1
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Unal S. A rare cause of anejaculation: mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome: case report. Int J Impot Res 2023:10.1038/s41443-023-00813-2. [PMID: 38129692 DOI: 10.1038/s41443-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is an extremely rare multisystem disorder with autosomal recessive inheritance and impairs mitochondrial DNA replication, which causes myopathy and neurodegeneration. The classical symptoms of this syndrome are progressive gastrointestinal dysmotility and peripheral neuropathy. We are presenting a patient who had MNGIE syndrome and presented with anejaculation for the first time in the literature. A 27-year-old male patient applied to the urology clinic with anejaculation. It was learned that the patient had lifelong anejaculation and had no problems with libido, erection, or orgasm from his sexual history. In the evaluation of the etiology of anejaculation, the patient did not have any known causes of anejaculation. From the patient's medical history, it was learned that he was diagnosed with MNGIE syndrome when he presented to another hospital with gastrointestinal symptoms 5 years ago. Neurodegenerative diseases are the potential cause of anejaculation due to sensorimotor neuropathy and paresthesia. The patient was given genetic counseling and was informed about assisted reproductive techniques and that his partner should be screened for MNGIE syndrome. In conclusion, when evaluating neurodegenerative diseases, it is of great importance to question the patients' sexual problems, which are important for their quality of life, and to provide appropriate counseling.
Collapse
Affiliation(s)
- Selman Unal
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey.
| |
Collapse
|
3
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
4
|
van den Ameele J, Hong YT, Manavaki R, Kouli A, Biggs H, MacIntyre Z, Horvath R, Yu-Wai-Man P, Reid E, Williams-Gray CH, Bullmore ET, Aigbirhio FI, Fryer TD, Chinnery PF. [ 11C]PK11195-PET Brain Imaging of the Mitochondrial Translocator Protein in Mitochondrial Disease. Neurology 2021; 96:e2761-e2773. [PMID: 33883237 PMCID: PMC8205464 DOI: 10.1212/wnl.0000000000012033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To explore the possibilities of radioligands against the mitochondrial outer membrane translocator protein (TSPO) as biomarkers for mitochondrial disease, we performed brain PET-MRI with [11C]PK11195 in 14 patients with genetically confirmed mitochondrial disease and 33 matched controls. METHODS Case-control study of brain PET-MRI with the TSPO radioligand [11C]PK11195. RESULTS Forty-six percent of symptomatic patients had volumes of abnormal radiotracer binding greater than the 95th percentile in controls. [11C]PK11195 binding was generally greater in gray matter and significantly decreased in white matter. This was most striking in patients with nuclear TYMP or mitochondrial m.3243A>G MT-TL1 mutations, in keeping with differences in mitochondrial density seen postmortem. Some regional binding patterns corresponded to clinical presentation and underlying mutation, even in the absence of structural changes on MRI. This was most obvious for the cerebellum, where patients with ataxia had decreased binding in the cerebellar cortex, but not necessarily volume loss. Overall, there was a positive correlation between aberrant [11C]PK11195 binding and clinical severity. CONCLUSION These findings endorse the use of PET imaging with TSPO radioligands as a noninvasive in vivo biomarker of mitochondrial pathology. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that brain PET-MRI with TSPO radioligands identifies mitochondrial pathology.
Collapse
Affiliation(s)
- Jelle van den Ameele
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Young T Hong
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Roido Manavaki
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Antonina Kouli
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Heather Biggs
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Zoe MacIntyre
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Rita Horvath
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Patrick Yu-Wai-Man
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Evan Reid
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Caroline H Williams-Gray
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Ed T Bullmore
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Franklin I Aigbirhio
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Tim D Fryer
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Patrick F Chinnery
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK.
| |
Collapse
|
5
|
Madhok J, Leong J, Cohn J. Anesthetic Considerations for Liver Transplantation in a Patient with Mitochondrial Neurogastrointestinal Encephalopathy Syndrome. Cureus 2019; 11:e5038. [PMID: 31501730 PMCID: PMC6721878 DOI: 10.7759/cureus.5038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare, complex mitochondrial disorder with variable phenotypes caused by a defect in the TYMP gene that codes for the thymidine phosphorylase enzyme. Orthotopic liver transplantation (OLT) has been proposed as a curative option for patients by using the liver as a source to restore thymidine phosphorylase levels in the body. Anesthetic considerations for this syndrome have not been clearly outlined in the past. We describe the clinical presentation of a young woman with MNGIE, her perioperative assessment, and intraoperative management during liver transplantation.
Collapse
Affiliation(s)
- Jai Madhok
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Jason Leong
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Jed Cohn
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| |
Collapse
|
6
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
7
|
Set KK, Sen K, Huq AHM, Agarwal R. Mitochondrial Disorders of the Nervous System: A Review. Clin Pediatr (Phila) 2019; 58:381-394. [PMID: 30607979 DOI: 10.1177/0009922818821890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kallol K Set
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Kuntal Sen
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - A H M Huq
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - Rajkumar Agarwal
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| |
Collapse
|
8
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 4:1-16. [PMID: 32914088 PMCID: PMC7116056 DOI: 10.20517/jtgg.2020.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease caused by mutations in TYMP, the gene encoding for the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of thymidine and 2’-deoxyuridine and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. MNGIE is characterised by gastrointestinal dysmotility, cachexia, peripheral neuropathy, ophthalmoplegia, ptosis and leukoencephalopathy. The disease is progressively degenerative and leads to death at an average age of 37.6 years. Patients invariably encounter misdiagnoses, diagnostic delays, and non-specific clinical management. Despite its rarity, MNGIE has invoked much interest in the development of therapeutic strategies, mainly because it is one of the few mitochondrial disorders where the molecular abnormality is metabolically and physically accessible to manipulation. This review provides a resume of the current diagnosis and treatment approaches and aims to increase the clinical awareness of MNGIE and thereby facilitate early diagnosis and timely access to treatments, before the development of untreatable and irreversible organ damage.
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, SW17 ORE, UK
| |
Collapse
|
10
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
11
|
Cortés R, Kleinsteuber K, Paz Vargas C, de Los Ángeles Avaria M. Miopatías metabólicas. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Filosto M, Cotti Piccinelli S, Caria F, Gallo Cassarino S, Baldelli E, Galvagni A, Volonghi I, Scarpelli M, Padovani A. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE-MTDPS1). J Clin Med 2018; 7:jcm7110389. [PMID: 30373120 PMCID: PMC6262582 DOI: 10.3390/jcm7110389] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause a loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues, and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy, and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Other two MNGIE-type phenotypes have been described so far, which are linked to mutations in POLG and RRM2B genes. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped thymidine phosphorylase therapy) and newer, promising therapies are expected in the near future. Since successful treatment is strictly related to early diagnosis, it is essential that clinicians be warned about the clinical features and diagnostic procedures useful to suspect diagnosis of MNGIE-MTDPS1. The aim of this review is to promote the knowledge of the disease as well as the involved mechanisms and the diagnostic processes in order to reach an early diagnosis.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Stefano Cotti Piccinelli
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Filomena Caria
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Serena Gallo Cassarino
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Enrico Baldelli
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Anna Galvagni
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Irene Volonghi
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Mauro Scarpelli
- Department of Neuroscience, Unit of Neurology, Azienda Ospedaliera Universitaria Integrata Verona, 37100 Verona, Italy.
