reversal potential of IKur,d tail currents are dependent on extracellular potassium concentration ([K+]o; slope, 54.7 mV decade-1). The envelope of tails test was satisfied and the current inwardly rectified at > or = +40 mV. The current was insensitive to E-4031, dendrotoxin and chloride substitution, but was inhibited by barium, with an EC50 of 1.65 mM. Lanthanum ions caused a positive shift in voltage dependence without producing direct inhibition. 3. Single-channel activity was observed in cell-attached, inside-out and outside-out patches. Upon depolarization from -50 to +30 mV, single channels had similar time constants and [K+]o dependence to whole-cell current. Channel open probability (Po) increased with depolarization in a saturable fashion and the Po-voltage relation had a half-activation voltage and slope factor similar to whole-cell IKur,d. 4. Unitary channel current was linearly related to depolarization potential to +40 mV; at more positive potentials, inward rectification occurred. The unitary conductance was 20.3 and 35.5 pS for an [K+]o of 5.4 and 130 mM, respectively. Single-channel activity was strongly inhibited by 50 microM 4-AP or 10 mM TEA. Both 4-AP and TEA decreased open time, suggesting open-channel block. 5. Selective inhibition of IKur,d with 50 microM 4-AP or 0.3-5 mM TEA prolonged canine atrial action potentials, indicating that IKur,d contributes to canine atrial repolarization. The single-channel and macroscopic properties of IKur,d have many similarities to those of currents carried by Kv3.1 cloned channels and our findings thus suggest a possible role for Kv3.1 channels in cardiac repolarization.
Collapse
Affiliation(s)
- L Yue
- Department of Medicine, Montreal Heart Institute, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 1996; 94:1996-2012. [PMID: 8873679 DOI: 10.1161/01.cir.94.8.1996] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The congenital long-QT syndrome (LQTS) is characterized by prolonged QT intervals, QT interval lability, and polymorphic ventricular tachycardia. The manifestations of the disease vary, with a high incidence of sudden death in some affected families but not in others. Mutations causing LQTS have been identified in three genes, each encoding a cardiac ion channel. In families linked to chromosome 3, mutations in SCN5A, the gene encoding the human cardiac sodium channel, cause the disease, Mutations in the human ether-à-go-go-related gene (HERG), which encodes a delayed-rectifier potassium channel, cause the disease in families linked to chromosome 7. Among affected individuals in families linked to chromosome 11, mutations have been identified in KVLQT1, a newly cloned gene that appears to encode a potassium channel. The SCN5A mutations result in defective sodium channel inactivation, whereas HERG mutations result in decreased outward potassium current. Either mutation would decrease net outward current during repolarization and would thereby account for prolonged QT intervals on the surface ECG. Preliminary data suggest that the clinical presentation in LQTS may be determined in part by the gene affected and possibly even by the specific mutation. The identification of disease genes in LQTS not only represents a major milestone in understanding the mechanisms underlying this disease but also presents new opportunities for combined research at the molecular, cellular, and clinical levels to understand issues such as adrenergic regulation of cardiac electrophysiology and mechanisms of susceptibility to arrhythmias in LQTS and other settings.
Collapse
Affiliation(s)
- D M Roden
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The contribution of Na+, Ca2+, and various K+ currents to the shape of the cardiac action potential is outlined based on the relation between electrophysiological properties and structure of channel molecules. These currents have also been found in human ventricular myocytes, where the most prominent K+ current is a transient outward current that is not influenced by methylsulfonanilide antiarrhythmic drugs. Combined knowledge of electrophysiological and molecular properties of ion channels is likely to form the basis for rational design of future drugs.
