1
|
Jiang W, He Z, Zhang Y, Ran S, Sun Z, Chen W. Variations in protein expression associated with oral cancer. Technol Health Care 2023; 31:145-167. [PMID: 37038789 DOI: 10.3233/thc-236014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Differential protein expression of the oral microbiome is related to human diseases, including cancer. OBJECTIVE In order to reveal the potential relationship between oral bacterial protein expression in oral squamous cell carcinoma (OSCC), we designed this study. METHODS We obtained samples of the same patient from cancer lesion and anatomically matched normal site. Then, we used the label free quantitative technique based on liquid chromatography tandem mass spectrometry (LC-MS/MS) to analyze the bacteria in the samples of oral squamous cell carcinoma at the protein level, so as to detect the functional proteins. RESULTS Protein diversity in the cancer samples was significantly greater than in the normal samples. We identified a substantially higher number of the taxa than those detected in previous studies, demonstrating the presence of a remarkable number of proteins in the groups. In particular, proteins involved in energy production and conversion, proton transport, hydrogen transport and hydrogen ion transmembrane transport, ATP-binding cassette (ABC) transporter, PTS system, and L-serine dehydratase were enriched significantly in the experimental group. Moreover, some proteins associated with Actinomyces and Fusobacterium were highly associated with OSCC and provided a good diagnostic outcome. CONCLUSION The present study revealed considerable changes in the expression of bacterial proteins in OSCC and enrich our understanding in this point.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Youmeng Zhang
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhe Sun
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Weixu Chen
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
A novel plasmid entry exclusion system in pKPC_UVA01, a promiscuous conjugative plasmid carrying the
bla
KPC
carbapenemase gene. Antimicrob Agents Chemother 2022; 66:e0232221. [PMID: 35007138 PMCID: PMC8923210 DOI: 10.1128/aac.02322-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the principal mediator in the emergence and spread of antibiotic resistance genes in Enterobacterales. Plasmid entry exclusion (EEX) systems can restrict their transfer into the recipient bacteria carrying closely related plasmids. In this study, we identified and characterized a novel plasmid entry exclusion system in a carbapenem resistance plasmid pKPC_UVA01, which is responsible for widespread dissemination of the blaKPC carbapenemase gene among Enterobacterales in the United States. The identified eex gene in the recipient strain of different Enterobacterales species inhibited the conjugation transfer of pKPC_UVA01 plasmids at a range of 200- to 400-fold, and this inhibition was found to be a dose-dependent function of the EEX protein in recipient cells. The C terminus truncated version of eex or eex with an early termination codon at the C terminus region alleviated the inhibition of conjugative transfer. Unlike the strict specificity of plasmid exclusion by the known EEX protein, the newly identified EEX in the recipient strain could inhibit the transfer of IncP and IncN plasmids. The eex gene from the plasmid pKPC_UVA01 was not required for conjugative transfer but was essential in the donor bacteria for entry exclusion of this plasmid. This was a novel function of a single protein that is essential in both donor and recipient bacteria for the entry exclusion of a plasmid. This eex gene is found to be distributed in multidrug resistance plasmids similar to pKPC_UVA01 in different Enterobacterales species and may contribute to the stability of this plasmid type by controlling its transfer.
Collapse
|
3
|
Dunny GM, Hirt H. A new flavor of entry exclusion in ICE elements provides a selective advantage for the element and its host. Mol Microbiol 2019; 112:1061-1065. [PMID: 31278791 DOI: 10.1111/mmi.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entry exclusion has been described in many bacterial conjugation systems, but their molecular mechanisms are not well understood. In the current issue, Avello et al. describe a new exclusion system in the conjugative element ICEBs1. They identify the yddJ gene as the functional exclusion gene and its target as the protein product of the conG gene. They provide evidence for a possible mechanism and for the contribution of the system to reduce fitness costs of ICE expression.
