1
|
Larsen EH, Sørensen JN. Biophysical Analysis of a Minimalistic Kidney Model Expressing SGLT1 Reveals Crosstalk between Luminal and Lateral Membranes and a Plausible Mechanism of Isosmotic Transport. Biomolecules 2024; 14:889. [PMID: 39199277 PMCID: PMC11352722 DOI: 10.3390/biom14080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 H2O in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.
Collapse
Affiliation(s)
- Erik Hviid Larsen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jens Nørkær Sørensen
- Department of Wind Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark;
| |
Collapse
|
2
|
|
3
|
Larsen EH, Sørensen JN. Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model. Rev Physiol Biochem Pharmacol 2019; 177:101-147. [DOI: 10.1007/112_2019_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractOur mathematical model of epithelial transport (Larsen et al. Acta Physiol. 195:171–186, 2009) is extended by equations for currents and conductance of apical SGLT2. With independent variables of the physiological parameter space, the model reproduces intracellular solute concentrations, ion and water fluxes, and electrophysiology of proximal convoluted tubule. The following were shown:Water flux is given by active Na+flux into lateral spaces, while osmolarity of absorbed fluid depends on osmotic permeability of apical membranes.Following aquaporin “knock-out,” water uptake is not reduced but redirected to the paracellular pathway.Reported decrease in epithelial water uptake in aquaporin-1 knock-out mouse is caused by downregulation of active Na+absorption.Luminal glucose stimulates Na+uptake by instantaneous depolarization-induced pump activity (“cross-talk”) and delayed stimulation because of slow rise in intracellular [Na+].Rate of fluid absorption and flux of active K+absorption would have to be attuned at epithelial cell level for the [K+] of the absorbate being in the physiological range of interstitial [K+].Following unilateral osmotic perturbation, time course of water fluxes between intraepithelial compartments provides physical explanation for the transepithelial osmotic permeability being orders of magnitude smaller than cell membranes’ osmotic permeability.Fluid absorption is always hyperosmotic to bath.Deviation from isosmotic absorption is increased in presence of glucose contrasting experimental studies showing isosmotic transport being independent of glucose uptake.For achieving isosmotic transport, the cost of Na+recirculation is predicted to be but a few percent of the energy consumption of Na+/K+pumps.
Collapse
|
4
|
|
5
|
Zeuthen T. General models for water transport across leaky epithelia. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:285-317. [PMID: 11952232 DOI: 10.1016/s0074-7696(02)15013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The group of leaky epithelia, such as proximal tubule and small intestine, have several common properties in regard to salt and water transport. The fluid transport is isotonic, the transport rate increases in dilute solutions, and water can be transported uphill. Yet, it is difficult to find common features that could form the basis for a general transport model. The direction of transepithelial water transport does not correlate with the direction of the primary active Na+ transport, or with the ultrastucture as defined by the location of apical and basolateral membranes, of the junctional complex and the lateral intercellular spaces. The presence of specific water channels, aquaporins, increases the water permeability of the epithelial cell membranes, i.e., the kidney proximal tubule. Yet other leaky epithelia, for example, the retinal pigment epithelium, have no known aquaporins. There is, however, a general correlation between the direction of transepithelial transport and the direction of transport via cotransporters of the symport type. A simple epithelial model based on water permeabilities, a hyperosmolar compartment and restricted salt diffusion, is unable to explain epithelial transport phenomena, in particular the ability for uphill water transport. The inclusion of cotransporters as molecular water pumps in these models alleviates this problem.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Institute of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Welling DJ, Welling PA, Welling LW. Filled pore approximation: a theoretical framework for solute-solvent coupling in narrow water channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1246-54. [PMID: 8928752 DOI: 10.1152/ajpcell.1996.270.4.c1246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A phenomenological model is presented of water and solute transport that is applicable to water pores with radii less than approximately 2 A. This includes such examples as gramicidin A, the proximal tubule basolateral membrane, and the aquaporin 1 (CHIP28) water channel. The model differs from the conventional single-file model by allowing for a variation of unoccupied volume within the pores. It is shown that the accessible or free portion of the unoccupied volume can be related to the mechanical frictional coefficients and thereby to the filtration and diffusive permeabilities by the filled pore approximation. In general, the smallness of the unoccupied volume represents the compactness of the molecules within the pore and is indicative of the single-file character of the motion of water and solute moving together. When that volume is equal to a single water volume, the results are identical to the conventional single-file model. An important result is that, despite very low diffusive permeabilities, the reflection coefficient of a solute can remain at approximately 0.5 if its frictional interaction with the channel walls is comparable with its frictional interaction with neighboring water molecules. This is consistent with values previously reported for NaCl in cell membranes of proximal tubule. The model predicts a minimum effective pore radius for a water channel of 1.78 A and corresponds to a maximum filtration-to-diffusion permeability ratio that is proportional to the length of the effective pore or channel. This limiting condition corresponds to a water channel completely filled by water and may be applicable to the aquaporin 1 water channel.
