1
|
Niba ETE, Awano H, Nishimura N, Koide H, Matsuo M, Shinohara M. Differential metabolic secretion between muscular dystrophy mouse-derived spindle cell sarcomas and rhabdomyosarcomas drives tumor type development. Am J Physiol Cell Physiol 2024; 327:C34-C47. [PMID: 38646787 DOI: 10.1152/ajpcell.00523.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, Yonago, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation , Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Mucha O, Myszka M, Podkalicka P, Świderska B, Malinowska A, Dulak J, Łoboda A. Proteome Profiling of the Dystrophic mdx Mice Diaphragm. Biomolecules 2023; 13:1648. [PMID: 38002330 PMCID: PMC10669179 DOI: 10.3390/biom13111648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mdx mice with a spontaneous mutation in exon 23 of the Dmd gene represent the most common model to investigate the pathophysiology of Duchenne muscular dystrophy (DMD). The disease, caused by the lack of functional dystrophin, is characterized by irreversible impairment of muscle functions, with the diaphragm affected earlier and more severely than other skeletal muscles. We applied a label-free (LF) method and the more thorough tandem mass tag (TMT)-based method to analyze differentially expressed proteins in the diaphragm of 6-week-old mdx mice. The comparison of both methods revealed 88 commonly changed proteins. A more in-depth analysis of the TMT-based method showed 953 significantly changed proteins, with 867 increased and 86 decreased in dystrophic animals (q-value < 0.05, fold-change threshold: 1.5). Consequently, several dysregulated processes were demonstrated, including the immune response, fibrosis, translation, and programmed cell death. Interestingly, in the dystrophic diaphragm, we found a significant decrease in the expression of enzymes generating hydrogen sulfide (H2S), suggesting that alterations in the metabolism of this gaseous mediator could modulate DMD progression, which could be a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
- Doctoral School of Exact and Natural Sciences, Łojasiewicza 11 Street, 30-348 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| |
Collapse
|
3
|
Bousquet PA, Manna D, Sandvik JA, Arntzen MØ, Moreno E, Sandvig K, Krengel U. SILAC-based quantitative proteomics and microscopy analysis of cancer cells treated with the N-glycolyl GM3-specific anti-tumor antibody 14F7. Front Immunol 2022; 13:994790. [PMID: 36439103 PMCID: PMC9682173 DOI: 10.3389/fimmu.2022.994790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2024] Open
Abstract
Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.
Collapse
Affiliation(s)
| | - Dipankar Manna
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | | | - Ernesto Moreno
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
| | - Kirsten Sandvig
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Ben Larbi S, Saclier M, Fessard A, Juban G, Chazaud B. Histological Analysis of Tibialis Anterior Muscle of DMDmdx4Cv Mice from 1 to 24 Months. J Neuromuscul Dis 2021; 8:513-524. [PMID: 33843691 DOI: 10.3233/jnd-200562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The mdx-C57/B6 mouse model does not show the clinical signs of Duchenne muscular dystrophy (DMD), although muscles exhibit hallmarks of permanent regeneration and alterations in muscle function. The DMDmdx4Cv strain exhibits very few revertant dystrophin positive myofibers, making that model suitable for studies on gene and cell therapies. OBJECTIVE The study appraises the histological evolution of the Tibialis Anterior muscle of WT and DMD mdx4Cv mutant from 1 to 24 months. METHODS Histological analysis included a series of immunostainings of muscle sections for assessing tissue features (fibrosis, lipid deposition, necrosis) and cellular characteristics (size of myofibers, number and distribution of myonuclei, number of satellite cells, vessels, macrophages). RESULTS None of the investigated cell types (satellite cells, endothelial cells, macrophages) showed variations in their density within the tissue in both WT and DMD mdx4Cv muscle. However, analyzing their number per myofiber showed that in DMD mdx4Cv, myofiber capillarization was increased from 1 to 6 months as compared with WT muscle, then dropped from 12 months. Macrophage number did not vary in WT muscle and peaked at 6 months in DMD mdx4Cv muscle. The number of satellite cells per myofiber did not vary in WT muscle while it remained high in DMD mdx4Cv muscle, starting to decrease from 12 months and being significantly lower at 24 months of age. Myofiber size was not different in DMD mdx4Cv from WT except at 24 months, when it strongly decreased in DMD mdx4Cv muscle. Necrosis and lipid deposition were rare in DMD mdx4Cv muscle. Fibrosis did not increase with age in DMD mdx4Cv muscle and was higher than in WT at 6 and 12 months of age. CONCLUSIONS As a whole, the results show a strong decrease of the myofiber size at 24 months, and an increased capillarization until 6 months of age in DMD mdx4Cv as compared with the WT. Thus, DMD mdx4Cv mice poorly recapitulates histological DMD features, and its use should take into account the age of the animals according to the purpose of the investigation.