Collapse
Affiliation(s)
- Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Gago-Córdoba C, Val-Calvo J, Miguel-Arribas A, Serrano E, Singh PK, Abia D, Wu LJ, Meijer WJJ. Surface Exclusion Revisited: Function Related to Differential Expression of the Surface Exclusion System of Bacillus subtilis Plasmid pLS20. Front Microbiol 2019; 10:1502. [PMID: 31354647 PMCID: PMC6635565 DOI: 10.3389/fmicb.2019.01502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
During conjugation a genetic element is transferred from a bacterial donor to a recipient cell via a connecting channel. It is the major route responsible for the spread of antibiotic resistance. Conjugative elements can contain exclusion system(s) that inhibit its transfer to a cell already harboring the element. Our limited knowledge on exclusion systems is mainly based on plasmids of Gram-negative bacteria. Here we studied the conjugative plasmid pLS20 of the Gram-positive Bacillus subtilis. We demonstrate that pLS20 contains an exclusion system and identified the single gene responsible for exclusion, named sespLS20 , which is embedded in the conjugation operon. SespLS20 is the founding member of a novel family of surface exclusion proteins encoded by conjugative elements of Gram-positive origin. We show that the extent of surface exclusion correlates with the level of sespLS20 expression, and that sespLS20 is expressed at basal low-levels in all donor cells but becomes highly expressed in conjugating cells. Accordingly, the transfer of pLS20 from a conjugation-primed donor cell to an un-primed or conjugation-primed donor is inhibited moderately and very efficiently, respectively. The consequences of this differential regulation, which appears to be a conserved feature of surface exclusion systems of Gram-positive and Gram-negative origin, are discussed.
Collapse
Affiliation(s)
- César Gago-Córdoba
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Jorge Val-Calvo
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Andrés Miguel-Arribas
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Ester Serrano
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Praveen K. Singh
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - David Abia
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Laboratory 402, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Department of Virology and Microbiology, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
6
|
Yan J, Xia Y, Yang M, Zou J, Chen Y, Zhang D, Ma L. Quantitative Proteomics Analysis of Membrane Proteins in Enterococcus faecalis With Low-Level Linezolid-Resistance. Front Microbiol 2018; 9:1698. [PMID: 30100900 PMCID: PMC6072972 DOI: 10.3389/fmicb.2018.01698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022] Open
Abstract
Despite increasing reports of low-level linezolid-resistant enterococci worldwide, the mechanism of this resistance remains poorly understood. Previous transcriptome studies of low-level linezolid-resistant Enterococcus faecalis isolates have demonstrated a number of significantly up-regulated genes potentially involved in mediation of drug resistance. However, whether the transcriptome faithfully reflects the proteome remains unknown. In this study, we performed quantitative proteomics analysis of membrane proteins in an E. faecalis isolate (P10748) with low-level linezolid-resistance in comparison with two linezolid-susceptible strains 3138 and ATCC 29212, all of which have been previously investigated by whole transcriptome analysis. A total of 8,197 peptides associated with 1,170 proteins were identified in all three isolates with false discovery rate (FDR) at 1% and P < 0.05. There were 14 significantly up-regulated and 6 significantly down-regulated proteins in strain P10748 compared to strains 3138 and ATCC 29212, which were in general positively correlated with transcription levels revealed in previous transcriptome studies. Our analysis suggests that the low-level linezolid-resistance in E. faecalis is conferred primarily by the ATP-binding cassette protein OptrA through ribosomal protection and, possibly, also by the enterococcal surface protein (Esp) and other proteins through biofilm formation. The genetic transfer of optrA is potentially regulated by the surface exclusion protein Sea1, conjugal transfer protein TraB, replication protein RepA and XRE family transcription regulator protein. This report represents the first investigation of the mechanisms of linezolid-resistance in E. faecalis by a quantitative proteomics approach.
Collapse
Affiliation(s)
- Jia Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Zou
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Gallotta M, Gancitano G, Pietrocola G, Mora M, Pezzicoli A, Tuscano G, Chiarot E, Nardi-Dei V, Taddei AR, Rindi S, Speziale P, Soriani M, Grandi G, Margarit I, Bensi G. SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion. Infect Immun 2014; 82:2890-901. [PMID: 24778116 PMCID: PMC4097626 DOI: 10.1128/iai.00064-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein).