Collapse
Affiliation(s)
- U Ravens
- Department of Pharmacology, University of Essen, Germany
| | | | | | | | | |
Collapse
|
41
|
England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM. A novel K+ channel beta-subunit (hKv beta 1.3) is produced via alternative mRNA splicing. J Biol Chem 1995; 270:28531-4. [PMID: 7499366 DOI: 10.1074/jbc.270.48.28531] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Voltage-gated K+ channels can form multimeric complexes with accessory beta-subunits. We report here a novel K+ channel beta-subunit cloned from human heart, hKv beta 1.3, that has 74-83% overall identity with previously cloned beta-subunits. Comparison of hKv beta 1.3 with the previously cloned hKv beta 3 and rKv beta 1 proteins indicates that the carboxyl-terminal 328 amino acids are identical, while unique variable length amino termini exist. Analysis of human beta-subunit cDNA and genomic nucleotide sequences confirm that these three beta-subunits are alternatively spliced from a common beta-subunit gene. Co-expression of hKv beta 1.3 in Xenopus oocytes with the delayed rectifier hKv1.5 indicated that hKv beta 1.3 has unique functional effects. This novel beta-subunit induced a time-dependent inactivation during membrane voltage steps to positive potentials, induced a 13-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 13 +/- 0.5 ms versus 35 +/- 1.7 ms at -40 mV). Most notably, hKv beta 1.3 converted the Kv1.5 outwardly rectifying current voltage relationship to one showing strong inward rectification. These data suggest that Kv channel current diversity may arise from association with alternatively spliced Kv beta-subunits. A simplified nomenclature for the K+ channel beta-subunit subfamilies is suggested.
Collapse
Affiliation(s)
- S K England
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Ion currents were examined in isolated human atrial myocytes by using the whole-cell patch-clamp technique. When currents were recorded with a K(+)-containing pipette solution, depolarizing voltage pulses elicited a rapidly activating outward current that decayed to an apparent steady state. Exposure of cells to 10 mmol/L 4-aminopyridine markedly reduced current amplitude; however, a rapidly activating current that was approximately 30% of the steady state current amplitude remained. When pipette K+ was replaced with Cs+, a similar rapidly activating current that reversed polarity at approximately 0 mV was recorded. This current was seen in 100% of the cells tested from 17 different hearts (n = 142), and its amplitude was approximately 40% of the amplitude of the steady state current recorded in the presence of pipette K+. The current amplitude was not significantly different in cells isolated from adult (6.31 +/- 1.35 pA/pF, n = 8) and pediatric (5.54 +/- 1.04 pA/pF, n = 9) hearts. Studies designed to determine the charge-carrying species indicated that changes in bath Cl- concentration had no effect on either the amplitude or the reversal potential of this current, whereas removal of pipette Cs+ and bath Na+ dramatically reduced this current. In addition, this current was not modulated by either isoproterenol (1 mumol/L, 22 degrees C) or cell swelling. This study provides the first description of a nonselective cation current in human atrial myocytes, which may play an important role in repolarization in human atria.
Collapse
Affiliation(s)
- W J Crumb
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | | | | |
Collapse
|
43
|
Sasaki Y, Ishii K, Nunoki K, Yamagishi T, Taira N. The voltage-dependent K+ channel (Kv1.5) cloned from rabbit heart and facilitation of inactivation of the delayed rectifier current by the rat beta subunit. FEBS Lett 1995; 372:20-4. [PMID: 7556635 DOI: 10.1016/0014-5793(95)00954-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a cDNA coding for a delayed rectifier K+ channel (RBKV1.5) from rabbit heart. The amino acid sequence of RBKV1.5 displays a homology to that of other K+ channels of Kv1.5 class. Overall amino acid identity between RBKV1.5 channel and Kv1.5 channel of other species is about 85%. RNA blot analysis revealed the expression of the primary transcript in various rabbit tissues, at the highest level in both the atrium and ventricle. When expressed in Xenopus oocytes, RBKV1.5 current showed a delayed rectifier type characteristics, which was converted to rapidly inactivating currents upon coexpression with a beta subunit.
