1
|
Vandewint AL, Zhu-Pawlowsky AJ, Kirby A, Tattersall GJ, Pamenter ME. Evaporative cooling and vasodilation mediate thermoregulation in naked mole-rats during normoxia but not hypoxia. J Therm Biol 2019; 84:228-235. [DOI: 10.1016/j.jtherbio.2019.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
2
|
Iriki M, Simon E. Differential control of efferent sympathetic activity revisited. J Physiol Sci 2012; 62:275-98. [PMID: 22614392 PMCID: PMC10717676 DOI: 10.1007/s12576-012-0208-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/21/2012] [Indexed: 11/27/2022]
Abstract
This article reviews 40 years of research (1970-2010) into the capability of the efferent sympathetic nervous system to display differential responsiveness. Discovered first were antagonistic changes of activity in sympathetic filaments innervating functionally different sections of the cardiovascular system in response to thermal stimulation. During the subsequent four decades of investigation, a multitude of differential sympathetic efferent response patterns were identified, ranging from opposing activity changes at the level of multi-fiber filaments innervating different organs to the level of single fibers controlling functionally different structures in the same organ. Differential sympathetic responsiveness was shown to be displayed in response to exogenous or artificial stimulation of afferent sensory fibers transmitting particular exogenous stimuli, especially those activating peripheral nociceptors. Moreover, sympathetic differentiation was found to be characteristic of autonomic responses to environmental changes by which homeostasis in the broadest sense would be challenged. Heat or cold loads or their experimental equivalents, altered composition of inspired air or changes in blood gas composition, imbalances of body fluid control, and exposure to agents challenging the immune system were shown to elicit differential efferent sympathetic response patterns which often displayed a high degree of specificity. In summary, autonomic adjustments to changes of biometeorological parameters may be considered as representative of the capability of the sympathetic nervous system to exert highly specific efferent control of organ functions by which bodily homeostasis is maintained.
Collapse
|
3
|
Abstract
Studies completed in human subjects have made seminal contributions to understanding the effects of age on sympathetic nervous system (SNS) regulation. Numerous experimental constraints limit the design of studies involving human subjects; therefore, completion of studies in animal models of aging would be expected to provide additional insight regarding mechanisms mediating age-related changes in sympathetic nerve discharge (SND) regulation. The present review assesses the current state of the literature regarding contributions from animal studies on the effects of advancing age on SND regulation, focusing primarily on studies that have used direct recordings of sympathetic nerve outflow. Few studies using direct SND recordings have been completed in animal models of aging, regardless of the fundamental component of SND regulation reviewed (basal levels, acute responsiveness, relationships between the discharges in sympathetic nerves, central neural regulation). SNS responsiveness to various acute stressors is altered in aged compared with young animals; however, mechanisms remain virtually unexplored. There is a marked dearth of studies that have used central neural microinjection techniques in conjunction with SND recordings in aged animals, making it difficult to develop an evidence-based framework regarding potential age-associated effects on central regulation of SND. Determination of age-related changes in mechanisms regulating SND is important for understanding relationships between chronic disease development and changes in SNS function; however, this can only be achieved by substantially extending the current knowledge base regarding the effects of age on SND regulation in animal studies.
Collapse
Affiliation(s)
- Michael J Kenney
- Dept. of Anatomy and Physiology, Kansas State Univ., Coles Hall 228, Manhattan, KS 66506, USA.
| |
Collapse
|
4
|
Scott GR, Cadena V, Tattersall GJ, Milsom WK. Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds. J Exp Biol 2008; 211:1326-35. [DOI: 10.1242/jeb.015958] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe objectives of this study were to compare the thermoregulatory,metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (Tb) during hypoxia, by up to 1–1.5°C in severe hypoxia. During prolonged hypoxia, Tb stabilized at a new lower temperature. A regulated increase in heat loss contributed to Tb depression as reflected by increases in bill surface temperatures (up to 5°C) during hypoxia. Bill warming required peripheral chemoreceptor inputs, since vagotomy abolished this response to hypoxia. Tb depression could still occur without bill warming, however, because vagotomized birds reduced Tb as much as intact birds. Compared to both greylag geese and pekin ducks, bar-headed geese required more severe hypoxia to initiate Tb depression and heat loss from the bill. However, when Tb depression or bill warming were expressed relative to arterial O2 concentration (rather than inspired O2) all species were similar; this suggests that enhanced O2 loading,rather than differences in thermoregulatory control centres, reduces Tb depression during hypoxia in bar-headed geese. Correspondingly, bar-headed geese maintained higher rates of metabolism during severe hypoxia (7% inspired O2), but this was only partly due to differences in Tb. Time domains of the hypoxic ventilatory response also appeared to differ between bar-headed geese and low altitude species. Overall, our results suggest that birds can adjust peripheral heat dissipation to facilitate Tb depression during hypoxia,and that bar-headed geese minimize Tb and metabolic depression as a result of evolutionary adaptations that enhance O2transport.