Collapse
Affiliation(s)
| | | | - Giampiero Pietrocola
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | - Anna Rita Taddei
- Centre for High Instruments, Electron Microscopy Section, University of Tuscia, Viterbo, Italy
| | - Simonetta Rindi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Guido Grandi
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| | | | | |
Collapse
|
8
|
Clewell DB. Tales of conjugation and sex pheromones: A plasmid and enterococcal odyssey. Mob Genet Elements 2011; 1:38-54. [PMID: 22016844 PMCID: PMC3190283 DOI: 10.4161/mge.1.1.15409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022] Open
Abstract
This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Don B Clewell
- Biologic and Materials Sciences; School of Dentistry and Microbiology and Immunology; Medical School; The University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
9
|
Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 2008; 60:1-18. [DOI: 10.1016/j.plasmid.2008.03.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/15/2022]
|
10
|
Clewell DB. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007; 58:205-27. [PMID: 17590438 DOI: 10.1016/j.plasmid.2007.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/02/2007] [Accepted: 05/12/2007] [Indexed: 11/23/2022]
Abstract
The 60-kb pAD1 represents a large and widely disseminated family of conjugative, pheromone-responding, virulence plasmids commonly found in clinical isolates of Enterococcus faecalis. It encodes a hemolysin/bacteriocin (cytolysin) shown to contribute to virulence in animal models, and the related bacteriocin is active against a wide variety of Gram-positive bacteria. This review summarizes what is currently known about the molecular biology of pAD1, including aspects of its cytolytic, UV-resistance, replication, maintenance, and conjugative properties.
Collapse
Affiliation(s)
- Don B Clewell
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
11
|
Marcotte H, Ferrari S, Cesena C, Hammarström L, Morelli L, Pozzi G, Oggioni MR. The aggregation-promoting factor of Lactobacillus crispatus M247 and its genetic locus. J Appl Microbiol 2005; 97:749-56. [PMID: 15357724 DOI: 10.1111/j.1365-2672.2004.02364.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Characterization of the aggregation-promoting factor (APF) of the human intestinal isolate Lactobacillus crispatus M247 and its homologous nonaggregating mutant Mu5. METHODS AND RESULTS Western blot analysis revealed that the supernatant of both M247 and Mu5 contains a 28-kDa protein which cross reacts with the antiserum produced against the APF of Lact. gasseri 4B2. The apf genes of M247 and Mu5 strains were identical and were shown to be 672 nucleotides in length and encoding a protein of 223 amino acids with a predicted molecular weight of 24.0 kDa. CONCLUSION Our results shows that the lost of aggregation in Mu5 is not related to a defect in secretion of the APF protein or a mutation in the apf gene. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest that the mutation in Mu5 may be contained in another molecule involved in aggregation such as a possible receptor for APF.
Collapse
Affiliation(s)
- H Marcotte
- Dipartimento di Biologia Moleculare, Laboratorio di Microbiologia Moleculare e Biotecnologia, Sezione di Microbiologia, Policlinico Le Scotte, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Possoz C, Gagnat J, Sezonov G, Guérineau M, Pernodet JL. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol Microbiol 2003; 47:1385-93. [PMID: 12603742 DOI: 10.1046/j.1365-2958.2003.03380.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms of conjugal immunity preventing redundant exchange between two cells harbouring the same conjugative element have been reported in diverse bacteria. Such a system does exist for pSAM2, a conjugative and integrative element of Streptomyces. The apparition of the conjugative free form of pSAM2 in the donor strain during mating can be considered as the initial step of transfer. We analysed the genes involved in transfer inhibition by mating donors harbouring pSAM2 with recipient strains containing different regions of pSAM2. The conjugal immunity was previously thought to be mediated by the transcriptional repressor KorSA. Although the transfer efficiency is reduced by its presence in the recipient, the initiation of the transfer process is not affected. In contrast, the presence in the recipient strain of a single pSAM2 gene, pif (pSAM2 immunity factor), was sufficient to abolish both transfer and initiation of transfer. Thus, the clustered genes korSA and pif act complementarily to maintain pSAM2 in a 'prophage' state under non-conjugal conditions. KorSA is involved in intracellular signalling, whereas Pif participates in intercellular signalling. The Pif nudix motif is essential for its activity. This is the first protein of the nudix family shown to be involved in bacterial conjugation.
Collapse
Affiliation(s)
- Christophe Possoz
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, Orsay, France.
| | | | | | | | | |
Collapse
|
13
|
Burrus V, Pavlovic G, Decaris B, Guédon G. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 2002; 48:77-97. [PMID: 12383726 DOI: 10.1016/s0147-619x(02)00102-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 34,734-bp element ICESt1 from Streptococcus thermophilus CNRZ368 is site-specifically integrated into the 3(') end of the gene fda. ICESt1 encodes integrative functions and putative transfer functions. Six proteins of the putative conjugative system of ICESt1 are related to those encoded by the conjugative transposon Tn916 from Enterococcus faecalis. A comparison of these proteins with those encoded by the complete or partial genome sequences of various low G+C bacteria including Bacillus subtilis, Clostridium difficile, E. faecalis, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus mutans revealed the presence of numerous putative site-specific integrative conjugative elements and/or conjugative transposons within these genomes. Sequence comparisons revealed that these elements possess a modular structure and that exchanges of unrelated or distantly related modules and genes have occurred between these elements, and also plasmids and prophages. These exchanges have probably led to modifications in the site specificity of integration of these elements. Therefore, a distinction between low specificity integrative conjugative elements (i.e., conjugative transposons) and site-specific integrative conjugative elements does not appear to be relevant. We propose to call all the conjugative elements that excise by site-specific recombination and integrate by recombination between a specific site of a circular intermediate and another site, "Integrative and Conjugative Elements" (ICEs), irrespective of the integration specificity.