Collapse
Affiliation(s)
- Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 2310, INSERM U1217, Université Lyon, Villeurbanne, France
| | | | - Aurélie Fessard
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 2310, INSERM U1217, Université Lyon, Villeurbanne, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 2310, INSERM U1217, Université Lyon, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 2310, INSERM U1217, Université Lyon, Villeurbanne, France
| |
Collapse
|
5
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
6
|
Lindsay A, Kemp B, Larson AA, Baumann CW, McCourt PM, Holm J, Karachunski P, Lowe DA, Ervasti JM. Tetrahydrobiopterin synthesis and metabolism is impaired in dystrophin-deficient mdx mice and humans. Acta Physiol (Oxf) 2021; 231:e13627. [PMID: 33580591 DOI: 10.1111/apha.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
AIM Loss of dystrophin causes oxidative stress and affects nitric oxide synthase-mediated vascular function in striated muscle. Because tetrahydrobiopterin is an antioxidant and co-factor for nitric oxide synthase, we tested the hypothesis that tetrahydrobiopterin would be low in mdx mice and humans deficient for dystrophin. METHODS Tetrahydrobiopterin and its metabolites were measured at rest and in response to exercise in Duchenne and Becker muscular dystrophy patients, age-matched male controls as well as wild-type, mdx and mdx mice transgenically overexpressing skeletal muscle-specific dystrophins. Mdx mice were also supplemented with tetrahydrobiopterin and pathophysiology was assessed. RESULTS Duchenne muscular dystrophy patients had lower urinary dihydrobiopterin + tetrahydrobiopterin/specific gravity1.020 compared to unaffected age-matched males and Becker muscular dystrophy patients. Mdx mice had low urinary and skeletal muscle dihydrobiopterin + tetrahydrobiopterin compared to wild-type mice. Overexpression of dystrophins that localize neuronal nitric oxide synthase restored dihydrobiopterin + tetrahydrobiopterin in mdx mice to wild-type levels while utrophin overexpression did not. Mdx mice and Duchenne muscular dystrophy patients did not increase tetrahydrobiopterin during exercise and in mdx mice tetrahydrobiopterin deficiency was likely because of lower levels of sepiapterin reductase in skeletal muscle. Tetrahydrobiopterin supplementation improved skeletal muscle strength, resistance to fatiguing and injurious contractions in vivo, increased utrophin and capillary density of skeletal muscle and lowered cardiac muscle fibrosis and left ventricular wall thickness in mdx mice. CONCLUSION These data demonstrate that impaired tetrahydrobiopterin synthesis is associated with dystrophin loss and treatment with tetrahydrobiopterin improves striated muscle histopathology and skeletal muscle function in mdx mice.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bailey Kemp
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Cory W Baumann
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - John Holm
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Micheletto MLJ, Hermes TDA, Bertassoli BM, Petri G, Perez MM, Fonseca FLA, Carvalho AADS, Feder D. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice. Int J Exp Pathol 2021; 102:11-21. [PMID: 33296126 PMCID: PMC7839951 DOI: 10.1111/iep.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dystrophin deficiency makes the sarcolemma fragile and susceptible to degeneration in Duchenne muscular dystrophy. The proteasome is a multimeric protease complex and is central to the regulation of cellular proteins. Previous studies have shown that proteasome inhibition improved pathological changes in mdx mice. Ixazomib is the first oral proteasome inhibitor used as a therapy in multiple myeloma. This study investigated the effects of ixazomib on the dystrophic muscle of mdx mice. MDX mice were treated with ixazomib (7.5 mg/kg/wk by gavage) or 0.2 mL of saline for 12 weeks. The Kondziela test was performed to measure muscle strength. The tibialis anterior (TA) and diaphragm (DIA) muscles were used for morphological analysis, and blood samples were collected for biochemical measurement. We observed maintenance of the muscle strength in the animals treated with ixazomib. Treatment with ixazomib had no toxic effect on the mdx mouse. The morphological analysis showed a reduction in the inflammatory area and fibres with central nuclei in the TA and DIA muscles and an increase in the number of fibres with a diameter of 20 µm2 in the DIA muscle after treatment with ixazomib. There was an increase in the expression of dystrophin and utrophin in the TA and DIA muscles and a reduction in the expression of osteopontin and TGF-β in the DIA muscle of mdx mice treated with ixazomib. Ixazomib was thus shown to increase the expression of dystrophin and utrophin associated with improved pathological and functional changes in the dystrophic muscles of mdx mice.
Collapse
Affiliation(s)
| | - Tulio de Almeida Hermes
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
- Departament of AnatomyFederal University of AlfenasAlfenasBrazil
| | | | - Giuliana Petri
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| | | | | | | | - David Feder
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| |
Collapse
|
8
|
Ren X, Xu H, Barker RG, Lamb GD, Murphy RM. Elevated MMP2 abundance and activity in mdx mice are alleviated by prenatal taurine supplementation. Am J Physiol Cell Physiol 2020; 318:C1083-C1091. [PMID: 32208990 DOI: 10.1152/ajpcell.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle-wasting disorder that leads to early death. The mdx mouse is a naturally occurring mutant model for DMD. It lacks dystrophin and displays peak muscle cell necrosis at ~28 days (D28), but in contrast to DMD, mdx mice experience muscle regeneration by D70. We hypothesized that matrix metalloproteinase-2 (MMP2) and/or MMP9 play key roles in the degeneration/regeneration phases in mdx mice. MMP2 abundance in muscle homogenates, measured by calibrated Western blotting, and activity, measured by zymogram, were lower at D70 compared with D28 in both mdx and wild-type (WT) mice. Importantly, MMP2 abundance was higher in both D28 and D70 mdx mice than in age-matched WT mice. The higher MMP2 abundance was not due to infiltrating macrophages, because MMP2 content was still higher in isolated muscle fibers where most macrophages had been removed. Prenatal supplementation with the amino acid taurine, which improved muscle strength in D28 mdx mice, produced approximately twofold lower MMP2 activity, indicating that increased MMP2 abundance is not required when muscle damage is attenuated. There was no difference in MMP9 abundance between age-matched WT and mdx mice (P > 0.05). WT mice displayed decreased MMP9 abundance as they aged. While MMP9 may have a role during age-related skeletal muscle growth, it does not appear essential for degeneration/regeneration cycles in the mdx mouse. Our findings indicate that MMP2 plays a more active role than MMP9 in the degenerative phases of muscle fibers in D28 mdx mice.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Robert G Barker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Gaut C, Sullivan JM, Biscaro B, Soares EJ, Nicholson K, Hoppin J, Verma A. SPECT Imaging of Muscle Injury with [ 99mTc]MDP in a Mouse Model of Muscular Dystrophy. Mol Imaging Biol 2019; 22:562-568. [PMID: 31286350 PMCID: PMC7250810 DOI: 10.1007/s11307-019-01394-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Tc-99m methylene diphosphonate ([99mTc]MDP) is an in vivo bone imaging agent that also accumulates in injured skeletal muscle cells. The objective of this study was to investigate if [99mTc]MDP could be used to detect muscle injury in the mdx mouse model of Duchenne muscular dystrophy (DMD). PROCEDURES Static whole-body single-photon emission computed tomography/computed tomography (CT) scans were acquired at 2 h post-injection of [99mTc]MDP in two cohorts of animals at different sites: one cohort of mice at 6, 15, and 19 weeks of age, and a separate cohort at 16 weeks. The second cohort was also imaged with high-resolution CT at 8 weeks. RESULTS mdx mice had higher [99mTc]MDP uptake and significantly higher [99mTc]MDP concentrations in muscle than controls. CONCLUSIONS Higher uptake of [99mTc]MDP in muscle of mdx mice agrees with histological reports of muscle calcification in mdx mice, and suggests the potential translational use of [99mTc]MDP imaging for tracking DMD progression and therapeutic response.