Collapse
Affiliation(s)
- D J Welling
- Research Service, Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA
| | | | | |
Collapse
|
7
|
Sofía Hernández C, González E, Whittembury G. The paracellular channel for water secretion in the upper segment of the Malpighian tubule of Rhodnius prolixus. J Membr Biol 1995; 148:233-42. [PMID: 8747555 DOI: 10.1007/bf00235041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lumen to bath J12/C1 and bath to lumen J21/C2 fluxes per unit concentration of 19 probes with diameters (dm) ranging from 3.0-30.0 A (water, urea, erythritol, mannitol, sucrose, raffinose and 13 dextrans with dm 9.1-30.0 A) were measured during volume secretion (Jv) in the upper segment of the Malpighian Tubule of Rhodnius by perfusing lumen and bath with 14C or 3H-labeled probes. Jnet = (J12/C1-J21/C2) was studied as a function of Jv.Jv was varied by using different concentrations of 5-hydroxy tryptamine. Jnet for 3H-water was not different from Jv. We found: (i) A strong correlation between Jnet and Jv for 8 probes dm = 3.0-11.8 A (group a probes), indicating that the convective component of Jnet is more important than its diffusive component and than unstirred layers effects which are negligible. Therefore group a probes are solvent dragged as they cross the epithelium. (ii) There is no correlation between Jnet and Jv for 11 probes with dm = 11.8-30 A (group b). Therefore these probes must cross the epithelium by diffusion and not by solvent drag. (iii) In a plot of Jnet/Jv vs. dm group a probes show a steep linear relation with a slope = -0.111, while for group b probes the slope is -0.002. Thus there is a break between groups a and b in this plot. We tried to fit the data with models for restricted diffusion and convention through cylindrical or parallel slit pathways. We conclude that (i) group a probes are dragged by water through an 11.0 A-wide slit. (ii) Most of Jv must follow an extracellular noncytosolic pathway. (iii) Group b probes must diffuse through a 42 A-wide slit. (iv) A cylindrical pathway does not fit the data.
Collapse
Affiliation(s)
- C Sofía Hernández
- Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | | | | |
Collapse
|
8
|
Zeuthen T. Molecular mechanisms for passive and active transport of water. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 160:99-161. [PMID: 7558688 DOI: 10.1016/s0074-7696(08)61554-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Water crosses cell membranes by passive transport and by secondary active cotransport along with ions. While the first concept is well established, the second is new. The two modes of transport allow cellular H2O homeostasis to be viewed as a balance between H2O leaks and H2O pumps. Consequently, cells can be hyperosmolar relative to their surroundings during steady states. Under physiological conditions, cells from leaky epithelia may be hyperosmolar by roughly 5 mosm liter-1, under dilute conditions, hyperosmolarities up to 40 mosm liter-1 have been recorded. Most intracellular H2O is free to serve as solvent for small inorganic ions. The mechanism of transport across the membrane depends on how H2O interacts with the proteinaceous or lipoid pathways. Osmotic transport of H2O through specific H2O channels such as CHIP 28 is hydraulic if the pore is impermeable to the solute and diffusive if the pore is permeable. Cotransport of ions and H2O can be a result of conformational changes in proteins, which in addition to ion transport also translocate H2O bound to or occlude in the protein. A cellular model of a leaky epithelium based on H2O leaks and H2O pumps quantitatively predicts a number of so-far unexplained observations of H2O transport.