| | - Alessandro Padovani
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| |
Collapse
|
13
|
Paediatric Intestinal Pseudo-obstruction: Evidence and Consensus-based Recommendations From an ESPGHAN-Led Expert Group. J Pediatr Gastroenterol Nutr 2018; 66:991-1019. [PMID: 29570554 DOI: 10.1097/mpg.0000000000001982] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic intestinal pseudo-obstructive (CIPO) conditions are considered the most severe disorders of gut motility. They continue to present significant challenges in clinical care despite considerable recent progress in our understanding of pathophysiology, resulting in unacceptable levels of morbidity and mortality. Major contributors to the disappointing lack of progress in paediatric CIPO include a dearth of clarity and uniformity across all aspects of clinical care from definition and diagnosis to management. In order to assist medical care providers in identifying, evaluating, and managing children with CIPO, experts in this condition within the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition as well as selected external experts, were charged with the task of developing a uniform document of evidence- and consensus-based recommendations. METHODS Ten clinically relevant questions addressing terminology, diagnostic, therapeutic, and prognostic topics were formulated. A systematic literature search was performed from inception to June 2017 using a number of established electronic databases as well as repositories. The approach of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) was applied to evaluate outcome measures for the research questions. Levels of evidence and quality of evidence were assessed using the classification system of the Oxford Centre for Evidence-Based Medicine (diagnosis) and the GRADE system (treatment). Each of the recommendations were discussed, finalized, and voted upon using the nominal voting technique to obtain consensus. RESULTS This evidence- and consensus-based position paper provides recommendations specifically for chronic intestinal pseudo-obstruction in infants and children. It proposes these be termed paediatric intestinal pseudo-obstructive (PIPO) disorders to distinguish them from adult onset CIPO. The manuscript provides guidance on the diagnosis, evaluation, and treatment of children with PIPO in an effort to standardise the quality of clinical care and improve short- and long-term outcomes. Key recommendations include the development of specific diagnostic criteria for PIPO, red flags to alert clinicians to the diagnosis and guidance on the use of available investigative modalities. The group advocates early collaboration with expert centres where structured diagnosis and management is guided by a multi-disciplinary team, and include targeted nutritional, medical, and surgical interventions as well as transition to adult services. CONCLUSIONS This document is intended to be used in daily practice from the time of first presentation and definitive diagnosis PIPO through to the complex management and treatment interventions such as intestinal transplantation. Significant challenges remain to be addressed through collaborative clinical and research interactions.
Collapse
|
14
|
Yadak R, Cabrera-Pérez R, Torres-Torronteras J, Bugiani M, Haeck JC, Huston MW, Bogaerts E, Goffart S, Jacobs EH, Stok M, Leonardelli L, Biasco L, Verdijk RM, Bernsen MR, Ruijter G, Martí R, Wagemaker G, van Til NP, de Coo IF. Preclinical Efficacy and Safety Evaluation of Hematopoietic Stem Cell Gene Therapy in a Mouse Model of MNGIE. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:152-165. [PMID: 29687034 PMCID: PMC5908387 DOI: 10.1016/j.omtm.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp−/−Upp1−/− mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2–3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp−/−Upp1−/− mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Joost C. Haeck
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W. Huston
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elly Bogaerts
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Edwin H. Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lorena Leonardelli
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
- University College of London (UCL), Great Ormond Street Institute of Child Health (ICH), London, UK
| | - Robert M. Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Hacettepe University, Stem Cell Research and Development Center, Ankara, Turkey
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Niek P. van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irenaeus F.M. de Coo
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Corresponding author: Irenaeus F.M. de Coo, Department of Neurology, Erasmus University Medical Center, PO Box 2060, 3000 CB Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Abstract
Ataxia is one of the most frequent symptoms of mitochondrial disease. In most cases it occurs as part of a syndromic disorder and the combination of ataxia with other neurologic involvement such as epilepsy is common. Mitochondrial ataxias can be caused by disturbance of the cerebellum and its connections, involvement of proprioception (i.e., sensory ataxia) or a combination of both (spinocerebellar). There are no specific features that define an ataxia as mitochondrial, except perhaps the tendency for it to occur together with involvement of multiple other sites, both in the nervous system and outside. In this review we will concentrate on the mitochondrial disorders in which ataxia is a prominent and consistent feature and focus on the clinical features and genetic causes.
Collapse
Affiliation(s)
- Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen and Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
16
|
Baker MK, Schutte CM, Ranchhod N, Brittain D, van Rensburg JE. Transient clinical improvement of a mitochondrial neurogastrointestinal encephalomyopathy-like syndrome after allogeneic haematopoietic stem cell transplantation. BMJ Case Rep 2017; 2017:bcr-2016-218276. [PMID: 28765176 DOI: 10.1136/bcr-2016-218276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalopathy (MNGIE), usually an autosomal-recessive inherited condition, causes gastrointestinal dysmotility, ophthalmoplegia, ptosis, leukoencephalopathy and neuropathy. The chromosome 22 disorder, due to mutations in the nuclear gene TYMP encoding thymidine phosphorylase (TP), leads to the accumulation of thymidine and deoxyuridine, with mitochondrial dysfunction.This report describes a patient with an MNGIE-like syndrome with a heterozygous TYMP mutation who showed marked, but transient improvement postallogeneic haematopoietic stem cell transplantation (HSCT).The patient, showing ptosis and ophthalmoplegia, was initially managed for myasthenia gravis. She developed gastrointestinal symptoms, dysarthria, dysphagia and weakness, and MNGIE was considered due to its low TP levels and improvement after platelet transfusions. She underwent HSCT, with dramatic improvement, but regressed 18 months later despite normal TP levels, platelet counts and full chimerism.MNGIE may encompass a spectrum of disorders. TP deficiency alone is unlikely to explain all clinical signs, and other factors, including the possible development of anti-TP antibodies, which may play a role in the pathophysiology.
Collapse
Affiliation(s)
- Malcolm Kevin Baker
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Clara Maria Schutte
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Neelay Ranchhod
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | | | - J E van Rensburg
- Department of Genetics, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
17
|
Di Nardo G, Di Lorenzo C, Lauro A, Stanghellini V, Thapar N, Karunaratne TB, Volta U, De Giorgio R. Chronic intestinal pseudo-obstruction in children and adults: diagnosis and therapeutic options. Neurogastroenterol Motil 2017; 29. [PMID: 27683196 DOI: 10.1111/nmo.12945] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic intestinal pseudo-obstruction (CIPO) represents the most severe form of gastrointestinal dysmotility with debilitating and potentially lethal consequences. Symptoms can be non-specific, and result in this condition being diagnosed incorrectly or too late with consequences for morbidity and even mortality. PURPOSE The present article aims to provide pediatric and adult gastroenterologists with an up to date review about clinical features, diagnosis and therapeutic options for CIPO. Although pediatric and adult CIPO share many clinical aspects distinctive features can be identified. There is no single diagnostic test or pathognomonic finding of CIPO, thus a stepwise approach including radiology, endoscopy, laboratory, manometry, and histopathology should be considered in the diagnostic work-up. Treatment of patients with CIPO is challenging and requires a multidisciplinary effort with participation of appropriately experienced gastroenterologists, pathologists, dieticians, surgeons, psychologists, and other subspecialists based on the presence of comorbidities. Current treatment options invariably involve surgery and specialized nutritional support, especially in children. Medical therapies are mainly aimed to avoid complications such as sepsis or intestinal bacterial overgrowth and, where possible, restore intestinal propulsion. More efficacious therapeutic options are eagerly awaited for such difficult patients.