Collapse
|
10
|
Lindsay A, Southern WM, McCourt PM, Larson AA, Hodges JS, Lowe DA, Ervasti JM. Variable cytoplasmic actin expression impacts the sensitivity of different dystrophin-deficient mdx skeletal muscles to eccentric contraction. FEBS J 2019; 286:2562-2576. [PMID: 30942954 PMCID: PMC6613979 DOI: 10.1111/febs.14831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Eccentric contractions (ECCs) induce force loss in several skeletal muscles of dystrophin-deficient mice (mdx), with the exception of the soleus (Sol). The eccentric force : isometric force (ECC : ISO), expression level of utrophin, fiber type distribution, and sarcoendoplasmic reticulum calcium ATPase expression are factors that differ between muscles and may contribute to the sensitivity of mdx skeletal muscle to ECC. Here, we confirm that the Sol of mdx mice loses only 13% force compared to 87% in the extensor digitorum longus (EDL) following 10 ECC of isolated muscles. The Sol has a greater proportion of fibers expressing Type I myosin heavy chain (MHC) and expresses 2.3-fold more utrophin compared to the EDL. To examine the effect of ECC : ISO, we show that the mdx Sol is insensitive to ECC at ECC : ISO up to 230 ± 15%. We show that the peroneus longus (PL) muscle presents with similar ECC : ISO compared to the EDL, intermediate force loss (68%) following 10 ECC, and intermediate fiber type distribution and utrophin expression relative to EDL and Sol. The combined absence of utrophin and dystrophin in mdx/utrophin-/- mice rendered the Sol only partially susceptible to ECC and exacerbated force loss in the EDL and PL. Most interestingly, the expression levels of cytoplasmic β- and γ-actins correlate inversely with a given muscle's sensitivity to ECC; EDL < PL < Sol. Our data indicate that fiber type, utrophin, and cytoplasmic actin expression all contribute to the differential sensitivities of mdxEDL, PL, and Sol muscles to ECC.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - William M. Southern
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Preston M. McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Alexie A. Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - James S. Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Dawn A. Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
11
|
Lindsay A, Chamberlain CM, Witthuhn BA, Lowe DA, Ervasti JM. Dystrophinopathy-associated dysfunction of Krebs cycle metabolism. Hum Mol Genet 2019; 28:942-951. [PMID: 30476171 PMCID: PMC6400043 DOI: 10.1093/hmg/ddy404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
Duchenne muscular dystrophy is a deadly muscle-wasting disorder caused by loss of dystrophin protein. Studies suggest that metabolic alterations are important to disease pathogenesis. Because muscle accounts for ~40% of body mass, we hypothesized that dystrophy-mediated metabolic changes would be measurable in biofluids and that a metabolomic analysis of urine would provide insight into the metabolic status of dystrophic muscle. Using the mdx mouse model, we performed a large-scale metabolomic screen at 1 and 3 months. While 10% of metabolites were altered at age 1 month, 40% were changed at 3 months. Principal component analysis distinguished wild-type from mdx animals, with the greatest separation at 3 months. A critical distinguishing pathway was Krebs cycle metabolite depletion in mdx urine. Five of seven detected Krebs cycle metabolites were depleted in mdx urine, with succinate being the most robustly affected metabolite. Using selected reaction monitoring mass spectrometry, we demonstrated that muscle-specific dystrophin expression corrects mdx succinate depletion. When subjected to downhill treadmill running, wild-type and mdx mice expressing recombinant dystrophin in skeletal muscle displayed significant increases in urinary succinate levels. However, mdx succinate levels were unchanged, suggesting urinary succinate depletion may reflect an inability to upregulate the Krebs cycle following exercise. Finally, we show that supplementing the Krebs cycle in an ex vivo fatigue/recovery assay significantly impacts mdx muscle performance but has no effect on wild-type muscle. Our results suggest that global metabolic impairment is associated with mdx disease progression and that Krebs cycle deficiencies are a downstream consequence of dystrophin loss.
Collapse
MESH Headings
- Animals
- Biomarkers
- Citric Acid Cycle
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Energy Metabolism
- Male
- Metabolome
- Metabolomics/methods
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Physical Conditioning, Animal
Collapse
Affiliation(s)
- Angus Lindsay
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bruce A Witthuhn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Utrophin haploinsufficiency does not worsen the functional performance, resistance to eccentric contractions and force production of dystrophic mice. PLoS One 2018; 13:e0198408. [PMID: 29879154 PMCID: PMC5991729 DOI: 10.1371/journal.pone.0198408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/20/2018] [Indexed: 12/01/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) compromises the integrity and function of muscle fibers. Skeletal muscles, except the diaphragm, do not undergo progressive degeneration in adult mdx mice due to compensatory mechanisms, including structural protein upregulation. New mouse models, including utrophin haploinsufficient mdx (mdx/utrn+/-) mice, may better recapitulate DMD. Our goal was to determine whether mdx/utrn+/- worsens the mdx phenotype and to characterize the course of the disease on muscle function and contractility at 1, 2, and 5 months of age, which encompass all stages of development relevant to DMD therapy. The functional performances of mdx/utrn+/- mice showed that they are not more affected than mdx/utrn+/+ mice based on downhill treadmill running parameters and subsequent recovery measured by open-field voluntary activity. WT mice ran the entire distance (450 m) on the treadmill, with an additional 561 m during the 4 h of open-field while mdx/utrn+/+ and mdx/utrn+/- mice completed, respectively, 236 m and 273 m on the treadmill and 341 m and 287 m during the open-field period. In addition, isolated ex vivo contractile properties and repeated eccentric contractions showed that mdx/utrn+/- does not significantly worsen the function of dystrophic EDL muscles, which are mainly composed of fast-twitch fibers that are preferentially affected in DMD. Twitch, absolute tetanic, and specific tetanic forces were very similar in dystrophic EDL muscles from mdx/utrn+/+ and mdx utrn+/- mice at 1, 2, and 5 months of age. Five-month-old mdx/utrn+/+ and mdx/utrn+/- mice lost roughly 50% of their force due to repeated eccentric contractions. Thus, histological, morphological, biochemical functional and contractile observations showed that utrophin haploinsufficiency has a very limited impact on mdx mice.