Collapse
Affiliation(s)
- T Zeuthen
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Schafer JA, Reeves WB, Andreoli TE. Mechanisms of Fluid Transport Across Renal Tubules. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Grantham JJ, Welling LW, Edwards RM. Evaluation of Function in Single Segments of Isolated Renal Blood Vessels, Nephrons, and Collecting Ducts. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Zeuthen T. From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1113:229-58. [PMID: 1510998 DOI: 10.1016/0304-4157(92)90040-h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T Zeuthen
- Department of General Physiology and Biophysics, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
12
|
Spring KR. Mechanism of Fluid Transport by Epithelia. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Spring KR. Fluid Transport by Leaky Epithelia and Cell Volume Regulation. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gautam A, Ng OC, Strazzabosco M, Boyer JL. Quantitative assessment of canalicular bile formation in isolated hepatocyte couplets using microscopic optical planimetry. J Clin Invest 1989; 83:565-73. [PMID: 2913052 PMCID: PMC303716 DOI: 10.1172/jci113919] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Isolated rat hepatocyte couplets (IRHC) are primary units of bile secretion that accumulate fluid in an enclosed canalicular space with time in culture. We have quantitated the rate of canalicular secretion in IRHC cultured for 4-8 h by measuring the change in canalicular space volume by video-microscopic optical planimetry using high resolution Nomarski optics. Electron microscopic morphometric studies revealed significant increases in canalicular membrane area after 4-6 h in culture. Canalicular secretion in basal L-15 medium (3.8 +/- 1.3 fl/min) increased significantly with the choleretic bile salts (10 microM), taurocholate, and ursodeoxycholate (14 +/- 7 fl/min each). Secretion rates after exposure to bile acids correlated directly with the canalicular surface area before stimulation. In contrast, expansion times after stimulation varied inversely with initial canalicular volumes. Ursodeoxycholic acid failed to produce a hypercholeresis at 10-, 100-, or 200-microM concentrations compared with taurocholate, either in normal or taurine-depleted IRHC. The present findings establish that rates of canalicular bile secretion can be quantitated in IRHC by serial optical planimetry, both in the basal state and after stimulation with bile acids. Furthermore, ursodeoxycholate does not acutely induce hypercholeresis at the canalicular level in this model. Rather, both taurocholic and ursodeoxycholic acids induced secretion in proportion to the surface area of the canalicular membrane. The IRHC are a useful model to identify canalicular choleretics and for studies of canalicular bile formation.
Collapse
Affiliation(s)
- A Gautam
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
15
|
|
16
|
Carpi-Medina P, León V, Espidel J, Whittembury G. Diffusive water permeability in isolated kidney proximal tubular cells: nature of the cellular water pathways. J Membr Biol 1988; 104:35-43. [PMID: 2846850 DOI: 10.1007/bf01871900] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diffusive water permeability (Pd) of the plasma membrane of proximal kidney tubule cells was measured using a 1H-NMR technique. The values obtained for the exchange time (Tex) across the membrane were independent of the cytocrit and of the Mn2+ concentration (in the range 2.5 to 5 mM). At 25 degrees C the calculated Pd value was (per cm2 of outer surface area without taking into account membrane invaginations) 197 +/- 17 microns/sec. This value equals 22.3 +/- 1.9 microns/sec when the invaginations are taken into account. Cell exposure to 2.5 mM parachloromercuribenzenesulfonic acid, pCMBS, (for 20 to 35 min) reduced Pd to 45% of its control value. Five mM dithiothreitol, DTT, reverted this effect. The activation energy for the diffusive water flux was 5.2 +/- 1.0 kcal/mol under control conditions. It increased to 9.1 +/- 2.2 kcal/mol in the presence of 2.5 mM pCMBS. Using our previous values for the osmotic water permeability (Pos) in proximal straight tubular cells the Pos/Pd ratio equals 18 +/- 1, under control conditions, and 3.2 +/- 0.3 in the presence of pCMBS. These experimental results indicate the presence of pathways for water, formed by proteins, crossing these membranes, which are closed by pCMBS. Assuming laminar flow (within the pore), from Pos/Pd of 13 to 18 an unreasonably large pore radius of 12 to 15 A is calculated which would not hinder cell entry of known extracellular markers. Alternatively, for a single-file pore, 11 to 20 would be the number of water molecules which would be in tandem inside the pore.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Carpi-Medina
- Venezuelan Institute of Scientific Investigation, IVIC, Caracas