Collapse
Affiliation(s)
- Vincent Burrus
- Laboratoire de Génétique et Microbiologie, UMR INRA-UHP no. 1128, Faculté des Sciences, Université Henri Poincaré (Nancy 1), BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
14
|
Francia MV, Haas W, Wirth R, Samberger E, Muscholl-Silberhorn A, Gilmore MS, Ike Y, Weaver KE, An FY, Clewell DB. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 2001; 46:117-27. [PMID: 11591137 DOI: 10.1006/plas.2001.1533] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pAD1 is a 59.3-kb plasmid in Enterococcus faecalis that has been the subject of intense investigation with regard to its pheromone-inducible conjugation behavior as well as its contribution to virulence. Approximately two-thirds of the pAD1 nucleotide sequence has been previously reported. Here we report on an analysis of the final approximately 22 kb, a significant portion of which is believed to encode structural genes associated with conjugation. The conjugation-related region was also found to contain a new (second) origin of conjugative transfer (oriT). A list of open reading frames covering the entire plasmid is presented.
Collapse
Affiliation(s)
- M V Francia
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Boever EH, Clewell DB. The Enterococcus faecalis pheromone-responsive plasmid pAM373 does not encode an entry exclusion function. Plasmid 2001; 45:57-60. [PMID: 11319933 DOI: 10.1006/plas.2000.1494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pAM373 is a conjugative plasmid in Enterococcus faecalis that confers a mating response to the peptide sex pheromone cAM373 which is produced also by Staphylococcus aureus and Streptococcus gordonii. Unlike other sex pheromone-inducible plasmids, pAM373 does not confer an entry exclusion phenotype.
Collapse
Affiliation(s)
- E H De Boever
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
16
|
De Boever EH, Clewell DB, Fraser CM. Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response. Mol Microbiol 2000; 37:1327-41. [PMID: 10998166 DOI: 10.1046/j.1365-2958.2000.02072.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
pAM373 is a 36.7 kb conjugative plasmid in Enterococcus faecalis that encodes a response to a peptide sex pheromone, cAM373, secreted by plasmid-free (recipient) strains of enterococci. It was identified over 15 years ago as one of five plasmids in E. faecalis strain RC73 and was of interest because a related pheromone activity could be detected in culture supernatants of Staphylococcus aureus and Streptococcus gordonii. Because of increased clinical concern relating to the possibility of mobilizing vancomycin resistance determinants from enterococci, where they are becoming common, into pathogens such as S. aureus, efforts were initiated to characterize pAM373 further. The results of a complete nucleotide sequence determination of pAM373, as well as a genetic analysis of key genes related to regulation of the pheromone response, are reported here. With regard to determinants related to conjugation, the plasmid has a structural organization similar to other known pheromone-responsive plasmids such as pAD1, pCF10 and pPD1; however, there are several unique features. Although there are significant homologues relating to a pheromone-binding surface protein (TraC) and a negatively regulating protein (TraA), there is an absence of a determinant equivalent to traB of pAD1 (reduces endogenous pheromone) and a determinant for surface-exclusion protein. The precursor structure of the inhibitor peptide iAM373 was identified, and its determinant (iam373) was found to be about 500 nt upstream of an apparent transcription terminator t1. Tn917-lac insertion analyses provided interesting insights into aspects of control of the pheromone response and showed that, although the traA product is sensitive to pheromone, it appears to act differently from the traA homologue of pAD1.
Collapse
Affiliation(s)
- E H De Boever
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
17
|
Muscholl-Silberhorn AB. Pheromone-regulated expression of sex pheromone plasmid pAD1-encoded aggregation substance depends on at least six upstream genes and a cis-acting, orientation-dependent factor. J Bacteriol 2000; 182:3816-25. [PMID: 10850999 PMCID: PMC94555 DOI: 10.1128/jb.182.13.3816-3825.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an alpha-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated alpha-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of alpha-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P(0), and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed.