Collapse
|
13
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
14
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Rupcic IF, Minatel E. Dystrophic phenotype improvement in the diaphragm muscle of mdx mice by diacerhein. PLoS One 2017; 12:e0182449. [PMID: 28787441 PMCID: PMC5546703 DOI: 10.1371/journal.pone.0182449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation and oxidative stress are striking features of Duchenne muscular dystrophy disease. Diacerhein is an anthraquinone, which exhibits anti-inflammatory and antioxidant properties. Based on their actions, the present study evaluated the effects of diacerhein against myonecrosis, oxidative stress and inflammatory response in the diaphragm muscle of mdx mice and compared these results to current treatment widely used in DMD patients, with a main focus on the impact of prednisone. The results demonstrated that diacerhein treatment prevented muscle damage indicated by a decrease in the IgG uptake by muscle fibers, lower CK levels in serum, reduction of fibers with central nuclei with a concomitant increase in fibers with peripheral nuclei. It also had an effect on the inflammatory process, decreasing the inflammatory area, macrophage staining and TNF-α and IL-1β content. Regarding oxidative stress, diacerhein treatment was effective in reducing the ROS and lipid peroxidation in the diaphragm muscle from mdx mice. Compared to prednisone treatment, our findings demonstrated that diacerhein treatment improved the dystrophic phenotype in the diaphragm muscle of mdx mice similar to that of glucocorticoid therapy. In this respect, this work suggests that diacerhein has a potential use as an alternative drug in dystrophinopathy treatment and recommends that its anti-inflammatory and antioxidants properties in the dystrophic muscle should be better understood.
Collapse
Affiliation(s)
- Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ian Feller Rupcic
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
England J, Loughna S, Rutland CS. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:E8. [PMID: 29367539 PMCID: PMC5715711 DOI: 10.3390/jcdd4030008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jennifer England
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Siobhan Loughna
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK.
| |
Collapse
|
16
|
Yoon SH, Chen J, Grynpas MD, Mitchell J. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy. Bone 2016; 90:168-80. [PMID: 27373502 DOI: 10.1016/j.bone.2016.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Jinghan Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
17
|
Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord 2015; 26:73-84. [PMID: 26494410 DOI: 10.1016/j.nmd.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/17/2022]
Abstract
Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
19
|
Moraes LHR, de Burgos RR, Macedo AB, de Almeida Hermes T, de Faria FM, Minatel E. Reduction of Oxidative Damage and Inflammatory Response in the Diaphragm Muscle of mdx Mice Using Iron Chelator Deferoxamine. Biol Trace Elem Res 2015; 167:115-20. [PMID: 25762099 DOI: 10.1007/s12011-015-0290-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/26/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Weight/drug effects
- Deferoxamine/administration & dosage
- Deferoxamine/pharmacology
- Diaphragm/drug effects
- Diaphragm/metabolism
- Female
- Inflammation/metabolism
- Inflammation/prevention & control
- Injections, Intraperitoneal
- Iron Chelating Agents/administration & dosage
- Iron Chelating Agents/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/prevention & control
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/prevention & control
- NF-kappa B/metabolism
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Luis Henrique Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Rouillon J, Poupiot J, Zocevic A, Amor F, Léger T, Garcia C, Camadro JM, Wong B, Pinilla R, Cosette J, Coenen-Stass AML, Mcclorey G, Roberts TC, Wood MJA, Servais L, Udd B, Voit T, Richard I, Svinartchouk F. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies. Hum Mol Genet 2015; 24:4916-32. [PMID: 26060189 PMCID: PMC4527491 DOI: 10.1093/hmg/ddv214] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/04/2015] [Indexed: 12/24/2022] Open
Abstract
Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
| | | | | | | | - Thibaut Léger
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Brenda Wong
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | - Graham Mcclorey
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK
| | - Laurent Servais
- Service of Clinical Trials and Databases, Institut de Myologie, Paris, France
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Thomas Voit
- UPMC Inserm, UMRS 974, CNRS FRE 3617, Paris, France, Université Pierre et Marie Curie- Paris 6, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France and
| | | | | |
Collapse
|
21
|
Singhal N, Martin PT. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle 2015; 5:3. [PMID: 25699169 PMCID: PMC4333175 DOI: 10.1186/s13395-014-0028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell surface glycans are known to play vital roles in muscle membrane stability and muscle disease, but to date, roles for glycans in muscle regeneration have been less well understood. Here, we describe a role for complex gangliosides synthesized by the Galgt1 gene in muscle regeneration. METHODS Cardiotoxin-injected wild type (WT) and Galgt1 (-/-) muscles, and mdx and Galgt1 (-/-) mdx muscles, were used to study regeneration in response to acute and chronic injury, respectively. Muscle tissue was analyzed at various time points for morphometric measurements and for gene expression changes in satellite cell and muscle differentiation markers by quantitative real-time polymerase chain reaction (qRT-PCR). Primary cell cultures were used to measure growth rate and myotube formation and to identify Galgt1 expression changes after cardiotoxin by fluorescence-activated cell sorting (FACS). Primary cell culture and tissue sections were also used to quantify satellite cell apoptosis. RESULTS A query of a microarray data set of cardiotoxin-induced mouse muscle gene expression changes identified Galgt1 as the most upregulated glycosylation gene immediately after muscle injury. This was validated by qRT-PCR as a 23-fold upregulation in Galgt1 expression 1 day after cardiotoxin administration and a 16-fold upregulation in 6-week-old mdx muscles. These changes correlated with increased expression of Galgt1 protein and GM1 ganglioside in mononuclear muscle cells. In the absence of Galgt1, cardiotoxin-induced injury led to significantly reduced myofiber diameters after 14 and 28 days of regeneration. Myofiber diameters were also significantly reduced in Galgt1-deficient mdx mice compared to age-matched mdx controls, and this was coupled with a significant increase in the loss of muscle tissue. Cardiotoxin-injected Galgt1 (-/-) muscles showed reduced gene expression of the satellite cell marker Pax7 and increased expression of myoblast markers MyoD, Myf5, and Myogenin after injury along with a tenfold increase in apoptosis of Pax7-positive muscle cells. Cultured primary Galgt1 (-/-) muscle cells showed a normal growth rate but demonstrated premature fusion into myofibers, resulting in an overall impairment of myofiber formation coupled with a threefold increase in muscle cell apoptosis. CONCLUSIONS These experiments demonstrate a role for Galgt1 in skeletal muscle regeneration and suggest that complex gangliosides made by Galgt1 modulate the survival and differentiation of satellite cells.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA ; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA ; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA
| |
Collapse
|
22
|