| | | | | | | |
Collapse
|
17
|
Carpi-Medina P, Whittembury G. Comparison of transcellular and transepithelial water osmotic permeabilities (Pos) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch 1988; 412:66-74. [PMID: 2845357 DOI: 10.1007/bf00583732] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Measurements of the water osmotic permeabilities of apical and basolateral membranes of PST cells and of the transepithelial permeability have been carried out using a very fast method with high temporal and spatial resolution. At 25 degrees C the values obtained are: 80.8 +/- 11.9 x 10(-4) cm3/s osmol cm2 of apical (luminal) surface area and 90.1 +/- 13.0 x 10(-4) cm3/s osmol cm2 of basement membrane area (no membrane invaginations taken in account). These values are higher than previously published values due to the use of a faster and more accurate volume measuring and recording system. The transepithelial water osmotic permeability at 25 degrees C is 77 +/- 11 in units of 10(-4) cm3/s osmol cm2 basement membrane area. The transcellular water osmotic permeability is 32 +/- 7 (same units), leaving a paracellular contribution of 45 +/- 10 (same units). In the presence of 2.5 mM parachloromercuribenzenesulfonate (pCMBS) the apical permeability is reduced with an incubation of 10-15 min to 23% of its control value and the basolateral permeability to 8% of its control value (after 25 min) but the transepithelial permeability is only reduced to about 1/2 of the control value. This leaves a transcellular permeability of 6 x 10(-4) cm3/s osmol cm2 of basement membrane area and a paracellular contribution of 33 +/- 6 (same units). These results indicate a significant contribution of the paracellular pathway to the transepithelial water osmotic permeabilities in PST.
Collapse
Affiliation(s)
- P Carpi-Medina
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | |
Collapse
|
18
|
Montrose MH, Knoblauch C, Murer H. Separate control of regulatory volume increase and Na+-H+ exchange by cultured renal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:C76-85. [PMID: 2839037 DOI: 10.1152/ajpcell.1988.255.1.c76] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Suspensions of OK cells (a continuous epithelioid cell line from opossum kidney) are examined by electronic cell sizing, measurements of intracellular pH, and measurements of cellular Na+ and K+. The response of the cells to hypertonic solutions is evaluated in most detail. When shrunken by exposure to hyperosmotic medium (430 mosmol/kg), the cells do not demonstrate a regulatory volume increase (RVI) independent of the solute that is used to increase osmolality [NaCl, N-methyl-D-glucamine-HCl (NMGCl), or sucrose]. In contrast, when cells are preexposed to 190 mosmol/kg medium and then shrunken by exposure to 310 mosmol/kg medium, a volume increase is observed after the addition of 120 mosmol/kg NaCl or NMGCl, but not sucrose. This RVI is sensitive to 1 mM furosemide and removal of Na+ or K+ from the medium, but it is not inhibited by 1 mM amiloride. In the presence of a propionate-induced cellular acidification, a Na+-H+ exchanger in the cells is shown to have a large capacity for net solute uptake and to be inhibited by 1 mM amiloride. Net solute uptake by the Na+-H+ exchanger is sensitive to addition of parathyroid hormone or 8-bromoadenosine 3',5'-cyclic monophosphate but is not stimulated in response to cell shrinkage.
Collapse
Affiliation(s)
- M H Montrose
- Institute of Physiology, University of Zurich, Switzerland
| | | | | |
Collapse
|
19
|
González E, Salomonsson M, Müller-Suur C, Persson AE. Measurements of macula densa cell volume changes in isolated and perfused rabbit cortical thick ascending limb. II. Apical and basolateral cell osmotic water permeabilities. ACTA PHYSIOLOGICA SCANDINAVICA 1988; 133:159-66. [PMID: 3227912 DOI: 10.1111/j.1748-1716.1988.tb08395.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cortical thick ascending limbs containing macula densa plaques were dissected and perfused in vitro. Macula densa cell osmotic water permeability of the apical and basolateral membranes were measured by setting up osmotic steps across them in less than 0.1 s and following the ensuing time-dependent cell volume changes. The results of this study are in accordance with the view that the macula densa cells have a relatively low permeability to water. Apical and basolateral osmotic water permeabilities are 2.4 and 30.4 x 10(-4) cm3 s-1 osMolar-1 cm-2 basement membrane area, respectively. No infoldings were taken into consideration. These water permeabilities were not affected by maximal and supramaximal doses of vasopressin. This paper provides new insight into the physiological behaviour of this small, and almost inaccessible, sensing epithelial disc of cells which improves the understanding of its participation in the juxtaglomerular feedback response.