Collapse
Affiliation(s)
- G Di Nardo
- Pediatric Unit, Orvieto Hospital, Orvieto, Italy.,Pediatric Gastroenterology Unit, International Hospital Salvator Mundi, Rome, Italy
| | - C Di Lorenzo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA
| | - A Lauro
- Liver and Multiorgan Transplant Unit, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - V Stanghellini
- Department of Medical and Surgical Sciences, Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy
| | - N Thapar
- Department of Gastroenterology, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - T B Karunaratne
- Department of Medical and Surgical Sciences, Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy
| | - U Volta
- Department of Medical and Surgical Sciences, Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy
| | - R De Giorgio
- Department of Medical and Surgical Sciences, Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Kuranobu H, Murakami J, Kuranobu N, Okamoto K, Murayama K, Kanzaki S. Mitochondrial respiratory chain complex I deficiency causes intractable gastrointestinal symptoms. Pediatr Int 2016; 58:1337-1340. [PMID: 28008731 DOI: 10.1111/ped.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 10/20/2022]
Abstract
We report the case of a 13-month-old girl with frequent vomiting, intractable diarrhea, hyperlactatemia, and liver dysfunction. Although the symptoms were treatment resistant, enteral nutrition formula containing medium-chain triglycerides reduced the weight loss, vomiting, and diarrhea. Immunostaining of mitochondrial respiratory chain (MRC) complexes of the colonic mucosa confirmed the diagnosis of MRC complex I deficiency. This case shows that this disease should be included in the differential diagnosis of hyperlactatemia and intractable, cryptogenic gastrointestinal symptoms. In addition, the mucosa of the affected gastrointestinal organ should be analyzed on immunostaining or electron microscopy for MRC complexes.
Collapse
Affiliation(s)
- Hiroki Kuranobu
- Division of Perinatology and Pediatrics, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Jun Murakami
- Division of Perinatology and Pediatrics, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Naomi Kuranobu
- Division of Perinatology and Pediatrics, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken Okamoto
- Division of Perinatology and Pediatrics, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Susumu Kanzaki
- Division of Perinatology and Pediatrics, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
19
|
Novel sequence variations in the thymidine phosphorylase gene causing mitochondrial neurogastrointestinal encephalopathy. Clin Dysmorphol 2016; 25:156-62. [PMID: 27261974 DOI: 10.1097/mcd.0000000000000137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Diagnostic approach in infants and children with mitochondrial diseases. Pediatr Neonatol 2015; 56:7-18. [PMID: 25151629 DOI: 10.1016/j.pedneo.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/27/2014] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of disorders affecting energy production in the human body. The diagnosis of mitochondrial diseases represents a challenge to clinicians, especially for pediatric cases, which show enormous variation in clinical presentations, as well as biochemical and genetic complexity. Different consensus diagnostic criteria for mitochondrial diseases in infants and children are available. The lack of standardized diagnostic criteria poses difficulties in evaluating diagnostic methodologies. Even though there are many diagnostic tools, none of them are sensitive enough to make a confirmative diagnosis without being used in combination with other tools. The current approach to diagnosing and classifying mitochondrial diseases incorporates clinical, biochemical, neuroradiological findings, and histological criteria, as well as DNA-based molecular diagnostic testing. The confirmation or exclusion of mitochondrial diseases remains a challenge in clinical practice, especially in cases with nonspecific clinical phenotypes. Therefore, follow-up evolution of clinical symptoms/signs and biochemical data is crucial. The purpose of this study is to review the molecular classification scheme and associated phenotypes in infants and children with mitochondrial diseases, in addition to providing an overview of the basic biochemical reactions and genetic characteristics in the mitochondrion, clinical manifestations, and diagnostic methods. A diagnostic algorithm for identifying mitochondrial disorders in pediatric neurology patients is proposed.
Collapse
|
21
|
Scarpelli M, Ricciardi GK, Beltramello A, Zocca I, Calabria F, Russignan A, Zappini F, Cotelli MS, Padovani A, Tomelleri G, Filosto M, Tonin P. The role of brain MRI in mitochondrial neurogastrointestinal encephalomyopathy. Neuroradiol J 2013; 26:520-30. [PMID: 24199812 DOI: 10.1177/197140091302600505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Leukoencephalopathy is a hallmark of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) a devastating disorder characterized by ptosis, ophthalmoparesis, gastrointestinal dysfunction and polyneuropathy. To characterize MNGIE-associated leukoencephalopathy and to correlate it with clinical, biochemical and molecular data, four MNGIE patients with heterogeneous clinical phenotypes (enteropathic arthritis, exercise intolerance, CIDP-like phenotype and typical presentation) were studied by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps were also obtained. In two patients we also investigated the role of brain MRI in monitoring the evolution of leukoencephalopathy by performing follow-up imaging studies at an interval of one and two years. The extension and distribution of leukoencephalopathy were not clearly linked with age, phenotype or disease severity, and did not seem to be related to TYMP mutations, enzyme activity or pyrimidine levels. In the studied patients MRS revealed reduced N-acetyl-aspartate and increased choline signals. Although DWI appeared normal in all patients but one, ADC maps always showed moderate increased diffusivity. Leukoencephalopathy worsened over a two-year period in two patients, regardless of the clinical course, indicating a lack of correlation between clinical phenotype, size and progression of white matter abnormalities during this period. Brain MRI should be considered a very useful tool to diagnose both classical and atypical MNGIE. Serial MRIs in untreated and treated MNGIE patients will help to establish whether the leukoencephalopathy is a reversible condition or not.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Department of Neurological and Movement Sciences, Section of Neurology, University of Verona; Verona, Italy -
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Mitochondrial diseases are a diverse group of inherited and acquired disorders that result in inadequate energy production. They can be caused by inheritable genetic mutations, acquired somatic mutations, and exposure to toxins (including some prescription medications). Normal mitochondrial physiology is responsible, in part, for the aging process itself, as free radical production within the mitochondria results in a lifetime burden of oxidative damage to DNA, especially the mitochondrial DNA that, in turn, replicate the mutational burden in future copies of itself, and lipid membranes. Primary mitochondrial diseases are those caused by mutations in genes that encode for mitochondrial structural and enzymatic proteins, and those proteins required for mitochondrial assembly and maintenance. A number of common adult maladies are associated with defective mitochondrial energy production and function, including diabetes, obesity, hyperthyroidism, hypothyroidism, and hyperlipidemia. Mitochondrial dysfunction has been demonstrated in many neurodegenerative disorders, including Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and some cancers. Polymorphisms in mitochondrial DNA have been linked to disease susceptibility, including death from sepsis and survival after head injury. There is considerable overlap in symptoms caused by primary mitochondrial diseases and those illnesses that affect mitochondrial function, but are not caused by primary mutations, as well as disorders that mimic mitochondrial diseases, but are caused by other identified mutations. Evaluation of these disorders is complex, expensive, and not without false-negative and false-positive results that can mislead the physician. Most of the common heritable mitochondrial disorders have been well-described in the literature, but can be overlooked by many clinicians if they are uneducated about these disorders. In general, the evaluation of the classic mitochondrial disorders has become straightforward if the clinician recognized the phenotype and orders appropriate confirmatory testing. However, the majority of patients referred for a mitochondrial evaluation do not have a clear presentation that allows for rapid identification and testing. This article provides introductory comments on mitochondrial structure, physiology, and genetics, but will focus on the presentation and evaluation of adults with mitochondrial symptoms, but who may not have a primary mitochondrial disease.