Hathout Y, Marathi RL, Rayavarapu S, Zhang A, Brown KJ, Seol H, Gordish-Dressman H, Cirak S, Bello L, Nagaraju K, Partridge T, Hoffman EP, Takeda S, Mah JK, Henricson E, McDonald C. Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum Mol Genet 2014; 23:6458-69. [PMID: 25027324 DOI: 10.1093/hmg/ddu366] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yetrib Hathout
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA,
| | - Ramya L Marathi
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kristy J Brown
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Haeri Seol
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sebahattin Cirak
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Luca Bello
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Terry Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira Tokyo 187-0031, Japan
| | - Jean K Mah
- Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8 and
| | - Erik Henricson
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| |
Collapse
|
23
|
Rouillon J, Zocevic A, Leger T, Garcia C, Camadro JM, Udd B, Wong B, Servais L, Voit T, Svinartchouk F. Proteomics profiling of urine reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy. Neuromuscul Disord 2014; 24:563-73. [DOI: 10.1016/j.nmd.2014.03.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/12/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
|
24
|
Abou-Khalil R, Yang F, Mortreux M, Lieu S, Yu YY, Wurmser M, Pereira C, Relaix F, Miclau T, Marcucio RS, Colnot C. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy. J Bone Miner Res 2014; 29:304-15. [PMID: 23857747 PMCID: PMC3893315 DOI: 10.1002/jbmr.2038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density, and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS (colony stimulating factor receptor 1) inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing the number of macrophages. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results emphasize the implication of muscle in the normal bone repair process and may lead to improved treatment of fragility fractures in DMD patients.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
26
|
Yang HS, Ieronimakis N, Tsui JH, Kim HN, Suh KY, Reyes M, Kim DH. Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy. Biomaterials 2013; 35:1478-86. [PMID: 24290810 DOI: 10.1016/j.biomaterials.2013.10.067] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/27/2013] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is a highly organized tissue in which the extracellular matrix (ECM) is composed of highly-aligned cables of collagen with nanoscale feature sizes, and provides structural and functional support to muscle fibers. As such, the transplantation of disorganized tissues or the direct injection of cells into muscles for regenerative therapy often results in suboptimal functional improvement due to a failure to integrate with native tissue properly. Here, we present a simple method in which biodegradable, biomimetic substrates with precisely controlled nanotopography were fabricated using solvent-assisted capillary force lithography (CFL) and were able to induce the proper development and differentiation of primary mononucleated cells to form mature muscle patches. Cells cultured on these nanopatterned substrates were highly-aligned and elongated, and formed more mature myotubes as evidenced by up-regulated expression of the myogenic regulatory factors Myf5, MyoD and myogenin (MyoG). When transplanted into mdx mice models for Duchenne muscular dystrophy (DMD), the proposed muscle patches led to the formation of a significantly greater number of dystrophin-positive muscle fibers, indicating that dystrophin replacement and myogenesis is achievable in vivo with this approach. These results demonstrate the feasibility of utilizing biomimetic substrates not only as platforms for studying the influences of the ECM on skeletal muscle function and maturation, but also to create transplantable muscle cell patches for the treatment of chronic and acute muscle diseases or injuries.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea
| | - Nicholas Ieronimakis
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hong Nam Kim
- School of Mechanical and Aerospace Engineering and the Institute of Bioengineering, Seoul National University, Seoul 151-742, South Korea
| | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering and the Institute of Bioengineering, Seoul National University, Seoul 151-742, South Korea
| | - Morayma Reyes
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Carvalho SCD, Apolinário LM, Matheus SMM, Santo Neto H, Marques MJ. EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype. J Neuroimmunol 2013; 264:41-7. [PMID: 24090650 DOI: 10.1016/j.jneuroim.2013.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
In dystrophic mdx mice and in Duchenne muscular dystrophy, inflammation contributes to myonecrosis. Previously, we demonstrated that eicosapentaenoic acid (EPA) decreased inflammation and necrosis in dystrophic muscle. In the present study, we examined the effects of EPA and the corticoid deflazacort (DFZ) as modulators of M1 (iNOS-expressing cells) and M2 (CD206-expressing cells) macrophages. Mdx mice (14 days old) received EPA or DFZ for 16 days. The diaphragm, biceps brachii and quadriceps muscles were studied. Immunofluorescence, immunoblotting and ELISA assays showed that EPA increased interleucin-10, reduced interferon-γ and was more effective than DFZ in promoting a shift from M1 to M2.
Collapse
Affiliation(s)
- Samara Camaçari de Carvalho
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | | | | | | |
Collapse
|
28
|
Abstract
There is substantial evidence indicating that disruption of Ca2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). However, the exact nature of the Ca2+ deregulation and the Ca2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca2+ entry (SOCE) for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca2+ store contributes to the disrupted Ca2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Division of Pharmacology, College of Pharmacy, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| | - Joseph G. Moloughney
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sai Zhang
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama, Japan
| | - Noah Weisleder
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| |
Collapse
|
29
|
Tonon E, Ferretti R, Shiratori JH, Santo Neto H, Marques MJ, Minatel E. Ascorbic acid protects the diaphragm muscle against myonecrosis in mdx mice. Nutrition 2012; 28:686-90. [DOI: 10.1016/j.nut.2011.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/09/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
|
30
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. THE JOURNAL OF IMMUNOLOGY 2011; 187:5419-28. [PMID: 22013114 DOI: 10.4049/jimmunol.1101267] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.
Collapse
Affiliation(s)
- S Armando Villalta
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
32
|
Machado RV, Mauricio AF, Taniguti APT, Ferretti R, Neto HS, Marques MJ. Eicosapentaenoic acid decreases TNF-α and protects dystrophic muscles of mdx mice from degeneration. J Neuroimmunol 2010; 232:145-50. [PMID: 21131061 DOI: 10.1016/j.jneuroim.2010.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/09/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
In dystrophin-deficient fibers of mdx mice and in Duchenne muscular dystrophy, inflammation and increased production of tumor necrosis factor alpha (TNF-α) contribute to myonecrosis. We examined the effects of eicosapentaenoic acid (EPA) on dystrophic muscle degeneration. Mdx mice (14 days old) received EPA for 16 days. The sternomastoid, diaphragm and biceps brachii muscles were removed. Control mdx mice received vehicle. EPA decreased creatine kinase and myonecrosis and reduced the levels of TNF-α. These results suggest that EPA plays a protective role in dystrophic muscle degeneration, possibly by reducing TNF-α, and support further investigations of EPA as a potential therapy for dystrophinopathies.