Collapse
|
18
|
Hirt H, Erlandsen SL, Dunny GM. Heterologous inducible expression of Enterococcus faecalis pCF10 aggregation substance asc10 in Lactococcus lactis and Streptococcus gordonii contributes to cell hydrophobicity and adhesion to fibrin. J Bacteriol 2000; 182:2299-306. [PMID: 10735875 PMCID: PMC111281 DOI: 10.1128/jb.182.8.2299-2306.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregation substance proteins encoded by the sex pheromone plasmid family of Enterococcus faecalis have been shown previously to contribute to the formation of a stable mating complex between donor and recipient cells and have been implicated in the virulence of this increasingly important nosocomial pathogen. In an effort to characterize the protein further, prgB, the gene encoding the aggregation substance Asc10 on pCF10, was cloned in a vector containing the nisin-inducible nisA promoter and its two-component regulatory system. Expression of aggregation substance after nisin addition to cultures of E. faecalis and the heterologous bacteria Lactococcus lactis and Streptococcus gordonii was demonstrated. Electron microscopy revealed that Asc10 was presented on the cell surfaces of E. faecalis and L. lactis but not on that of S. gordonii. The protein was also found in the cell culture supernatants of all three species. Characterization of Asc10 on the cell surfaces of E. faecalis and L. lactis revealed a significant increase in cell surface hydrophobicity upon expression of the protein. Heterologous expression of Asc10 on L. lactis also allowed the recognition of its binding ligand (EBS) on the enterococcal cell surface, as indicated by increased transfer of a conjugative transposon. We also found that adhesion of Asc10-expressing bacterial cells to fibrin was elevated, consistent with a role for the protein in the pathogenesis of enterococcal endocarditis. The data demonstrate that Asc10 expressed under the control of the nisA promoter in heterologous species will be an useful tool in the detailed characterization of this important enterococcal conjugation protein and virulence factor.
Collapse
Affiliation(s)
- H Hirt
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Tomita H, Clewell DB. A pAD1-encoded small RNA molecule, mD, negatively regulates Enterococcus faecalis pheromone response by enhancing transcription termination. J Bacteriol 2000; 182:1062-73. [PMID: 10648533 PMCID: PMC94383 DOI: 10.1128/jb.182.4.1062-1073.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pAD1 is a 60-kb hemolysin-bacteriocin plasmid in Enterococcus faecalis that encodes a conjugative mating response to a peptide sex pheromone, cAD1, secreted by plasmid-free bacteria. The pheromone response is regulated by two proteins: TraE1, which positively regulates all or most conjugative structural genes, and TraA, which negatively regulates traE1. TraA binds to pAD1 DNA at the iad (encoding the inhibitor peptide iAD1) promoter but is released upon binding to imported pheromone. This leads to enhanced transcription through two closely spaced downstream terminators (t1 and t2) into traE1. TraE1 is believed to then upregulate itself from a site located within t2; thus, a small amount of transcription through t1-t2 could lead to overall induction. It is important therefore that the t1-t2 terminators be tightly controlled to keep the response shut down in the absence of pheromone. A small (200-nucleotide) RNA molecule designated mD is encoded just upstream of t1 by a determinant (traD) oriented in the direction opposite to that of transcripts utilizing t1. mD is expressed at high levels in the uninduced state, but it decreases significantly upon induction. Here we present results of genetic studies relating to the activity of t1-t2 and show that mD strongly enhances transcriptional termination at t1. The mD activity is shown to influence transcription well downstream and can affect the determinant for aggregation substance asa1. The phenomenon is specific in that there is no effect of mD on the unrelated pheromone-responding plasmids pPD1 and pCF10.