Collapse
Affiliation(s)
- E González
- Department of Physiology and Biophysics, University of Lund, Sweden
| | | | | | | |
Collapse
|
20
|
Whittembury G, Carpi-Medina P, González E, Linares H. Pathways for water absorption and physiological role of the lateral interspaces in the kidney tubule. Artif Organs 1987; 11:478-85. [PMID: 3326560 DOI: 10.1111/j.1525-1594.1987.tb02713.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Possible routes for water and salt flow and the most likely theories that describe coupling between water and salt flow across leaky epithelia are presented. The osmotic theories seem the most likely ones. However, several of the theories have weaknesses that render them unsatisfactory, in particular because of the possibility of paracellular water flow in these epithelia. Puzzling are the findings that measurements of the cellular water osmotic permeability give figures that are too low for some of the exclusively transcellular theories to work. If these observations hold in the future, it may be shown that part of the water moves through paracellular pathways in these leaky epithelia. This view is supported by the observation that large extracellular markers are dragged by volume flow. Finally, experimental evidence is reviewed indicating that changes in the luminal area concentration may modulate the functional state of the nephron junctional complexes.
Collapse
Affiliation(s)
- G Whittembury
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
21
|
Strange K, Spring KR. Absence of significant cellular dilution during ADH-stimulated water reabsorption. Science 1987; 235:1068-70. [PMID: 3823867 DOI: 10.1126/science.3823867] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water reabsorption across many "tight" urinary epithelia is driven by large transepithelial osmotic gradients and is controlled by antidiuretic hormone (ADH). Numerous investigators have concluded that ADH-induced water reabsorption causes large apparent increases in cell volume with concomitant cytoplasmic dilution. A central question in renal physiology has been how cellular homeostasis is maintained in tight urinary epithelia during antidiuresis. Previous direct measurements of cell membrane permeability to water and the present direct measurements of cell volume in collecting tubules of rabbit kidney cortex by quantitative light microscopy show that cell volume does not change significantly during transcellular water flow. Fluid transported across the epithelium accumulated in lateral and basal intercellular spaces; the effect was an increase in cell height and tubule wall thickness accompanied by maintenance of nearly constant cell volume. The stability of cell volume is a consequence of the relatively high water permeability of the blood-facing cell membrane.
Collapse
|
22
|
Abstract
The water permeability (Posm) of the cell membranes of isolated perfused rabbit cortical collecting ducts was measured by quantitative light microscopy. Water permeability of the basolateral membrane, corrected for surface area, was 66 microns X sec-1 for principal cells and 62.3 microns X sec-1 for intercalated cells. Apical membrane Posm values corrected for surface area, were 19.2 and 25 microns X sec-1 for principal and intercalated cells, respectively, in the absence of antidiuretic hormone (ADH). Principal and intercalated cells both responded to ADH by increasing Posm of their apical membranes to 92.2 and 86.2 microns X sec-1, respectively. The ratio of the total basolateral cell membrane osmotic water permeability to that of the apical cell membrane was approximately 27:1 in the absence of ADH and approximately 7:1 in the presence of the hormone for both cell types. This asymmetry in water permeability is most likely due to the fact that basolateral membrane surface area is at least 7 to 8 times greater than that of the apical membrane. Both cell types exhibited volume regulatory decrease when exposed to dilute serosal bathing solutions. Upon exposure to a hyperosmotic serosal bath (390 mosM), principal cells did not volume regulate while two physiologically distinct groups of intercalated cells were observed. One group of intercalated cells failed to volume regulate; the second group showed almost complete volume regulatory increase behavior.