Collapse
Affiliation(s)
- Bruce H Cohen
- NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, 215 West Bowery Street, Suite 4400, Akron, OH 44308, USA.
| |
Collapse
|
23
|
Abstract
There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations.
Collapse
|
24
|
DiMauro S, Tanji K, Schon EA. The Many Clinical Faces of Cytochrome c Oxidase Deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:341-57. [DOI: 10.1007/978-1-4614-3573-0_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Abstract
Mitochondria are subcellular organelles whose major function is to generate energy by coupling through oxidation of nutrient substrates with ATP synthesis, via ADP phosphorylation. This process, known as oxidative phosphorylation, is carried out by the mitochondrial respiratory chain, a pathway consisting of five multi-subunit complexes, four of which take contribution from genes located in two separate compartments, the nuclear chromosomes, and a genome found in mitochondria themselves, mitochondrial DNA (mtDNA). Defects affecting either genome give rise to mitochondrial dysfunction, causing disease that often affects the brain and in particular the cerebellum. Mitochondrial disorders can give rise to pure cerebellar, spinocerebellar, or sensory ataxia, usually as part of a multisystem (and multisymptom) disorder. In this chapter we divide the diseases into those caused by mtDNA defects and those due to mutations involving nuclear genes. With more than 100 mutations in mtDNA and new nuclear genes being described all the time, we have focused on the commonest disorders and used these as examples of the different types of mitochondrial ataxia.
Collapse
Affiliation(s)
- Massimo Zeviani
- Istituto Nazionale Neurologico "C. Besta" - IRCCS, Milano, Italy.
| | | | | |
Collapse
|
26
|
De Giorgio R, Cogliandro RF, Barbara G, Corinaldesi R, Stanghellini V. Chronic intestinal pseudo-obstruction: clinical features, diagnosis, and therapy. Gastroenterol Clin North Am 2011; 40:787-807. [PMID: 22100118 DOI: 10.1016/j.gtc.2011.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CIPO is the very “tip of the iceberg” of functional gastrointestinal disorders, being a rare and frequently misdiagnosed condition characterized by an overall poor outcome. Diagnosis should be based on clinical features, natural history and radiologic findings. There is no cure for CIPO and management strategies include a wide array of nutritional, pharmacologic, and surgical options which are directed to minimize malnutrition, promote gut motility and reduce complications of stasis (ie, bacterial overgrowth). Pain may become so severe to necessitate major analgesic drugs. Underlying causes of secondary CIPO should be thoroughly investigated and, if detected, treated accordingly. Surgery should be indicated only in a highly selected, well characterized subset of patients, while isolated intestinal or multivisceral transplantation is a rescue therapy only in those patients with intestinal failure unsuitable for or unable to continue with TPN/HPN. Future perspectives in CIPO will be directed toward an accurate genomic/proteomic phenotying of these rare, challenging patients. Unveiling causative mechanisms of neuro-ICC-muscular abnormalities will pave the way for targeted therapeutic options for patients with CIPO.
Collapse
|
27
|
Solt I, Ioffe Y, Elmore RG, Solnik MJ. Group A Streptococcal Peritonitis and Ruptured Tubo-Ovarian Abscess Three Years After Essure® Insertion: A Case Report. J Womens Health (Larchmt) 2011; 20:781-3. [DOI: 10.1089/jwh.2010.2574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ido Solt
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yevgeniya Ioffe
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Raymond Geoffrey Elmore
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - M. Jonathon Solnik
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
28
|
Kanjwal K, Karabin B, Kanjwal Y, Saeed B, Grubb BP. Autonomic dysfunction presenting as orthostatic intolerance in patients suffering from mitochondrial cytopathy. Clin Cardiol 2011; 33:626-629. [PMID: 20960537 DOI: 10.1002/clc.20805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Disturbances in autonomic nervous system function have been reported to occur in patients suffering from mitochondrial cytopathies. However, there is paucity of literature on the occurrence of orthostatic intolerance (OI) in these patients. We report on a series of patients diagnosed with mitochondrial cytopathy who developed features of autonomic dysfunction in the form of OI. METHODS This was a single-center report on a series of 6 patients who were followed in our clinic for orthostatic intolerance. All of these patients had a diagnosis of mitochondrial cytopathy on the basis of muscle biopsy and were being followed at a center specializing in the treatment of mitochondrial disorders. This study was approved by our local institutional review board. Each of the patients had suffered from symptoms of fatigue, palpitations, near syncope, and syncope. The diagnosis of OI was confirmed by head-up tilt test. Collected data included demographic information, presenting symptoms, laboratory data, tilt-table response, and treatment outcomes. RESULTS Six patients (3 females) were identified for inclusion in this report. The mean age of the group was 48 ± 8 years (range, 40-60 years). All of these patients underwent head-up tilt table testing and all had a positive response that reproduced their clinical symptoms. Among those having an abnormal tilt-table pattern, 1 had a neurocardiogenic response, 1 had a dysautonomic response, and 4 had a postural orthostatic tachycardia response. All but 1 patient reported marked symptom relief with pharmacotherapy. The patient who failed pharmacotherapy received a dual-chamber closed-loop pacemaker and subsequently reported marked improvement in her symptoms with elimination of her syncope. CONCLUSIONS Orthostatic intolerance might be a significant feature of autonomic nervous system dysfunction in patients suffering from mitochondrial cytopathy.