Collapse
Affiliation(s)
- H Tomita
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
20
|
Muscholl-Silberhorn A. Cloning and functional analysis of Asa373, a novel adhesin unrelated to the other sex pheromone plasmid-encoded aggregation substances of Enterococcus faecalis. Mol Microbiol 1999; 34:620-30. [PMID: 10564502 DOI: 10.1046/j.1365-2958.1999.01631.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
pAM373 of Enterococcus faecalis deviates from the various other representatives of sex pheromone plasmids in that it encodes a clumping-mediating adhesin, Asa373, unrelated to the highly conserved aggregation substances typical of this plasmid class. The use of a new general cloning strategy and sequencing of the corresponding gene has confirmed that Asa373 represents a novel type of adhesin embedded in a DNA sequence very similar to sex pheromone plasmid pPD1. To prove the specific function of the relatively small protein (75.6 kDa vs 137 kDa for pAD1-encoded Asa1) in cell aggregation, an expression vector, pERM-ex1, was constructed, allowing reliable and stable expression of proteins in E. faecalis. The expression of Asa373 in E. faecalis indeed resulted in constitutive clumping, whereas non-polar disruption of the gene in the original pAM373 abolished clumping capacity. Expression in a strain (INY3000) defective in binding substance - which for the other aggregation substances constitutes the attachment site on the mating partner - did not alter Asa373-dependent clumping; this implies a separate mechanism in cell-cell interaction for this adhesin. Some amino acid motifs of Asa373 link the protein to adhesins of oral streptococci and other cell surface proteins. Comparison of the leader sequence of asa373 with those of several other aggregation substances revealed a highly conserved translational unit possibly involved in the regulation of asa373 expression.
Collapse
Affiliation(s)
- A Muscholl-Silberhorn
- Universität Regensburg, NWFIII-Mikrobiologie, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| |
Collapse
|
21
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Wu K, An FY, Clewell DB. Enterococcus faecalis pheromone-responding plasmid pAD1 gives rise to an aggregation (clumping) response when cells are exposed to subinhibitory concentrations of chloramphenicol, erythromycin, or tetracycline. Plasmid 1999; 41:82-8. [PMID: 9887311 DOI: 10.1006/plas.1998.1373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Enterococcus faecalis conjugative cytolysin plasmid pAD1 encodes a specific aggregation (clumping) response to the peptide sex pheromone cAD1 secreted by plasmid-free strains. Here it is shown that, in the absence of cAD1, exposure of E. faecalis cells harboring pAD1 to subinhibitory concentrations of chloramphenicol, erythromycin, or tetracycline also results in an aggregation response that appears related to a stress-sensitive mechanism associated with a component of the pheromone response.
Collapse
Affiliation(s)
- K Wu
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | |
Collapse
|
23
|
Haase J, Kalkum M, Lanka E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J Bacteriol 1996; 178:6720-9. [PMID: 8955288 PMCID: PMC178567 DOI: 10.1128/jb.178.23.6720-6729.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TrbK is the only plasmid-encoded gene product involved in entry exclusion of the broad-host-range plasmid RP4. The corresponding gene, trbK, coding for a protein of 69 amino acid residues maps in the Tra2 region within the mating pair formation genes. TrbK carries a lipid moiety at the N-terminal cysteine of the mature 47-residue polypeptide. The mutant protein TrbKC23G cannot be modified or proteolytically processed but still acts in entry exclusion with reduced efficiency. An 8-amino-acid truncation at the C terminus of TrbK results in a complete loss of the entry exclusion activity but still allows the protein to be processed. TrbK localizes predominately to the cytoplasmic membrane. Its function depends on presence in the recipient cell but not in the donor cell. TrbK excludes plasmids of homologous systems of the P complex; it is inert towards the IncI system. The likely target for TrbK action is the mating pair formation system, because DNA or any of the components of the relaxosome were excluded as possible targets.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Dahlem, Berlin, Germany
| | | | | |
Collapse
|
24
|
Hirt H, Wirth R, Muscholl A. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:640-7. [PMID: 8917306 DOI: 10.1007/bf02173969] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new IS element, IS1062, related to the enterococcal IS elements IS6770 and IS1252, was detected in the 3'-terminus of the surface exclusion gene, sep1, of sex pheromone plasmid pPD1 in Enterococcus faecalis. pPD1-bearing cells lack the surface exclusion function, probably as a consequence of this insertion. Analysis of pAD1 and pPD1 sequences (7.5 kb and 2.7 kb, respectively) downstream of their aggregation substance genes revealed no similarity in these DNA regions. Detailed DNA/DNA hybridization studies using DNA probes specific for various pAD1-encoded genes needed for plasmid transfer indicated that the sex pheromone plasmids have evolved by repeated recombination and insertion of diverse transposable elements which presumably account for recent acquisition of antibiotic resistances.