Collapse
|
23
|
Lohr JW, Grantham JJ. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 1986; 78:1165-72. [PMID: 3771788 PMCID: PMC423800 DOI: 10.1172/jci112698] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sudden alteration in medium osmolality causes an osmometric change in proximal tubule cell size followed by restoration of cell volume toward normal in hypotonic but not in hypertonic medium. We determined the capability of isolated nonperfused proximal tubules to prevent a change in cell volume in anisotonic media. The external osmolality was gradually changed over a range from 110 to 480 mosM. At 1.5 mosM/min, cell volume remained constant between 167 +/- 9 and 361 +/- 7 mosM, a phenomenon termed isovolumetric regulation (IVR). Cells lost intracellular solutes in hypotonic and gained intracellular solutes in hypertonic media. Raffinose or choline chloride substitution showed that osmolality, rather than NaCl, signalled cell volume maintenance in hyperosmotic media. Cooling (7-10 degrees C) blocked IVR. IVR was maintained when osmolality was lowered at a rate of 27, but not at 42 mosM/min. IVR was not observed when the rate of osmolality increase exceeded 3 mosM/min. We conclude that proximal tubule cells sensitively regulate intracellular volume in an osmolality range of pathophysiologic interest by mechanisms dependent on the rate of net water movement across basolateral membranes and the absolute intracellular content of critical solutes.
Collapse
|
24
|
Whittembury G, Lindemann B, Carpi-Medina P, González E, Linares H. Continuous measurements of cell volume changes in single kidney tubules. Kidney Int 1986; 30:187-91. [PMID: 3531674 DOI: 10.1038/ki.1986.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
van Heeswijk MP, van Os CH. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol 1986; 92:183-93. [PMID: 3761362 DOI: 10.1007/bf01870707] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The osmotic water permeability Pf of brush border (BBM) and basolateral (BLM) membrane vesicles from rat small intestine and renal cortex was studied by means of stopped-flow spectrophotometry. Scattered light intensity was used to follow vesicular volume changes upon osmotic perturbation with hypertonic mannitol solutions. A theoretical analysis of the relationship of scattered light intensity and vesicular volume justified a simple exponential approximation of the change in scattered light intensity. The rate constants extracted from fits to an exponential function were proportional to the final medium osmolarity as predicted by theory. For intestinal membranes, computer analysis of optical responses fitted well with a single-exponential treatment. For renal membranes a double-exponential treatment was needed, implying two distinct vesicle populations. Pf values for BBM and BLM preparations of small intestine were equal and amount to 60 microns/sec. For renal preparations, Pf values amount to 600 microns/sec for the fast component, BBM as well as BLM, and to 50 (BBM) and 99 (BLM) microns/sec for the slow component. The apparent activation energy for water permeation in intestinal membranes was 13.3 +/- 0.6 and in renal membranes 1.0 +/- 0.3 kCal/mole, between 25 and 35 degrees C. The mercurial sulfhydryl reagent pCMBS inhibited completely and reversibly the high Pf value in renal brush border preparations. These observations suggest that in intestinal membranes water moves through the lipid matrix but that in renal plasma membranes water channels may be involved. From the high Pf values of renal membrane vesicles a transcellular water permeability for proximal tubules can be calculated which amounts to approximately 1 cm/sec. This value allows for an entirely transcellular route for water flow during volume reabsorption.
Collapse
|
26
|
Pratz J, Ripoche P, Corman B. Evidence for proteic water pathways in the luminal membrane of kidney proximal tubule. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 856:259-66. [PMID: 3006772 DOI: 10.1016/0005-2736(86)90035-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The osmotic permeability of the apical membrane of proximal tubule cells was studied on rat brush-border membrane vesicles by following their rate of shrinkage with a stopped-flow device coupled to light transmission recording. The mercuric sulfhydryl reagent para-chloromercuribenzenesulfonic acid (PCMBS) reduced the water permeability of the membrane, in a time- and dose-dependent manner, to 35% of the control value. Mercuric chloride was a more potent inhibitor and decreased the osmotic water permeability of the brush-border membrane to 15% of the control. This inhibition was reversed by an excess of cysteine, while cysteine per se did not modify the rate of vesicle shrinkage. These results suggest that most of the osmotic water movements across kidney brush-border membranes are through polar pathways which involve the integrity of the membrane proteins.