Collapse
Affiliation(s)
- Khalil Kanjwal
- Section of Electrophysiology, Division of Cardiology, Division of Internal Medicine
| | - Beverly Karabin
- Section of Electrophysiology, Division of Cardiology, Division of Internal Medicine
| | - Yousuf Kanjwal
- Section of Electrophysiology, Division of Cardiology, Division of Internal Medicine
| | - Bilal Saeed
- Department of Medicine, The University of Toledo Medical Center, Toledo, Ohio
| | - Blair P Grubb
- Section of Electrophysiology, Division of Cardiology, Division of Internal Medicine
| |
Collapse
|
29
|
Dimauro S. A history of mitochondrial diseases. J Inherit Metab Dis 2011; 34:261-76. [PMID: 20490929 DOI: 10.1007/s10545-010-9082-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 12/12/2022]
Abstract
This articles reviews the development of mitochondrial medicine from the premolecular era (1962-1988), when mitochondrial diseases were defined on the basis of clinical examination, muscle biopsy, and biochemical criteria, through the molecular era, when the full complexity of these disorders became evident. In a chronological order, I have followed the introduction of new pathogenic concepts that have shaped a rational genetic classification of these clinically heterogeneous disorders. Thus, mitochondrial DNA (mtDNA)-related diseases can be divided into two main groups: those that impair mitochondrial protein synthesis in toto, and those that affect specific respiratory chain proteins. Mutations in nuclear DNA can affect components of respiratory chain complexes (direct hits) or assembly proteins (indirect hits), but they can also impair mtDNA integrity (multiple mtDNA mutations), replication (mtDNA depletion), or mtDNA translation. Besides these disorders that affect the respiratory chain directly, defects in other mitochondrial functions may also affect oxidative phosphorylation, including problems in mitochondrial protein import, alterations of the inner mitochondrial membrane lipid composition, and defects of mitochondrial dynamics. The enormous and still ongoing progress in our understanding of mitochondrial medicine was made possible by the intense collaboration of an international cadre of "mitochondriacs." Having published my first paper on a patient with mitochondrial myopathy 37 years ago (DiMauro et al., 1973), I feel qualified to write a history of the mitochondrial diseases, a fascinating, still evolving, and continuously puzzling area of medicine. In each section, I follow a chronological order of the salient discoveries and I show only the portraits of distinguished deceased mitochondriacs and those whose names became eponyms of mitochondrial diseases.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
30
|
Abstract
In this review, we trace the origins and follow the development of mitochondrial medicine from the premolecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis, uniparental inheritance, intergenomic signaling and its defects, and mitochondrial dynamics. We hope that this historical review also provides an update on mitochondrial medicine, although we fully realize that the speed of progress in this area makes any such endeavor akin to writing on water.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Columbia University Medical Center, College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
31
|
Myopathy with hexagonally cross-linked crystalloid inclusions: Delineation of a clinico-pathological entity. Neuromuscul Disord 2010; 20:701-8. [DOI: 10.1016/j.nmd.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/17/2010] [Accepted: 06/07/2010] [Indexed: 11/17/2022]
|
32
|
Halter J, Schüpbach W, Casali C, Elhasid R, Fay K, Hammans S, Illa I, Kappeler L, Krähenbühl S, Lehmann T, Mandel H, Marti R, Mattle H, Orchard K, Savage D, Sue CM, Valcarcel D, Gratwohl A, Hirano M. Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Transplant 2010; 46:330-337. [PMID: 20436523 PMCID: PMC4578692 DOI: 10.1038/bmt.2010.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic SCT (HSCT) has been proposed as a treatment for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). HSCT has been performed in nine patients using different protocols with varying success. Based on this preliminary experience, participants of the first consensus conference propose a common approach to allogeneic HSCT in MNGIE. Standardization of the transplant protocol and the clinical and biochemical assessments will allow evaluation of the safety and efficacy of HSCT as well as optimization of therapy for patients with MNGIE.
Collapse
Affiliation(s)
- J Halter
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - Wmm Schüpbach
- Centre d'Investigation Clinique, Fédération des Maladies du Système Nerveux & INSERM UMR 679, Pitié-Salpxêtrière Group, Paris, France.,Department of Neurology, University Hospital-Inselspital Bern, Bern, Switzerland
| | - C Casali
- Neurology, La Sapienza University, University Hospital, Rome, Italy
| | - R Elhasid
- Pediatric-Oncology, Rambam Medical Centre, Haifa, Israel
| | - K Fay
- Department of Hematology, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - S Hammans
- Wessex Neurological Centre, Southampton University Hospital Trust, Southampton, UK
| | - I Illa
- Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Kappeler
- Department of Neurology, University Hospital-Inselspital Bern, Bern, Switzerland
| | - S Krähenbühl
- Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland
| | - T Lehmann
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - H Mandel
- Pediatrics, Rambam Medical Centre, Haifa, Israel
| | - R Marti
- Institut de Recerca, University Hospital Vall d'Hebron and CIBERER, Barcelona, Spain
| | - H Mattle
- Centre d'Investigation Clinique, Fédération des Maladies du Système Nerveux & INSERM UMR 679, Pitié-Salpxêtrière Group, Paris, France.,Department of Neurology, University Hospital-Inselspital Bern, Bern, Switzerland
| | - K Orchard
- Department of Haematology, University of Southampton, Southampton, UK
| | - D Savage
- Department of Haematology, Columbia University Medical Centre, New York, NY, USA
| | - C M Sue
- Department of Neurogenetics, University of Sydney Kolling Institute for Medical Research, Kolling Institute for Medical Research, Royal North Shore Hospital and University of Sydney, Sydney, Australia
| | - D Valcarcel
- Department of Hematology, Santa Creu i San Pau Hospital, Barcelona, Spain
| | - A Gratwohl
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - M Hirano
- Department of Neurology, Columbia University Medical Centre, New York, NY, USA
| |
Collapse
|
33
|
Saneto RP, Friedman SD, Shaw DWW. Neuroimaging of mitochondrial disease. Mitochondrion 2008; 8:396-413. [PMID: 18590986 DOI: 10.1016/j.mito.2008.05.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/11/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
Mitochondrial disease represents a heterogeneous group of genetic disorders that require a variety of diagnostic tests for proper determination. Neuroimaging may play a significant role in diagnosis. The various modalities of nuclear magnetic resonance imaging (MRI) allow for multiple independent detection procedures that can give important anatomical and metabolic clues for diagnosis. The non-invasive nature of neuroimaging also allows for longitudinal studies. To date, no pathonmonic correlation between specific genetic defect and neuroimaging findings have been described. However, certain neuroimaging results can give important clues that a patient may have a mitochondrial disease. Conventional MRI may show deep gray structural abnormalities or stroke-like lesions that do not respect vascular territories. Chemical techniques such as proton magnetic resonance spectroscopy (MRS) may demonstrate high levels of lactate or succinate. When found, these results are suggestive of a mitochondrial disease. MRI and MRS studies may also show non-specific findings such as delayed myelination or non-specific leukodystrophy picture. However, in the context of other biochemical, structural, and clinical findings, even non-specific findings may support further diagnostic testing for potential mitochondrial disease. Once a diagnosis has been established, these non-invasive tools can also aid in following disease progression and evaluate the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Russell P Saneto
- Division of Pediatric Neurology, Children's Hospital and Regional Medical Center/University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
34
|
Valentino ML, Martí R, Tadesse S, López LC, Manes JL, Lyzak J, Hahn A, Carelli V, Hirano M. Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). FEBS Lett 2007; 581:3410-4. [PMID: 17612528 PMCID: PMC1986782 DOI: 10.1016/j.febslet.2007.06.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 06/17/2007] [Accepted: 06/18/2007] [Indexed: 11/28/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post-mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.