Collapse
Affiliation(s)
- Rafael Ventura Machado
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Verma M, Asakura Y, Hirai H, Watanabe S, Tastad C, Fong GH, Ema M, Call JA, Lowe DA, Asakura A. Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice. Hum Mol Genet 2010; 19:4145-59. [PMID: 20705734 DOI: 10.1093/hmg/ddq334] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene coding for the protein dystrophin. Recent work demonstrates that dystrophin is also found in the vasculature and its absence results in vascular deficiency and abnormal blood flow. This induces a state of ischemia further aggravating the muscular dystrophy pathogenesis. For an effective form of therapy of DMD, both the muscle and the vasculature need to be addressed. To reveal the developmental relationship between muscular dystrophy and vasculature, mdx mice, an animal model for DMD, were crossed with Flt-1 gene knockout mice to create a model with increased vasculature. Flt-1 is a decoy receptor for vascular endothelial growth factor, and therefore both homozygous (Flt-1(-/-)) and heterozygous (Flt-1(+/-)) Flt-1 gene knockout mice display increased endothelial cell proliferation and vascular density during embryogenesis. Here, we show that Flt-1(+/-) and mdx:Flt-1(+/-) adult mice also display a developmentally increased vascular density in skeletal muscle compared with the wild-type and mdx mice, respectively. The mdx:Flt-1(+/-) mice show improved muscle histology compared with the mdx mice with decreased fibrosis, calcification and membrane permeability. Functionally, the mdx:Flt-1(+/-) mice have an increase in muscle blood flow and force production, compared with the mdx mice. Consequently, the mdx:utrophin(-/-):Flt-1(+/-) mice display improved muscle histology and significantly higher survival rates compared with the mdx:utrophin(-/-) mice, which show more severe muscle phenotypes than the mdx mice. These data suggest that increasing the vasculature in DMD may ameliorate the histological and functional phenotypes associated with this disease.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahmad N, Bygrave M, Chhem R, Hoffman L, Welch I, Grange R, Fenster A, Hill D, Lee TY. High-frequency ultrasound to grade disease progression in murine models of Duchenne muscular dystrophy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2009; 28:707-716. [PMID: 19470810 DOI: 10.7863/jum.2009.28.6.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE This study used high-frequency ultrasound (HFU) imaging to assess muscle damage noninvasively in a longitudinal study of 2 transgenic murine models of Duchenne muscular dystrophy (DMD): mdx, which has mutated cytoskeletal protein dystrophin; and udx, which has mutated dystrophin and lacks another cytoskeleton protein, utrophin. The mdx group was further subdivided into exercised and nonexercised subgroups to assess exercise-induced damage. METHODS Muscle damage was assessed with HFU imaging (40 MHz) at biweekly intervals for 16 weeks. The assessment was based on the number of hyperechoic lesions, the lesion diameter, and muscle disorganization, giving a combined grade according to a 5-point scale. RESULTS High-frequency ultrasound discriminated the severity of muscle damage between wild-type and transgenic models of DMD and between mdx and udx models. Qualitative comparisons of 3-dimensional HFU images with serial histologic sections of the skeletal muscle showed the ability of ultrasound to accurately depict changes seen in the muscle architecture in vivo. CONCLUSIONS High-frequency ultrasound images soft tissue in mice at high contrast and spatial resolution, thereby showing that this microimaging modality has the capability to assess architectural changes in muscle fibers due to myotonic dystrophy-related diseases such as DMD.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Disease Progression
- Dystrophin/genetics
- Gene Deletion
- Imaging, Three-Dimensional
- Longitudinal Studies
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscular Dystrophy, Animal/diagnostic imaging
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/diagnostic imaging
- Muscular Dystrophy, Duchenne/physiopathology
- Physical Conditioning, Animal
- Point Mutation
- Ultrasonography/methods
- Utrophin/genetics
Collapse
Affiliation(s)
- Nabeel Ahmad
- Imaging Research Laboratories, Robarts Research Institute, 100 Perth Dr, London, ON N6A 5K9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L. Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 2009; 23:2539-48. [PMID: 19289603 DOI: 10.1096/fj.09-129833] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Duchenne-Meryon muscular dystrophy (DMD) is the most common and lethal genetic muscle disease. Ameliorating muscle necrosis, inflammation, and fibrosis represents an important therapeutic approach for DMD. Imatinib, an antineoplastic agent, demonstrated antiinflammatory and antifibrotic effects in liver, kidney, lung, and skin of various animal models. This study tested antiinflammatory and antifibrotic effects of imatinib in mdx mice, a DMD mouse model. We treated mdx mice with intraperitoneal injections of imatinib at the peak of limb muscle inflammation and the onset of diaphragm fibrosis. Controls received PBS vehicle or were left untreated. Muscle necrosis, inflammation, fibrosis, and function were evaluated by measuring serum CK activity, endomysial CD45 immunoreactive inflammation area, endomysial collagen III deposition, and hind limb grip strength. Phosphorylation of the tyrosine kinase targets of imatinib was assessed by Western blot in diaphragm tissue and in primary cultures of peritoneal macrophages and skeletal muscle fibroblasts. Imatinib markedly reduced muscle necrosis, inflammation, and fibrosis, and significantly improved hind limb grip strength in mdx mice. Reduced clinical disease was accompanied by inhibition of c-abl and PDGFR phosphorylation and suppression of TNF-alpha and IL-1beta expression. Imatinib therapy for DMD may hold promise for ameliorating muscle necrosis, inflammation, and fibrosis by inhibiting c-abl and PDGFR signaling pathways and downstream inflammatory cytokine and fibrotic gene expression.
Collapse
Affiliation(s)
- Ping Huang
- Department of Neurology/Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 USA
| | | | | | | | | |
Collapse
|
36
|
Marques MJ, Ventura Machado R, Minatel E, Santo Neto H. Disodium cromoglycate protects dystrophin-deficient muscle fibers from leakiness. Muscle Nerve 2008; 37:61-7. [PMID: 17724738 DOI: 10.1002/mus.20892] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In dystrophin-deficient fibers of mdx mice and in Duchenne dystrophy, the lack of dystrophin leads to sarcolemma breakdown and muscle degeneration. We verified that cromolyn, a mast-cell stabilizer agent, stabilized dystrophic muscle fibers using Evans blue dye as a marker of sarcolemma leakiness. Mdx mice (n=8; 14 days of age) received daily intraperitoneal injections of cromolyn (50 mg/kg body weight) for 15 days. Untreated mdx mice (n=8) were injected with saline. Cryostat cross-sections of the sternomastoid, tibialis anterior, and diaphragm muscles were stained with hematoxylin and eosin. Cromolyn dramatically reduced Evans blue dye-positive fibers in all muscles (P<0.05; Student's t-test) and led to a significant increase in the percentage of fibers with peripheral nuclei. This study supports the protective effects of cromolyn in dystrophic muscles and further indicates its action against muscle fiber leakiness in muscles that are differently affected by the lack of dystrophin.