Collapse
Affiliation(s)
- Y Sasaki
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
44
|
Whalley DW, Wendt DJ, Grant AO. Basic concepts in cellular cardiac electrophysiology: Part I: Ion channels, membrane currents, and the action potential. Pacing Clin Electrophysiol 1995; 18:1556-74. [PMID: 7479177 DOI: 10.1111/j.1540-8159.1995.tb06742.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D W Whalley
- Duke University Medical Center, Durham, North Carolina 27706, USA
| | | | | |
Collapse
|
45
|
England SK, Uebele VN, Shear H, Kodali J, Bennett PB, Tamkun MM. Characterization of a voltage-gated K+ channel beta subunit expressed in human heart. Proc Natl Acad Sci U S A 1995; 92:6309-13. [PMID: 7603988 PMCID: PMC41507 DOI: 10.1073/pnas.92.14.6309] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.
Collapse
Affiliation(s)
- S K England
- Department of Molecular Physiology, Vanderbilt University of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 1995; 77:140-52. [PMID: 7788872 DOI: 10.1161/01.res.77.1.140] [Citation(s) in RCA: 297] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two distinct delayed rectifier K+ currents, IKr and IKs, were found recently in ventricular cells. We formulated these currents theoretically and investigated their roles in action potential repolarization and the restitution of action potential duration (APD). The Luo-Rudy (L-R) model of the ventricular action potential was used in the simulations. The single delayed rectifier K+ current in the model was replaced by IKr and IKs. Our results show that IKs is the major outward current during the plateau repolarization. A specific block of either IKr or IKs can effectively prolong APD to the same degree. Therefore, either channel provides a target for class III antiarrhythmic drugs. In the simulated guinea pig ventricular cell, complete block of IKr does not result in early afterdepolarizations (EADs). In contrast, > 80% block of IKs results in abnormal repolarization and EADs. This behavior reflects the high IKs-to-IKr density ratio (approximately 8:1) in this cell and can be reversed (ie, IKr block can cause EADs) by reducing the ratio of IKs to IKr. The computed APD restitution curve is consistent with the experimental behavior, displaying fast APD variation at short diastolic intervals (DIs) and downward shift at longer DIs with the decrease of basic drive cycle length (BCL). Examining the ionic currents and their underlying kinetic processes, we found that activation of both IKr and IKs is the primary determinant of the APD restitution at shorter DIs, with Ca2+ current through L-type channels (ICa) playing a minor role. The rate of APD change depends on the relative densities of IKr and IKs; it increases when the IKr-to-IKs density ratio is large. The BCL-dependent shift of restitution at longer DIs is primarily attributed to long-lasting changes in [Ca2+]i. This in turn causes different degrees of Ca(2+)-dependent inactivation of ICa and different degrees of Ca(2+)-dependent conductance of IKs at very long DIs (> 5 s) for different BCLs. This BCL dependence of ICa and IKs that is secondary to long-lasting changes in [Ca2+]i is responsible for APD changes at long DIs and can be viewed as a "memory property" of cardiac cells.
Collapse
Affiliation(s)
- J Zeng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
47
|
Yang T, Snyders DJ, Roden DM. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation 1995; 91:1799-806. [PMID: 7882490 DOI: 10.1161/01.cir.91.6.1799] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ibutilide is an action potential-prolonging antiarrhythmic currently in clinical trials. The drug shares structural similarities with E-4031 and dofetilide, specific blockers of the rapidly activating delayed rectifier K+ current (IKr). However, previous in vitro studies in guinea pig myocytes have indicated that ibutilide does not block IKr but rather increases a slow inward sodium current. METHODS AND RESULTS In this study, we compared the effects of ibutilide with those of dofetilide on outward current in mouse atrial tumor myocytes (AT-1 cells), a preparation in which, unlike guinea pig, a typical IKr is the major delayed rectifier and can be readily recorded in isolation from other currents. In AT-1 cells, ibutilide and dofetilide were both potent IKr blockers, with EC50 values of 20 (n = 12) and 12 (n = 8) nmol/L, respectively, at +20 mV. The time and voltage dependence of IKr inhibition by the two compounds were virtually identical. The following characteristics were most consistent with open channel block: (1) block increased with depolarizing pulses; (2) block increased with longer pulses; (3) currents deactivated more slowly in the presence of drug, resulting in a "crossover" typical of open channel block; and (4) with repetitive pulsing after drug wash-in, use-dependent block was observed. CONCLUSIONS These data suggest that the clinical actions of ibutilide are mediated at least in part by block of IKr; an effect on inward currents is not excluded. AT-1 cells are a useful model system for the study of drug block of this important repolarizing current.