Collapse
Affiliation(s)
- Maria Lucia Valentino
- Department of Neurology, Columbia University Medical Center, 630 W. 168th Street, P&S 4-443, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lara MC, Valentino ML, Torres-Torronteras J, Hirano M, Martí R. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Biochemical Features and Therapeutic Approaches. Biosci Rep 2007; 27:151-63. [PMID: 17549623 DOI: 10.1007/s10540-007-9043-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last 15 years, important research has expanded our knowledge of the clinical, molecular genetic, and biochemical features of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). The characterization of mitochondrial involvement in this disorder and the seminal determination of its genetic cause, have opened new possibilities for more detailed and deeper studies on the pathomechanisms in this progressive and fatal disease. It has been established that MNGIE is caused by mutations in the gene encoding thymidine phosphorylase (TP), which lead to absolute or nearly complete loss of its catalytic activity, producing systemic accumulations of its substrates, thymidine (dThd) and deoxyuridine (dUrd). Findings obtained from in vitro and in vivo studies indicate that the biochemical imbalances specifically impair mitochondrial DNA (mtDNA) replication, repair, or both leading to mitochondrial dysfunction. We have proposed that therapy for MNGIE should be aimed at reducing the concentrations of these toxic nucleosides to normal or nearly normal levels. The first treatment, allogeneic stem-cell transplantation (alloSCT) reported in 2006, produced a nearly full biochemical correction of the dThd and dUrd imbalances in blood. Clinical follow-up of this and other patients receiving alloSCT is necessary to determine whether this and other therapies based on a permanent restoration of TP will be effective treatment for MNGIE.
Collapse
Affiliation(s)
- M C Lara
- Centre d'Investigacions en Bioquímica i Biologia Molecular, Institut de Recerca Hospital Universitari Vall d'Hebron and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Schüpbach WMM, Vadday KM, Schaller A, Brekenfeld C, Kappeler L, Benoist JF, Xuan-Huong CNT, Burgunder JM, Seibold F, Gallati S, Mattle HP. Mitochondrial neurogastrointestinal encephalomyopathy in three siblings. J Neurol 2007; 254:146-53. [PMID: 17294068 DOI: 10.1007/s00415-006-0255-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Accepted: 04/12/2006] [Indexed: 01/19/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disorder in which a nuclear mutation of the thymidine phosphorylase (TP) gene causes mitochondrial genomic dysfunction. Patients suffer from gastrointestinal dysmotility, cachexia, ptosis, external ophthalmoparesis, myopathy and polyneuropathy. Magnetic resonance imaging (MRI) shows leukoencephalopathy. We describe clinical, genetic and neuroradiological features of three brothers affected with MNGIE. Clinical examination, laboratory analyses, MRI and magnetic resonance spectroscopy (MRS) of the brain, and genetic analysis have been performed in all six members of the family with the three patients with MNGIE. Two of them are monozygous twins. They all suffered from gastrointestinal dysmotility, cachexia, ophthalmoplegia, muscular atrophies, and polyneuropathy. Urinary thymidine was elevated in the patients related to the severity of clinical disease, and urinary thymidine (normally not detectable) was also found in a heterozygous carrier. Brain MRI showed leukoencephalopathy in all patients; however, their cognitive functioning was normal. Brain MRS demonstrated reduced N-acetylaspartate and choline in severely affected areas. MRI of heterozygous carriers was normal. A new mutation (T92N) in the TP gene was identified. Urinary thymidine is for the first time reported to be detectable in a heterozygous carrier. MRS findings indicate loss of neurons, axons, and glial cells in patients with MNGIE, but not in heterozygous carriers.
Collapse
Affiliation(s)
- W M M Schüpbach
- Department of Neurology, University Hospital-Inselspital, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy is a rare disorder affecting the pediatric age group with a heterogeneous multisystem involvement. We happen to manage a young child with symptoms of constipation since infancy along with cachexia, seizures and peripheral neuropathy. The child later went into encephalopathy preterminally. This clinical syndrome fitted very well with mitochondrial neurogastrointestinal encephalomyopathy. The child had elevated lactate levels and electron microscopy of the rectal biopsy was suggestive of a mitochondrial disorder To the best of our knowledge there is no case report of this syndrome from India and since this presents with diagnostic difficulties so is being reported.
Collapse
Affiliation(s)
- Anuj Walia
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Postgraduate Institute of Medical Education and Research,Chandigarh, India
| | | | | |
Collapse
|
38
|
Gamez J, Minoves T. Abnormal brainstem auditory evoked responses in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Evidence of delayed central conduction time. Clin Neurophysiol 2006; 117:2385-91. [PMID: 16949865 DOI: 10.1016/j.clinph.2006.07.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 07/04/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To assess the usefulness of brain auditory evoked potentials (BAEPs) in the study of asymptomatic white matter alterations in brain MRI observed in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients. METHODS The authors studied the neurophysiological characteristics of the BAEPs in four genetically confirmed MNGIE patients who presented varying degrees of leukoencephalopathy in brain MRI. RESULTS Prolonged I-III and I-V interpeak latencies were the most common abnormalities found, with a correlation between the extent of brain MRI lesions and BAEPs. CONCLUSIONS The findings suggest a delayed central conduction time along the brainstem. BAEPs may be useful in the neurophysiological evaluation of central white matter lesions in MNGIE. Similar neurophysiological findings have been reported in other myelin disorders in the central nervous system. SIGNIFICANCE The BAEPs abnormalities identified should be interpreted as an indirect sign of CNS involvement in MNGIE patients and provide comprehensive and integrated information concerning brainstem dysfunction. Further studies are necessary in order to identify whether there is a correlation between BAEPs and the clinical progression of the disease.
Collapse
Affiliation(s)
- Josep Gamez
- Department of Neurology, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain.
| | | |
Collapse
|
39
|
Abstract
The scope of pediatric autonomic disorders is not well recognized. The goal of this review is to increase awareness of the expanding spectrum of pediatric autonomic disorders by providing an overview of the autonomic nervous system, including the roles of its various components and its pervasive influence, as well as its intimate relationship with sensory function. To illustrate further the breadth and complexities of autonomic dysfunction, some pediatric disorders are described, concentrating on those that present at birth or appear in early childhood.
Collapse
Affiliation(s)
- Felicia B Axelrod
- Dysautonomia Treatment and Evaluation Center, Department of Pediatrics and Neurology, New York University School of Medicine, 530 First Ave, Suite 9Q, New York, New York 10016, USA.
| | | | | |
Collapse
|
40
|
Peker S, Necmettin Pamir M. Trigeminal neuralgia in a patient with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). J Clin Neurosci 2006; 12:172-4. [PMID: 15749422 DOI: 10.1016/j.jocn.2004.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 02/13/2004] [Indexed: 11/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal-recessive disease associated with multiple deletions of mitochondrial DNA in skeletal muscle. MNGIE is a multisystem syndrome affecting muscle, peripheral, and central nervous systems and the gastrointestinal tract. A 25-year-old man is presented with 3 years history of right sided trigeminal neuralgia. He has been diagnosed as MNGIE based on clinical, neurophysiological and pathological findings. He had also received medical therapy and two radiofrequency thermocoagulations for the treatment of trigeminal neuralgia. Gamma Knife radiosurgery was performed and resulted in partial relief. To our knowledge, this is the first case in the literature of MNGIE with trigeminal neuralgia. An analogy is suggested between multiple sclerosis and MNGIE as a cause for trigeminal neuralgia in this patient.