Collapse
Affiliation(s)
- Graham R. Scott
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4,Canada
| | - Viviana Cadena
- Department of Biological Sciences, Brock University, St Catherines, ON, L25 3A1, Canada
| | - Glenn J. Tattersall
- Department of Biological Sciences, Brock University, St Catherines, ON, L25 3A1, Canada
| | - William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4,Canada
| |
Collapse
|
5
|
Johnson C, Hudson S, Marshall J. Responses evoked in single sympathetic nerve fibres of the rat tail artery by systemic hypoxia are dependent on core temperature. J Physiol 2007; 584:221-33. [PMID: 17702816 PMCID: PMC2156196 DOI: 10.1113/jphysiol.2007.139360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
No direct evidence exists of the changes evoked by systemic hypoxia in sympathetic nerves to the rat cutaneous circulation, and of the concomitant changes in cutaneous blood flow. Here we investigated responses evoked by two levels of systemic hypoxia (12% and 8% inspired O(2)) in single sympathetic units supplying tail caudal ventral artery (CVA) in spontaneously breathing anaesthetized rats, whilst simultaneously recording tail blood flow and vascular resistance (TVR) from the CVA, under conditions of modest hypothermia and hyperthermia. During modest hypothermia and normoxia, TVR was high and CVA unit activity was present, with marked respiratory modulation and a rhythmictiy (T-rhythm) that was often independent of respiration. Hypoxia evoked a graded fall in TVR indicating vasodilatation, but there were no consistent changes in CVA unit firing rate or T-rhythm frequency, although respiratory modulation increased. By contrast, during hyperthermia, TVR was low and CVA unit activity was absent. Systemic hypoxia evoked graded increases in TVR, indicating vasoconstriction, and in 8% O(2) there was recommencement of firing in some CVA units, at low discharge rate, with respiratory modulation but no T-rhythm. These results indicate that the changes evoked by systemic hypoxia in TVR and sympathetic nerve activity to CVA are dependent on core temperature. During modest hypothermia, hypoxia-induced cutaneous vasodilatation in the tail is independent of sympathetic activity, whereas during hyperthermia, when sympathetic activity is 'switched off', severe hypoxia initiates respiratory-related low level activity, causing cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Christopher Johnson
- Cell and Metabolic Signalling Research Group, Medical Biology Centre, Queen's University of Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK.
| | | | | |
Collapse
|
6
|
Koganezawa T, Terui N. Differential responsiveness of RVLM sympathetic premotor neurons to hypoxia in rabbits. Am J Physiol Heart Circ Physiol 2006; 292:H408-14. [PMID: 16997887 DOI: 10.1152/ajpheart.00881.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine whether differential sympathetic nerve responses to hypoxia are explained by opposing effects of hypoxia upon sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM), the cardiac sympathetic nerve and the renal sympathetic nerve were recorded in anesthetized and vagotomized rabbits. Renal sympathetic nerve was activated by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas (3% oxygen-97% nitrogen). On the other hand, cardiac sympathetic nerve was inhibited by these stimuli. Barosensitive (inhibited by the stimulation of baroreceptor afferents) reticulospinal (antidromically activated by the stimulation of the spinal cord) neurons in the RVLM were divided into three groups according to their responses to hypoxic stimulation: neurons (Type I, n = 25), the activity of which was inhibited by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas, neurons (Type II, n = 99), the activity of which was facilitated by the same stimulation, and neurons (Type III, n = 11), the activity of which was not changed. These data indicated that the differential responses of cardiac and renal sympathetic nerves might be due to opposing effects of hypoxia on individual RVLM neurons.