Collapse
MESH Headings
- Animals
- Anti-Asthmatic Agents/pharmacology
- Anti-Asthmatic Agents/therapeutic use
- Cell Membrane Permeability/drug effects
- Cell Membrane Permeability/physiology
- Cromolyn Sodium/pharmacology
- Cromolyn Sodium/therapeutic use
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Female
- Ion Channels/drug effects
- Ion Channels/genetics
- Ion Channels/metabolism
- Ions/metabolism
- Male
- Mast Cells/drug effects
- Mast Cells/immunology
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Sarcolemma/drug effects
- Sarcolemma/genetics
- Sarcolemma/metabolism
- Treatment Outcome
- Water-Electrolyte Balance/drug effects
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Maria Julia Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil.
| | | | | | | |
Collapse
|
37
|
Zhou L, Rafael-Fortney JA, Huang P, Zhao XS, Cheng G, Zhou X, Kaminski HJ, Liu L, Ransohoff RM. Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 2007; 264:106-11. [PMID: 17889902 PMCID: PMC2696235 DOI: 10.1016/j.jns.2007.08.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 11/30/2022]
Abstract
To address whether mdx mice with haploinsufficiency of utrophin (mdx/utrn+/-) develop more severe skeletal muscle inflammation and fibrosis than mdx mice, to represent a better model for Duchenne muscular dystrophy (DMD), we performed qualitative and quantitative analysis of skeletal muscle inflammation and fibrosis in mdx and mdx/utrn+/- littermates. Inflammation was significantly worse in mdx/utrn+/- quadriceps at age 3 and 6 months and in mdx/utrn+/- diaphragm at age 3 but not 6 months. Fibrosis was more severe in mdx/utrn+/- diaphragm at 6 months, and at this age, mild fibrosis was noted in quadriceps of mdx/utrn+/- but not mdx mice. The findings indicate that utrophin compensates, although insufficiently, for the effects of dystrophin loss with regard to inflammation and fibrosis of both quadriceps and diaphragm muscles in mdx mice. With more severe muscle dystrophy than mdx mice and a longer life span than utrophin-dystrophin-deficient (dko) mice, mdx/utrn+/- mice provide a better mouse model for testing potential therapies for muscle inflammation and fibrosis associated with DMD.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Neurology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gosselin LE, Williams JE, Personius K, Farkas GA. A comparison of factors associated with collagen metabolism in different skeletal muscles from dystrophic (mdx) mice: Impact of pirfenidone. Muscle Nerve 2007; 35:208-16. [PMID: 17058274 DOI: 10.1002/mus.20681] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Skeletal muscles in mdx mice exhibit differential degrees of pathological changes and fibrosis. The purpose of this study was to examine differences in various indices of collagen metabolism in skeletal muscles with widely different functions and activity profiles in mdx mice, and to determine whether pirfenidone would attenuate the development of fibrosis. Mice in the pirfenidone group were orally fed pirfenidone (500 mg/kg) daily for 4 weeks. Marked differences were noted in hydroxyproline concentration between muscles, which could not be explained solely by the level of type I collagen and transforming growth factor-beta1 (TGF-beta1) mRNA. In normal mice, matrix metalloproteinase (MMP)-2 mRNA was significantly higher in the gastrocnemius than in the diaphragm or genioglossus muscles, suggesting that collagen degradation plays an important role in regulating collagen accretion in skeletal muscle. In mdx mice, the levels of both MMP-2 and MMP-9 mRNA were significantly elevated relative to control, although the response was muscle specific. Pirfenidone treatment resulted in a significant reduction in the level of hydroxyproline concentration across all muscles, although the effect was small. Results from this study reveal intrinsic dissimilarities in collagen metabolism between functionally different skeletal muscles. Moreover, the pharmacological use of pirfenidone may be beneficial in preventing fibrosis in muscular dystrophy.
Collapse
Affiliation(s)
- Luc E Gosselin
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | |
Collapse
|
39
|
Parsons SA, Millay DP, Sargent MA, McNally EM, Molkentin JD. Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1975-85. [PMID: 16723712 PMCID: PMC1606625 DOI: 10.2353/ajpath.2006.051316] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myostatin (MSTN) is a muscle-specific secreted peptide that functions to limit muscle growth through an autocrine regulatory feedback loop. Loss of MSTN activity in cattle, mice, and humans leads to a profound phenotype of muscle overgrowth, associated with more and larger fibers and enhanced regenerative capacity. Deletion of MSTN in the mdx mouse model of Duchenne muscular dystrophy enhances muscle mass and reduces disease severity. In contrast, loss of MSTN activity in the dyW/dyW mouse model of laminin-deficient congenital muscular dystrophy, a much more severe and lethal disease model, does not improve all aspects of muscle pathology. Here we examined disease severity associated with myostatin (mstn-/-) deletion in mice nullizygous for delta-sarcoglycan (scgd-/-), a model of limb-girdle muscular dystrophy. Early loss of MSTN activity achieved either by monoclonal antibody administration or by gene deletion each improved muscle mass, regeneration, and reduced fibrosis in scgd-/- mice. However, antibody-mediated inhibition of MSTN in late-stage dystrophic scgd-/- mice did not improve disease. These findings suggest that MSTN inhibition may benefit muscular dystrophy when instituted early or if disease is relatively mild but that MSTN inhibition in severely affected or late-stage disease may be ineffective.
Collapse
Affiliation(s)
- Stephanie A Parsons
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., ML7020, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
40
|
Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, McNulty SG, Nsumu NN, Modrcin AC, Rinaldi RJ, Pinson D, Fowler SC, Bilgen M, Burns J, Hauschka SD, White RA. Improvement in survival and muscle function in an mdx/utrn−/− double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 2006; 16:192-203. [PMID: 16487708 DOI: 10.1016/j.nmd.2005.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Duchenne muscular dystrophy is a progressive muscle disease characterized by increasing muscle weakness and death by the third decade. mdx mice exhibit the underlying muscle disease but appear physically normal with ordinary lifespans, possibly due to compensatory expression of utrophin. In contrast, double mutant mice (mdx/utrn(-/-)), deficient for both dystrophin and utrophin die by approximately 3 months and suffer from severe muscle weakness, growth retardation, and severe spinal curvature. The capacity of human retinal dystrophin (Dp260) to compensate for the missing 427 kDa muscle dystrophin was tested in mdx/utrn(-/-) mice. Functional outcomes were assessed by histology, EMG, MRI, mobility, weight and longevity. MCK-driven transgenic expression of Dp260 in mdx/utrn(-/-) mice converts their disease course from a severe, lethal muscular dystrophy to a viable, mild myopathic phenotype. This finding is relevant to the design of exon-skipping therapeutic strategies since Dp260 lacks dystrophin exons 1-29.