Collapse
Affiliation(s)
- Selçuk Peker
- Department of Neurosurgery, Marmara University, Marmara University Neurological Sciences Institute, Istanbul, Turkey.
| | | |
Collapse
|
41
|
Schröder JM. Neuropathology of Charcot-Marie-Tooth and related disorders. Neuromolecular Med 2006; 8:23-42. [PMID: 16775365 DOI: 10.1385/nmm:8:1-2:23] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/18/2005] [Accepted: 11/30/2005] [Indexed: 11/11/2022]
Abstract
The peripheral nervous system (PNS), with all its branches and connections, is so complex that it is impossible to study all components at the light or electron microscopic level in any individual case; nevertheless, in certain diseases a simple nerve biopsy may suffice to arrive at a precise diagnosis. Structural changes of the PNS in neuropathies of the Charcot-Marie-Tooth (CMT) type and related disorders comprise various components of the PNS. These include peripheral motor, sensory, and autonomous neurons with their axons, Schwann cells, and myelin sheaths in the radicular and peripheral nerves as well as satellite cells in spinal and autonomous ganglia. Astrocytes, oligodendroglial cells, and microglial cells around motor neurons in the anterior horn and around sensory neurons in other areas of the spinal cord are also involved. In addition, connective tissue elements such as endoneurial, perineurial, and epineurial components including blood and lymph vessels play an important role. This review focuses on the cellular components and organelles involved, that is, myelin sheaths, axons with their micro-tubules and neurofilaments; nuclei, mitochondria, endoplasmic reticulum, and connective tissue including the perineurium and blood vessels. A major role is attributed to recent progress in the pathomorphology of various types of CMT1, 2,4, CMTX, and HMNSL, based on light and electron microscopic findings, morphometry, teased fiber studies, and new immunohisto-chemical results such as staining of certain periaxin domains in CMT4F.
Collapse
Affiliation(s)
- J Michael Schröder
- Department of Neuropathology, University Hospital, RWTH Aachen, Germany.
| |
Collapse
|
42
|
Blondon H, Polivka M, Joly F, Flourie B, Mikol J, Messing B. Digestive smooth muscle mitochondrial myopathy in patients with mitochondrial-neuro-gastro-intestinal encephalomyopathy (MNGIE). ACTA ACUST UNITED AC 2005; 29:773-8. [PMID: 16294144 DOI: 10.1016/s0399-8320(05)86346-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report 3 new cases of Mitochondrial-Neuro-Gastro-Intestinal Encephalomyopathy (MNGIE) (or Pseudo-Obstruction-Leukoencephalopathy-Intestinal-Pseudoobstruction Syndrome [POLIP]), a rare disease that associates chronic intestinal pseudo-obstruction (CIPO) and neurological symptoms. A review of the 72 reported cases together with these 3 cases revealed that this condition was associated with (a) a specific cluster of neurological symptoms including leukoencephalopathy (96%), polyneuropathy (96%), ophthalmoplegia (91%) and hearing loss (55%); (b) a CIPO syndrome with the presence of small bowel diverticulae (53%); and (c) mitochondrial cytopathy in 36 of the 37 tested patients (2 of our 3 cases), and thymidine phosphorylase gene mutations in all the 37 tested patients (2 of our cases). The etiology of POLIP/MNGIE syndrome appears therefore to be due to a mitochondrial cytopathy secondary to thymidine phosphorylase gene mutation(s). In 3 cases, including 2 of our 3 patients, mitochondrial abnormalities were evidenced at the ultrastructural level in digestive smooth muscle demonstrating that the pathogenesis of gastrointestinal involvement was directly related to mitochondrial alterations in digestive smooth muscle cells.
Collapse
Affiliation(s)
- Hugues Blondon
- Service d'Hépato-gastroentérologie et d'Assistance Nutritive, Hôpital Lariboisière, 75475 Paris Cedex 10
| | | | | | | | | | | |
Collapse
|
43
|
Said G, Lacroix C, Planté-Bordeneuve V, Messing B, Slama A, Crenn P, Nivelon-Chevallier A, Bedenne L, Soichot P, Manceau E, Rigaud D, Guiochon-Mantel A, Matuchansky C. Clinicopathological aspects of the neuropathy of neurogastrointestinal encephalomyopathy (MNGIE) in four patients including two with a Charcot–Marie–Tooth presentation. J Neurol 2005; 252:655-62. [PMID: 15742109 DOI: 10.1007/s00415-005-0712-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/29/2004] [Accepted: 10/19/2004] [Indexed: 10/25/2022]
Abstract
We report on four patients with severe polyneuropathy associated with intestinal pseudoobstruction (MNGIE). Three patients presented characteristic supranuclear ophthalmoplegia, and hyperdense signals on T2 weighted cerebral MRI and dystrophic mitochondria in Schwann cells and in endothelial cells in nerve biopsy specimens. Two of these patients had a Charcot-Marie-Tooth (CMT) presentation. All three were heterozygous for a recessively transmitted double substitution in the TP gene: Glu286Lys/Glu289Ala, Asp156Gly/Leu177Pro and Glu289Ala/Gly387Asp. The fourth patient, who was the only patient of this series with an affected sib, had no oculomotor manifestations, nor T2 hyperdense signals on brain MRI, and no TP gene mutation and or morphological abnormalities of mitochondria on electron microscopic examination. He was the only patient of this series with an affected sib. The three patients with the full MNGIE syndrome died before the age of 30 years. Detailed results of nerve pathology show that severe axonal degeneration is associated with segmental abnormalities of the myelin sheath in this syndrome which appears genetically heterogeneous. Our findings suggest that only ophthalmoplegia and hyperdense signals on cerebral MRI are directly related to the mitochondriopathy.
Collapse
Affiliation(s)
- Gérard Said
- Service de Neurologie, Centre Hospitalier Universitaire de Bicêtre, 94275 Le Kremlin Bicêtre, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, Luckman Y, Lev D. White matter involvement in mitochondrial diseases. Mol Genet Metab 2005; 84:127-36. [PMID: 15670718 DOI: 10.1016/j.ymgme.2004.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
White matter involvement is recently being realized as a common finding in mitochondrial disorders. It is considered an inherent part of the classical mitochondrial syndromes which are usually associated with alterations in the mitochondrial DNA such as: Leigh disease, Kearns-Sayre syndrome, mitochondrial encephalomyopathy lactic acidosis, and stroke like episodes, mitochondrial neuro-gastro-intestinal encephalomyopathy and Leber's hereditary optic neuropathy. White matter involvement is also described in mitochondrial disorders due to mutations in the nuclear DNA which are transmitted in an autosomal pattern. MRI findings suggestive of a mitochondrial disease are: small cyst-like lesions in abnormal white matter, involvement of both cerebral and cerebellar white matter, and a combination of a leukoencephalopathy with bilateral basal ganglia lesions. The clinical manifestations may be disproportionate to the extent of white matter involvement. Other organs may frequently be involved. The onset is often in infancy with a neurodegenerative course. The finding of a leukoencephalopathy in a patient with a complex neurologic picture and multisystem involvement should prompt a thorough mitochondrial evaluation.