Collapse
Affiliation(s)
- Tadachika Koganezawa
- Dept. of Physiology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575, Japan
| | | |
Collapse
|
7
|
Helwig BG, Parimi S, Ganta CK, Cober R, Fels RJ, Kenney MJ. Aging alters regulation of visceral sympathetic nerve responses to acute hypothermia. Am J Physiol Regul Integr Comp Physiol 2006; 291:R573-9. [PMID: 16497812 DOI: 10.1152/ajpregu.00903.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia. Whether aging alters the responsiveness of sympathetic nerves innervating other targets during acute cooling is not known. In the present study, using multifiber recordings of splenic, renal, and adrenal sympathetic nerve activity, we tested the hypothesis that hypothermia-induced changes in visceral SND would be attenuated in middle-aged and aged compared with young Fischer 344 (F344) rats. Colonic temperature (Tc) was progressively reduced from 38°C to 31°C in young (3 to 6 mo), middle-aged (12 mo), and aged (24 mo) baroreceptor-innervated and sinoaortic-denervated (SAD), urethane-chloralose anesthetized, F344 rats. The following observations were made. 1) Progressive hypothermia significantly ( P < 0.05) reduced splenic, renal, and adrenal SND in young baroreceptor-innervated F344 rats. 2) Reductions in splenic, renal, and adrenal SND to progressive hypothermia were less consistently observed and, when observed, were generally attenuated in baroreceptor-innervated middle-aged and aged compared with young F344 rats. 3) Differences in splenic, renal, and adrenal SND responses to reduced Tc were observed in SAD young, middle-aged, and aged F344 rats, suggesting that age-associated attenuations in SND responses to acute cooling are not the result of age-dependent modifications in arterial baroreflex regulation of SND. These findings demonstrate that advancing chronological age alters the regulation of visceral SND responses to progressive hypothermia, modifications that may contribute to the inability of aged individuals to adequately respond to acute bouts of hypothermia.
Collapse
Affiliation(s)
- Bryan G Helwig
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kenney MJ, Fels RJ. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats. J Appl Physiol (1985) 2003; 95:1986-93. [PMID: 12882996 DOI: 10.1152/japplphysiol.00438.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.
Collapse
Affiliation(s)
- Michael J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
9
|
Tattersall GJ, Milsom WK. Transient peripheral warming accompanies the hypoxic metabolic response in the golden-mantled ground squirrel. J Exp Biol 2003; 206:33-42. [PMID: 12456695 DOI: 10.1242/jeb.00057] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypoxic metabolic response of mammals involves a reversible metabolic suppression, possibly brought about by a reduction in the body temperature set-point. In the present study we tested the hypothesis that this is accompanied by a transient increase in heat loss that facilitates the decline in body temperature and metabolic rate. Peripheral heat distribution was assessed using infrared thermography to measure the surface temperatures of the golden-mantled ground squirrel at three different ambient temperatures (10, 22 and 30 degrees C). During early hypoxic exposure, surface temperatures increased dramatically in the feet, ears and nose, and this increase was more dramatic and prolonged at 22 degrees C than at the other two temperatures. These increases were associated with a fall in metabolic rate. Following this initial increase, surface temperatures decreased back to control values, and at 10 degrees C, the surface temperatures of the eyes and body decreased below normoxic levels. Subsequent normoxic recovery was not accompanied by transient changes in surface temperatures, despite large increases in metabolic rate associated with post-hypoxic shivering and thermogenesis. The temporal changes in surface temperature suggest that peripheral blood flow is initially increased during hypoxia, shifting heat away from the core to the periphery and thus facilitating cooling. These results are consistent with the hypothesis that hypoxia leads to a regulated fall in body temperature.
Collapse
Affiliation(s)
- Glenn J Tattersall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.
| | | |
Collapse
|
10
|
Kenney MJ, Blecha F, Fels RJ, Morgan DA. Altered frequency responses of sympathetic nerve discharge bursts after IL-1beta and mild hypothermia. J Appl Physiol (1985) 2002; 93:280-8. [PMID: 12070215 DOI: 10.1152/japplphysiol.01250.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan 66506, USA.