Collapse
Affiliation(s)
- H Hirt
- Institut für Mikrobiologie, Regensburg, Germany
| | | | | |
Collapse
|
25
|
Haase J, Lurz R, Grahn AM, Bamford DH, Lanka E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J Bacteriol 1995; 177:4779-91. [PMID: 7642506 PMCID: PMC177245 DOI: 10.1128/jb.177.16.4779-4791.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Dahlem, Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Wirth R. The sex pheromone system of Enterococcus faecalis. More than just a plasmid-collection mechanism? EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:235-46. [PMID: 8020463 DOI: 10.1111/j.1432-1033.1994.tb18862.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sex pheromone system of Enterococcus faecalis was discovered by observing a clumping reaction of E. faecalis strains during conjugative transfer of plasmids. It was found that only a special type of E. faecalis plasmids, the so-called sex pheromone plasmids, are transferred via this mechanism. Various experiments, especially by the group of D. B. Clewell, led to the formulation of a model describing how the sex pheromone system works. Small linear peptides, the so-called sex pheromones, are excreted by strains not possessing the corresponding sex pheromone plasmid. Donor strains harboring the plasmid do not produce the corresponding sex pheromone; they react to the presence of the peptide by production of a plasmid-encoded adhesin, the so-called aggregation substance. This adhesin allows contact between the non-motile mating partners; after conjugative transfer of the plasmid, the former recipient possesses and replicates the new plasmid. Thereby the population of E. faecalis strains is shifted to a high percentage of donor strains. This is especially true because a donor strain will still excrete sex pheromones corresponding to plasmids it does not harbor; therefore, such a strain can also function as recipient for other sex pheromone plasmids it does not possess. Various aspects of this unique plasmid collection mechanism have been studied during the last few years. The data indicate that, with the exception of pAM373, all sex pheromone plasmids possess one DNA region which is highly similar to and codes for the adhesin. It is also becoming more and more clear that regulatory functions/proteins are not conserved between different sex pheromone plasmids. Induction of adhesin synthesis needs the action of a regulatory cascade composed of unique features; at the moment we are just beginning to understand this cascade. By sequencing the first structural gene for one of those adhesins, we realized that the aggregation substance might act also as an adhesin for eucaryotic cells, probably by interaction with integrins. At least in the case of the in vitro cultured pig kidney tubulus cell line LLC-PK1 this idea could be verified. An interesting aspect of the sex pheromone system of E. faecalis is its evolution. I will discuss the idea that two different components, both of which well might contribute to virulence of the opportunistic pathogenic bacterium, were combined in the species E. faecalis to result in this unique plasmid collection system.
Collapse
Affiliation(s)
- R Wirth
- Institut für Genetik und Mikrobiologie der LMU, Lehrstuhl für Mikrobiologie, München, Germany
| |
Collapse
|
27
|
Fischetti VA, Medaglini D, Oggioni M, Pozzi G. Expression of foreign proteins on gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 1993; 4:603-10. [PMID: 7764213 DOI: 10.1016/0958-1669(93)90084-a] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-pathogenic Gram-positive oral commensal bacteria expressing recombinant fusion proteins on their cell surface have been successfully used to raise both a mucosal and a systemic immune response to foreign antigens while colonizing the oropharynx. In this system, fusion-protein vaccines are delivered and anchored to the surface of a commensal, which occupies the mucosal niche invaded by a particular pathogen. Surface expression of these foreign proteins is achieved by exploiting the common mechanism employed by Gram-positive bacteria for translocating and anchoring proteins to the cell surface. The process offers a safe alternative to the use of engineered pathogens as live vaccine delivery vehicles.
Collapse
|
28
|
Olmsted SB, Erlandsen SL, Dunny GM, Wells CL. High-resolution visualization by field emission scanning electron microscopy of Enterococcus faecalis surface proteins encoded by the pheromone-inducible conjugative plasmid pCF10. J Bacteriol 1993; 175:6229-37. [PMID: 8407795 PMCID: PMC206718 DOI: 10.1128/jb.175.19.6229-6237.1993] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Enterococcus faecalis can acquire antibiotic resistance and virulence genes by transfer of pheromone-inducible conjugative plasmids such as pCF10, which encodes tetracycline resistance. Two pCF10-encoded cell surface proteins, Sec10 and Asc10, have been previously shown to play an important role in the transfer of this plasmid. We used high-resolution, field emission scanning electron microscopy to visualize these proteins on the surfaces of a series of isogenic strains of E. faecalis. Immunogold labeling, using both 6- and 12-nm colloidal gold, unambiguously demonstrated the expression and distribution of Sec10 and Asc10 on the surface of the E. faecalis cells. On unlabeled E. faecalis cells which expressed either Sec10 or Asc10, the former appeared to be more readily detected. Immunogold labeling of E. faecalis cells expressing both Asc10 and Sec10 clearly demonstrated the abundance and intermixing of both proteins on the cell surface except at septal regions. Sec10 was observed to be distributed over the cell surface. At regions of cell-cell contact, fine strands representing Asc10 were observed directly attaching adjacent cells to one another.