Collapse
|
27
|
Abstract
Quantitative light microscopy can be used to analyze the mechanisms of salt and water movement across epithelial cells. Methods for light microscopic visualization and image acquisition are reviewed. Video image recording and processing are shown to be essential for the study of epithelial cell function by light microscopy.
Collapse
|
28
|
Whittembury G, Paz-Aliaga A, Biondi A, Carpi-Medina P, González E, Linares H. Pathways for volume flow and volume regulation in leaky epithelia. Pflugers Arch 1985; 405 Suppl 1:S17-22. [PMID: 4088834 DOI: 10.1007/bf00581774] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Continuous pathways must pierce the cell membrane to be used by water during osmotic equilibration between proximal straight tubular cells and the external medium, because a) the water osmotic permeability coefficient of the basolateral plasma membrane, Poscb, is high; b) its activation energy, Ea, is as that of free water movement and c) pCMBS inhibits markedly (but reversibly) Poscb and increases Ea to values similar to those observed in lipid bilayers without pores. d) Preliminary measurements of Pd the water diffusive permeability coefficient using NMR indicate that Poscb/Pd is near 4 - 5. The following two observations indicate that a significant paracellular water flow must exist in leaky epithelia. Namely, a) large extracellular solutes are dragged by water in four leaky epithelia: gall bladder, Necturus proximal tubule, rat proximal tubule and Rhodnius malpighian tubule. b) The transcellular water osmotic permeability coefficient is smaller than the transepithelial values available in the rabbit proximal straight tubule. This requires a significant paracellular permeability.
Collapse
|
29
|
Gonzáles E, Carpi-Medina P, Linares H, Whittembury G. Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch 1984; 402:337-9. [PMID: 6097871 DOI: 10.1007/bf00585520] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osmotic steps, delta C, were produced across the apical cell membrane of isolated rabbit PST by perfusing their lumens with double barreled micropipettes at a rate of 0.5-0.8 nl/s. delta C = 15-46 mOsmolar were induced with mannitol. Changes in luminal diameter were recorded as a function of time with a TV camera and an integrator-processor system with space and time resolutions of 0.03 micron and 0.0167 s (3). The tubules were bathed with oil. Outer tubule diameter was time invariant. Pcaos, the apical cell osmotic permeability was therefore calculated from cell volume changes with time in units of 10(-4) cm3/cm2 X s. Osmolar. Pcaos was independent of delta C. The mean is 22.8 +/- 1.3 (n = 55). With a basolateral permeability of 50.4 (3,12), the transcellular permeability is 14 (same units) smaller than the transepithelial values available. This leads to the conclusion that a significant paracellular water osmotic permeability must exist.
Collapse
|
30
|
Whittembury G, Carpi-Medina P, González E, Linares H. Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 775:365-73. [PMID: 6432047 DOI: 10.1016/0005-2736(84)90192-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The apparent Arrhenius energy of activation (Ea) of the water osmotic permeability (Pcos) of the basolateral plasma cell membrane of isolated rabbit proximal straight tubules has been measured under control conditions and after addition of 2.5 mM of the sulfhydryl reagent, para-chloromercuribenzenesulfonic acid (pCMBS), of mersalyl and of dithiothreitol. Ea (kcal/mol) was 3.2 +/- 1.4 (controls) and 9.2 +/- 2.2 (pCMBS), while Pcos decreased with pCMBS to 0.26 +/- 0.17 of its control value. Mersalyl also decreased Pcos both in vitro and in vivo (using therapeutical doses). These actions of pCMBS and mersalyl were quickly reverted with 5 mM dithiothreitol and prevented by 0.1 M thiourea. Ea for free viscous flow is 4.2 and greater than 10 for non-pore-containing lipid membranes. By analogy with these membranes and with red blood cells, where similar effects of pCMBS on Pos are observed, it is concluded that cell membranes of the proximal tubule are pierced by aqueous pores which are reversibly shut by pCMBS. Part of the action of mercurial diuretics can be explained by their action on Pcos.
Collapse
|