| | | | | | | |
Collapse
|
11
|
Saindon CS, Blecha F, Musch TI, Morgan DA, Fels RJ, Kenney MJ. Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta. Auton Neurosci 2001; 87:243-8. [PMID: 11476285 DOI: 10.1016/s1566-0702(00)00280-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the vagus nerve is an important neural pathway mediating immune-to-brain communication, the role of the vagus in mediating sympathetic nerve discharge (SND) responses to peripheral cytokines is not well established. In the present study we determined renal, interscapular brown adipose tissue (IBAT), splenic, and lumbar SND responses before and for 60 min after the intravenous administration of interleukin-1beta (IL-1beta, 100 ng) in chloralose-anesthetized, sham-vagotomized and cervical-vagotomized (bilateral) rats. In sham-vagotomized rats, IL-1beta administration increased (P<0.05) splenic and lumbar SND while renal and IBAT SND remained unchanged from control levels. Renal, splenic, and lumbar SND were increased (P<0.05) whereas IBAT SND remained unchanged from control after IL-1beta in vagotomized rats. Renal, splenic, and lumbar SND responses were significantly higher after IL-1beta in vagotomized compared with sham-vagotomized rats. These results demonstrate that regionally-selective SND (renal, splenic, and lumbar) responses to IL-1beta can occur in the absence of the vagus nerve and suggest that the vagus nerve provides a tonic inhibition to the discharges in these nerves in response to peripheral IL-1beta.
Collapse
Affiliation(s)
- C S Saindon
- Department of Anatomy and Physiology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kenney MJ, Pickar JG, Weiss ML, Saindon CS, Fels RJ. Effects of midbrain and spinal cord transections on sympathetic nerve responses to heating. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1329-38. [PMID: 10801304 DOI: 10.1152/ajpregu.2000.278.5.r1329] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we investigated the contributions of forebrain, brain stem, and spinal neural circuits to heating-induced sympathetic nerve discharge (SND) responses in chloralose-anesthetized rats. Frequency characteristics of renal and splenic SND bursts and the level of activity in these nerves were determined in midbrain-transected (superior colliculus), spinal cord-transected [first cervical vertebra (C1)], and sham-transected (midbrain and spinal cord) rats during progressive increases in colonic temperature (T(c)) from 38 to 41.6-41.7 degrees C. The following observations were made. 1) Significant increases in renal and splenic SND were observed during hyperthermia in midbrain-transected, sham midbrain-transected, C1-transected, and sham C1-transected rats. 2) Heating changed the discharge pattern of renal and splenic SND bursts and was associated with prominent coupling between renal-splenic discharge bursts in midbrain-transected, sham midbrain-transected, and sham C1-transected rats. 3) The pattern of renal and splenic SND bursts remained unchanged from posttransection recovery levels during heating in C1-transected rats. We conclude that an intact forebrain is not required for the full expression of SND responses to increased T(c) and that spinal neural systems, in the absence of supraspinal circuits, are unable to markedly alter the frequency characteristics of SND in response to acute heat stress.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
13
|
Kenney MJ, Claassen DE, Fels RJ, Saindon CS. Cold stress alters characteristics of sympathetic nerve discharge bursts. J Appl Physiol (1985) 1999; 87:732-42. [PMID: 10444634 DOI: 10.1152/jappl.1999.87.2.732] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Frequency-domain analyses were used to determine the effect of cold stress on the relationships between the discharge bursts of sympathetic nerve pairs, sympathetic and aortic depressor nerve pairs, and sympathetic and phrenic nerve pairs in chloralose-anesthetized, baroreceptor-innervated rats. Sympathetic nerve discharge (SND) was recorded from the renal, lumbar, splanchnic, and adrenal nerves during decreases in core body temperature from 38 to 30 degrees C. The following observations were made. 1) Hypothermia produced nonuniform changes in the level of activity in regionally selective sympathetic nerves. Specifically, cold stress increased lumbar and decreased renal SND but did not significantly change the level of activity in splanchnic and adrenal nerves. 2) The cardiac-related pattern of renal, lumbar, and splanchnic SND bursts was transformed to a low-frequency (0-2 Hz) pattern during cooling, despite the presence of pulse-synchronous activity in arterial baroreceptor afferents. 3) Peak coherence values relating the discharges between sympathetic nerve pairs decreased at the cardiac frequency but were unchanged at low frequencies (0-2 Hz), indicating that the sources of low-frequency SND bursts remain prominently coupled during progressive reductions in core body temperature. 4) Coherence of discharge bursts in phrenic and renal sympathetic nerve pairs in the 0- to 2-Hz frequency band increased during mild hypothermia (36 degrees C) but decreased during deep hypothermia (30 degrees C). We conclude that hypothermia profoundly alters the organization of neural circuits involved in regulation of sympathetic nerve outflow to selected regional circulations.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