Collapse
Affiliation(s)
- S B Olmsted
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis 55455-0374
| | | | | | | |
Collapse
|
29
|
Muscholl A, Galli D, Wanner G, Wirth R. Sex pheromone plasmid pAD1-encoded aggregation substance of Enterococcus faecalis is positively regulated in trans by traE1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:333-8. [PMID: 8508803 DOI: 10.1111/j.1432-1033.1993.tb17928.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sex-pheromone-plasmid-bearing strains of Enterococcus faecalis react with sex pheromone to induce the expression of an adhesin, the so-called aggregation substance, on their cell surface. Here we show that, by complementation studies, for sex-pheromone plasmid pAD1, expression of the structural gene asa1, coding for an aggregation substance, is mediated by a diffusible factor encoded on pAD1. We were able to demonstrate that a small open reading frame, traE1, is sufficient for transcription of the operon containing asa1. A model for expression of asa1 under the influence of the positive regulator is presented, which is supported by our observation that regulation involves an all-or-nothing induction phenomenon, leading to cells either fully expressing asa1 or not at all.
Collapse
Affiliation(s)
- A Muscholl
- Lehrstuhl für Mikrobiologie, Universität München, Germany
| | | | | | | |
Collapse
|
30
|
Hirt H, Wanner G, Galli D, Wirth R. Biochemical, immunological and ultrastructural characterization of aggregation substances encoded by Enterococcus faecalis sex-pheromone plasmids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:711-6. [PMID: 8436129 DOI: 10.1111/j.1432-1033.1993.tb17600.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The sex-pheromone system of Enterococcus faecalis can be viewed as a unique and highly efficient plasmid-collection mechanism. The contact needed for transfer of the conjugative sex-pheromone plasmids is mediated by an adhesin, called aggregation substance, which is encoded by these plasmids. We show here that for 17 of the 18 sex-pheromone plasmids (pAM373 being the exception) described to date, their adhesins are immunologically related to each other. In each case, we observed the presence of an N-terminal fragment of about 78 kDa in addition to the 137-kDa form of mature aggregation substance. The cross-reactions were different for the various plasmids. In the case of pPD1 the 78-kDa fragment reacted only weakly. The aggregation substance encoded by sex-pheromone plasmid pAD1 (Asa1) was characterized in detail. The conditions used for SDS/PAGE had a drastic influence on the migration behavior of mature aggregation substance and differently migrating, interconvertible forms were identified. Preliminary data indicate that Asa1 might be a glycoprotein. Antibodies were isolated which are directed against the N- and C-terminal parts of aggregation substance. They showed about the same reactivity on Western blots; however, only antibodies directed against the N-terminal part of the aggregation substance could inhibit the bacterial cell/cell contact. The reactions of the two antibody preparations with induced cells of E. faecalis was analyzed by transmission electron microscopy. The results indicated that especially the N-terminal part of aggregation substance is exposed on the cell surface of E. faecalis; the C-terminal part seems to be much less exposed.
Collapse
Affiliation(s)
- H Hirt
- Lehrstuhl für Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | | | |
Collapse
|
31
|
Wirth R, Friesenegger A, Horaud T. Identification of new sex pheromone plasmids in Enterococcus faecalis. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:157-60. [PMID: 1603059 DOI: 10.1007/bf00587574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe the identification of the following new sex pheromone plasmids in Enterococcus faecalis: a haemolysin-bacteriocin plasmid, pIP964; three R plasmids, pIP1017, pIP1438 and pIP1440; and two cryptic conjugative plasmids, pIP1141 and pMV120. The identification was based on the formation of cell aggregates on filter membranes during conjugation, on efficient transfer in broth matings, and on a positive clumping reaction of cells carrying these plasmids. In addition these plasmids hybridized with DNA probes specific for sex pheromone-induced structural genes encoding surface proteins required for conjugative transfer of the plasmids.
Collapse
Affiliation(s)
- R Wirth
- Lehrstuhl für Mikrobiologie, Universität München, FRG
| | | | | |
Collapse
|