Collapse
Affiliation(s)
- Tally Lerman-Sagie
- The Mitochondrial Disease Clinic, Metabolic-Neurogenetic Service, Wolfson Medical Center, Pediatric Neurology Unit, Holon, Israel.
| | | | | | | | | |
Collapse
|
45
|
Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 2004; 32:3053-64. [PMID: 15181170 PMCID: PMC434440 DOI: 10.1093/nar/gkh634] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/06/2004] [Accepted: 05/12/2004] [Indexed: 01/07/2023] Open
Abstract
Autosomal dominant and/or recessive progressive external ophthalmoplegia (ad/arPEO) is associated with mtDNA mutagenesis. It can be caused by mutations in three nuclear genes, encoding the adenine nucleotide translocator 1, the mitochondrial helicase Twinkle or DNA polymerase gamma (POLG). How mutations in these genes result in progressive accumulation of multiple mtDNA deletions in post- mitotic tissues is still unclear. A recent hypothesis suggested that mtDNA replication infidelity could promote slipped mispairing, thereby stimulating deletion formation. This hypothesis predicts that mtDNA of ad/arPEO patients will contain frequent mutations throughout; in fact, our analysis of muscle from ad/arPEO patients revealed an age-dependent, enhanced accumulation of point mutations in addition to deletions, but specifically in the mtDNA control region. Both deleted and non-deleted mtDNA molecules showed increased point mutation levels, as did mtDNAs of patients with a single mtDNA deletion, suggesting that point mutations do not cause multiple deletions. Deletion breakpoint analysis showed frequent breakpoints around homopolymeric runs, which could be a signature of replication stalling. Therefore, we propose replication stalling as the principal cause of deletion formation.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Hirano M, Nishigaki Y, Martí R. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): A Disease of Two Genomes. Neurologist 2004; 10:8-17. [PMID: 14720311 DOI: 10.1097/01.nrl.0000106919.06469.04] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mitochondrial encephalomyopathies are clinically and genetically heterogeneous because mitochondria are the products of 2 genomes: mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Among the mendelian-inherited mitochondrial diseases are defects of intergenomic communication, disorders due to nDNA mutations that cause depletion and multiple deletions of mtDNA. REVIEW SUMMARY Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder of intergenomic communication and is defined clinically by 1) severe gastrointestinal dysmotility; 2) cachexia; 3) ptosis, ophthalmoparesis, or both; 4) peripheral neuropathy; and 5) leukoencephalopathy. Skeletal muscle biopsies of patients have revealed abnormalities of mtDNA and mitochondrial respiratory chain enzymes. The disease is caused by mutations in the thymidine phosphorylase (TP) gene. TP protein catalyzes phosphorolysis of thymidine to thymine and deoxyribose 1-phosphate. In MNGIE patients, TP enzyme activity is reduced drastically, and plasma thymidine and deoxyuridine are elevated dramatically. We have hypothesized that alterations of nucleoside metabolism cause an imbalanced mitochondrial nucleotide pool that leads to depletion and deletions of mtDNA. CONCLUSIONS MNGIE is a recognizable clinical syndrome caused by mutations in TP. The diagnosis can be confirmed by measuring TP activity in buffy coat or plasma levels of thymidine and deoxyuridine. Reduction of circulating thymidine and deoxyuridine in MNGIE patients may be therapeutic.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY, USA.
| | | | | |
Collapse
|
47
|
Abstract
Although non-specific gastrointestinal and hepatic symptoms are commonly found in most mitochondrial disorders, they are among the cardinal manifestations of several primary mitochondrial diseases, such as: mitochondrial neurogastrointestinal encephalomyopathy; mitochondrial DNA depletion syndrome; Alpers syndrome; and Pearson syndrome. Management of these heterogeneous disorders includes the empiric supplementation with various "mitochondrial cocktails," supportive therapies, and avoidance of drugs and conditions known to have a detrimental effect on the respiratory chain. There is a great need for improved methods of treatment and controlled clinical trials of existing therapies. Liver transplantation is successful in acquired cases; however neuromuscular involvement in primary mitochondrial disorders should be a contraindication for liver transplantation.
Collapse
Affiliation(s)
- Lynette A Gillis
- Division of Gastroenterology and Nutrition, Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, 34th St. and Civic Center, Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Martí R, Nishigaki Y, Vilá MR, Hirano M. Alteration of nucleotide metabolism: a new mechanism for mitochondrial disorders. Clin Chem Lab Med 2003; 41:845-51. [PMID: 12940507 DOI: 10.1515/cclm.2003.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). TP deficiency alters the metabolism of the nucleosides thymidine and deoxyuridine, which, in turn, produces abnormalities of mitochondrial DNA (mtDNA) including depletion, deletions, and point mutations. MNGIE is the best characterized of the expanding number of mitochondrial disorders caused by alterations in the metabolism of nucleosides/nucleotides. Because mitochondria contain their own machinery for nucleoside and nucleotide metabolism and have physically separate nucleotide pools, it is not surprising that disorders of these pathways cause human diseases. Other diseases in this group include mtDNA depletion syndromes caused by mutations on the nuclear genes encoding the mitochondrial thymidine kinase and deoxyguanosine kinase; autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA due to mutations in the genes encoding the muscle-isoform of mitochondrial ADP/ATP translocator; and mitochondrial DNA depletion due to toxicities of nucleoside analogues. Mutations in the deoxynucleotide carrier, a transporter of deoxynucleoside diphosphates, have been identified as a cause of congenital microcephaly. However, alterations of mtDNA have not yet been established in this disorder. Future studies are likely to reveal additional diseases and provide further insight into this new subject.
Collapse
Affiliation(s)
- Ramon Martí
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Electrodiagnostic studies are an important adjunct to the clinical examination of a patient with a suspected myopathy; however, the clinical examination is crucial in making an accurate diagnosis, because electrodiagnostic studies have only a limited role in delineating with certainty the underlying myopathic disorder. Hereditary and acquired myopathies are reviewed in this article, with particular emphasis on distinguishing clinical and electrodiagnostic features. The hereditary myopathies that are discussed include the muscular dystrophies and the congenital distal mitochondrial, and metabolic myopathies. Acquired myopathies, including inflammatory, endocrine, and toxic myopathies, as well as those associated with systemic illness, are briefly reviewed.
Collapse
Affiliation(s)
- Jayashri Srinivasan
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- Thomas M Fishbein
- Department of Surgery, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|