14
|
Kozyreva TV, Tkachenko EY, Kozaruk VP, Latysheva TV, Gilinsky MA. Effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1668-72. [PMID: 10362746 DOI: 10.1152/ajpregu.1999.276.6.r1668] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norepinephrine (NE) and epinephrine (Epi) concentrations in arterial plasma and in skin tissue were measured chromatographically before and after external cooling. Urethan-anesthetized rats were cooled either slowly (0.004-0.006 degrees C/s) or rapidly (0.03- 0.05 degrees C/s). Blood samples were drawn three times from each animal: 1) before cooling and at a rectal temperature decreased 2) by 0.5 degrees C and 3) by 3-4 degrees C. Skin samples were taken from controls and from rapidly or slowly cooled rats at a rectal temperature lowered by 0.5 degrees C. The resting mean values were 36.7 +/- 0.3 degrees C for rectal temperature, 0.62 +/- 0.079 and 1. 09 +/- 0.203 ng/ml for plasma NE and Epi, and 85.6 +/- 4.1 and 137.6 +/- 34.3 ng/g for skin NE and Epi. A decrease in rectal temperature by 0.5 degrees C at rapid cooling produced a 2.6-fold increase of NE and a 2.8-fold increase of Epi in plasma. Concomitantly, there was a significant decrease in skin NE concentration by 28% and Epi by 86%. At a rectal temperature decreased by 0.5 degrees C after slow cooling, plasma catecholamines did not change; at unaltered skin NE concentration, there was a reduction in skin Epi concentration (60%). When rectal temperature was lowered by 3-4 degrees C, the increase in plasma NE was virtually the same at both cooling rates and only plasma Epi increased more after deep rapid cooling than slow cooling. Thus the sympathoadrenal system may be differently activated depending on cooling rate. Rapid cooling, when the dynamic activity of the skin cold receptors is involved in the cold response, may provide conditions for an earlier activation of the sympathoadrenal system. This may evidence the functional significance of the dynamic activity of the skin cold receptors in the formation of the cold defense responses.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Physiology, Novosibirsk 630117, Russia.
| | | | | | | | | |
Collapse
|
15
|
Iriki M, Saigusa T. Regional differentiation of sympathetic efferents during fever. PROGRESS IN BRAIN RESEARCH 1998; 115:477-97. [PMID: 9632948 DOI: 10.1016/s0079-6123(08)62048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Iriki
- Yamanashi Institute of Environmental Sciences, Japan
| | | |
Collapse
|
16
|
Huang XC. Effects of hypothalamic microinjection of PGE2 on body temperature and sympathetic nervous activities in the rabbit. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 1993; 37:222-228. [PMID: 8112881 DOI: 10.1007/bf01387528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The febrile response and sympathetic nervous response to hypothalamic microinjections of prostaglandin E2 (PGE2) were investigated in anesthetized rabbits. Microinjection of PGE2 (500-1000 ng) caused an increase in rectal temperature of more than 0.3 degrees C in 13 of 50 loci in the preoptic and anterior hypothalamic area (PO/AH). At 8 of these 13 loci, PGE2 elicited response patterns in the sympathetic nervous system, such as an increase in cutaneous sympathetic nervous activity and decrease in renal sympathetic nervous activity. This pattern of sympathetic nervous responses was induced with a simultaneous increase in rectal temperature of more than 0.5 degrees C. The 8 loci were distributed in the preoptic area, especially in the vicinity of the supraoptic nucleus. Electrolytic lesions of this region were made bilaterally, and intracerebroventricular injection of PGE2 (8 micrograms/kg) was found to inhibit fever and sympathetic activity. The results demonstrate that the action of PGE2 is responsible for the response patterns of sympathetic twigs during fever. The preoptic area, especially in the vicinity of the supraoptic nucleus, is most sensitive to PGE2 for the patternized response of sympathetic neurons and fever.