Collapse
Affiliation(s)
- T Yang
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn 37232-6602
| | | | | |
Collapse
|
48
|
Delpón E, Valenzuela C, Pérez O, Casis O, Tamargo J. Propafenone preferentially blocks the rapidly activating component of delayed rectifier K+ current in guinea pig ventricular myocytes. Voltage-independent and time-dependent block of the slowly activating component. Circ Res 1995; 76:223-35. [PMID: 7834833 DOI: 10.1161/01.res.76.2.223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of propafenone on the delayed rectifier K+ current were studied in guinea pig ventricular myocytes by using the patch-clamp technique. In these myocytes, this current consists of at least two components: a La(3+)-sensitive component activating rapidly with moderate depolarizations and a La(3+)-resistant current slowly activating at more positive potentials. In the absence of La3+ (when both components are present), propafenone inhibited the delayed outward current, its effects being more marked after weak than after strong depolarizations. Propafenone-induced block of the tail currents elicited on return to -30 mV was more marked after short than after long depolarizing pulses. In the presence of 1 mumol/L propafenone, the envelope-of-tails test was satisfied, thus indicating that at this concentration propafenone completely blocks the rapidly activating component. In the presence of La3+ (when only the slow component is present), the steady state inhibition induced by 5 mumol/L propafenone on both the maximum activated and the tail currents was independent of the test pulse voltage. Development of propafenone-induced block on the slowly activating component was very fast and linked to channel opening. In addition, the blockade appeared to be use dependent, with the rate constant of the onset kinetics at 2 Hz being 0.44 +/- 0.1 pulse-1. The recovery process from propafenone-induced block exhibited a time constant of 2.5 +/- 0.4 s. These results indicated that propafenone preferentially inhibits the rapidly activating component of the delayed rectifier and that it blocks in a voltage-independent and time-dependent manner the slow component of this current.
Collapse
Affiliation(s)
- E Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Turgeon J, Daleau P, Bennett PB, Wiggins SS, Selby L, Roden DM. Block of IKs, the slow component of the delayed rectifier K+ current, by the diuretic agent indapamide in guinea pig myocytes. Circ Res 1994; 75:879-86. [PMID: 7923634 DOI: 10.1161/01.res.75.5.879] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is a high incidence of diuretic use among patients who develop exaggerated QT prolongation and polymorphic ventricular tachycardia (torsade de pointes) during treatment with action potential-prolonging agents. Diuretic-induced hypokalemia is thought to be the usual mechanism, but a direct effect of diuretic drugs on repolarizing currents is an additional possibility. Therefore, in this study, we examined the effects of the diuretic agents chlorthalidone and indapamide on the cardiac delayed rectifier current. In guinea pig ventricular myocytes, this current is made up of two components: IKr, a rapidly activating, inwardly rectifying current blocked by most action potential-prolonging antiarrhythmics, and IKs, a slowly activating component. In this preparation, indapamide blocked outward current in a time-, voltage- and concentration-dependent fashion, whereas chlorthalidone (1 mmol/L) was without effect. The following features of the effect of indapamide strongly suggest selective block of IKs: (1) Indapamide block was significantly greater with 5000-millisecond activating pulses (-43 +/- 5% at +50 mV [100 mumol/L indapamide]) than with 225-millisecond ones (-20 +/- 5%; n = 5, P < .01), and the signature of the indapamide-sensitive current was a slowly activating delayed rectifier current. (2) The voltage dependence of indapamide block (EC50, 101 mumol/L at +50 mV and 196 mumol/L at +10 mV) was consistent with preferential block of IKs relative to IKr. (3) In the presence of indapamide, an envelope-of-tails test for IKr was satisfied. The drug-insensitive current had rectifying properties similar to those described for IKr in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Turgeon
- Department of Pharmacology, Vanderbilt University, Nashville, Tenn
| | | | | | | | | | | |
Collapse
|
50
|
|