Collapse
Affiliation(s)
- X C Huang
- Department of Physiology, Medical University of Yamanashi, Japan
| |
Collapse
|
17
|
Gabbott GR, Jones DR. The effect of brain transection on the response to forced submergence in ducks. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1991; 36:65-74. [PMID: 1753065 DOI: 10.1016/0165-1838(91)90131-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of brain transection at two levels on cardiovascular responses to forced submergence has been investigated in ducks. Compared with intact ducks, neither decerebration nor brain stem transection at the rostral mesencephalic (RM) level had any effect on development of diving bradycardia, or heart rate at the end of two-min dives. Arterial blood pressure was maintained in brain transected ducks as well as in intact ducks. Furthermore, end-dive arterial blood gases and pH were also similar in intact and brain transected ducks confirming that the oxygen sparing cardiovascular adjustments, involving a massive increase in total peripheral resistance, were unimpaired by brain transection. In this respect, ducks with RM transections tolerated four-min dives. However, the increase in post-dive VE seen in intact and decerebrated ducks was prevented by RM transection. We conclude that control of the circulatory response to diving resides in the lower brainstem, is reflexogenic in nature, and does not depend on the cognitive perception of 'fearful' stimuli.
Collapse
Affiliation(s)
- G R Gabbott
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
18
|
Tamaki Y, Nakayama T. Effects of air constituents on thermosensitivities of preoptic neurons: hypoxia versus hypercapnia. Pflugers Arch 1987; 409:1-6. [PMID: 3112732 DOI: 10.1007/bf00584743] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of hypoxia (10% O2) on the thermosensitivities of preoptic neurons were studied in urethanized rats and compared to the effects of hypercapnia (10% CO2). This was examined by regression of neuronal activity on preoptic temperature. During hypoxia, the slope of the regression line increased significantly in 8 (23%) of 35 warm-sensitive neurons and decreased in eight other neurons (P less than 0.05). During hypercapnia, the slope of the regression line decreased significantly in 7 (30%) of the 23 warm-sensitive neurons (P less than 0.05). No neuron was found that significantly increased the slope of the regression line. The effects of hypoxia on thermosensitivities (i.e. the slope of the regression line) of PO neurons differed from those of hypercapnia in chi-square analysis (P less than 0.05). Responses of the cold-sensitive neurons to hypoxia or hypercapnia did not generally differ from those of the warm-sensitive neurons. During hypoxia and hypercapnia, arterial blood pressure, respiratory frequency, heart rate, and EEG were recorded to examine their relations to neuronal activity. The present results indicate that the thermosensitivities of preoptic neurons are modified by both hypoxia and hypercapnia, but that hypoxic differ from hypercapnic effects.
Collapse
|
19
|
Hanson G, Jones L, Fidone S. Effects of hypoxia on neuropeptide levels in the rabbit superior cervical ganglion. JOURNAL OF NEUROBIOLOGY 1986; 17:51-4. [PMID: 2425052 DOI: 10.1002/neu.480170106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Jänig W. Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 1985; 102:119-213. [PMID: 3898312 DOI: 10.1007/bfb0034086] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
|
22
|
Gregor M, Jänig. Effects of sytemic hypoxia and hypercapnia on cutaneous and muscle vasoconstrictor neurones to the cat's hindlimb. Pflugers Arch 1977; 368:71-81. [PMID: 558601 DOI: 10.1007/bf01063457] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. Reactions of cutaneous and muscle vasoconstrictor neurones to the hindlimb on systemic hypoxia and systemic hypercapnia were investigated in chloralose anaesthetized cats. Mainly four types of preparations were used: brain intact and decrebrate (pontomedullary) animals with and without carotid sinus (CSN) and vagal nerves (VN). 2. In brain intact animals with intact CSN and VN most cutaneous vasoconstrictor neurones were depressed and most muscle vasoconstrictor neurones were excited during systemic hypoxia and hypercapnia. The responses to hypercapnia were smaller than those to hypoxia. 3. In brain intact deafferented animals and in decerebrate animals with and without intact CSN and VN systemic hypoxia and hypercapnia induced excitation in both cutaneous and muscle vasoconstrictor neurones. The responses to hypoxia were significantly smaller in deafferented preparations when compared to those in preparations with intact CSN and VN. Furthermore in muscle vasoconstrictor neurones the size of the responses was not significantly different in decerebrate preparations from that in brain intact preparations. 4. These results indicate a distinct neuronal organization of the chemoreceptor reflexes in the vasoconstrictor systems in the brain stem. Suprapontine brain structures are most important for producing the inhibition of the cutaneous vasoconstrictor neurones during hypoxia and hypercapnia.
Collapse
|