Collapse
Affiliation(s)
- Roger Gaedigk
- Department of Medical Research, Children's Mercy Hospitals & Clinics, Pediatric Research Building 4th Floor, 2401 Gillham, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bloom TJ. Age-related alterations in cyclic nucleotide phosphodiesterase activity in dystrophic mouse leg muscle. Can J Physiol Pharmacol 2005; 83:1055-60. [PMID: 16391714 DOI: 10.1139/y05-085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity.Key words: cyclic nucleotide phosphodiesterase, muscular dystrophy, mouse, RO 20-1724, EHNA.
Collapse
Affiliation(s)
- Timothy J Bloom
- Department of Pharmaceutical Sciences, Campbell University School of Pharmacy, Buies Creek, NC 27506, USA.
| |
Collapse
|
42
|
Tsuchiya T, Okada M, Sakairi T, Sano F, Sugimoto J, Takagi S. Histopathological Characterization of the Skeletal Myopathy in rasH2 Mice Carrying Human Prototype c-Ha-ras Gene. J Vet Med Sci 2005; 67:481-9. [PMID: 15942132 DOI: 10.1292/jvms.67.481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A skeletal myopathy is found in approximately 100% of rasH2 mice. To confirm detailed features of the rasH2 skeletal myopathy, the biceps femoris, diaphragm, triceps brachii, gastrocnemial (types I and II fiber-mixed muscles) and soleus muscle (type I fiber-dominant muscle) obtained from male rasH2 and non-transgenic littermates aged 10-13 and 34 weeks were examined. Variations in the muscle fiber size, early-scattered degeneration/necrosis and regeneration of muscle fibers were detected in 10-13-week-old rasH2 mice. The severity of the above muscular lesions was more prominent in older rasH2 mice. These lesions were noted in the type II myofiber dominant muscles (biceps femoris, triceps brachii and gastrocnemial). NADH-TR stain clearly demonstrated a disorganized intermyofibrillar network and necrotic change in muscle fibers. No specific morphological changes, like rod structure or tubular aggregation seen in some types of myopathy, were noted in Gomori trichrome and NADH-TR stains in the rasH2 mouse like in many types of muscular dystrophy. Electronmicroscopically, occasional muscle fiber degeneration/regeneration, invaded phagocytic cells, indistinct Z-band suggesting excessive contraction and dilatation of the sarcoplasmic reticulum were observed. In summary, the skeletal myopathy occurring in rasH2 mice is consistent with muscular dystrophy characterized morphologically by progressive degeneration and regeneration of myofibers. The myopathy is confined to the type II myofiber predominant muscles and is not associated with any pathognomonic lesions. These characteristics will provide us with a useful model for research in muscular dystrophy of diverse myofibers.
Collapse
Affiliation(s)
- Takayuki Tsuchiya
- Toxicology Laboratory, Pharmaceuticals Research Center, Mitsubishi Pharma Corporation, 1-1-1 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Roma J, Munell F, Fargas A, Roig M. Evolution of pathological changes in the gastrocnemius of the mdx mice correlate with utrophin and beta-dystroglycan expression. Acta Neuropathol 2004; 108:443-52. [PMID: 15365724 DOI: 10.1007/s00401-004-0908-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 06/28/2004] [Indexed: 11/26/2022]
Abstract
Utrophin can function in muscle as a substitute for dystrophin and its over-expression has been used successfully to ameliorate mdx muscle pathology. Despite of this fact, there are no detailed studies on the expression of endogenous skeletal muscle utrophin- and dystrophin-associated glycoproteins throughout the life span of mdx mice. We have monitored, sequentially, the expression of matrix metalloproteinase-9 (MMP-9), myosin heavy chain, utrophin and beta-dystroglycan, as well as the mRNA expression of utrophin and of structurally related proteins, in mdx and control mice. We found an inverse relationship between concentration of muscle utrophin and abundance of groups of degenerative-regenerative fibers and of MMP-9 expression. There was also temporal correlation between the decline of utrophin at 15 days of age and the onset of muscle necrosis. Conversely, reappearance of utrophin, with a peak around 2 months of age, was followed by a progressive decline of necrosis. A lineal correlation between utrophin and beta-dystroglycan levels, not seen in controls, indicates that improvement of mdx is due to utrophin binding to dystrophin-associated glycoproteins. Utrophin and other structurally related protein transcripts were not up-regulated, suggesting a post-transcriptional regulation for utrophin in skeletal muscle.
Collapse
Affiliation(s)
- Josep Roma
- Grup de Recerca de Malalties Neuro-Metabòliques, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Gosselin LE, McCormick KM. Targeting the Immune System to Improve Ventilatory Function in Muscular Dystrophy. Med Sci Sports Exerc 2004; 36:44-51. [PMID: 14707767 DOI: 10.1249/01.mss.0000106185.22349.2c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skeletal muscle is a unique tissue whose function is dependent in great part on its ultrastructure. Repeated intense muscular contractions, especially those resulting in muscle lengthening, can lead to alterations in muscle structure (i.e., muscle damage) and subsequent decline in contractile force. The damage-induced decline in contractile force can have a significant impact on exercise performance during an athletic performance. In some disease conditions such as Duchenne muscular dystrophy (DMD), the muscles are more vulnerable to contraction-induced damage than normal muscle. In the case of the respiratory muscles, for example, the diaphragm, the consequences of muscle weakness secondary to damage are profound in that respiratory failure leading to premature death often ensues. In normal skeletal muscle, damage is followed by an inflammatory response involving multiple cell types that subsides after several days. This transient inflammatory response is a normal homeostatic reaction to muscle damage. In contrast, a persistent inflammatory response is observed in dystrophic skeletal muscle that leads to an altered extracellular environment, including an increased presence of inflammatory cells (e.g., macrophages) and elevated levels of various inflammatory cytokines (e.g., TNF-alpha, TGF-beta). The signals that lead to successful muscle repair in healthy muscle may promote muscle wasting and fibrosis in dystrophic muscle. Preliminary data indicate that immunosuppression in dystrophic (mdx) mice has beneficial effects on some indices of muscle dysfunction, thereby indicating that targeted immunosuppression may offer some promise in delaying the pathological progression of this insidious muscular disease.
Collapse
Affiliation(s)
- Luc E Gosselin
- Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
45
|
Collins CA, Morgan JE. Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int J Exp Pathol 2003; 84:165-72. [PMID: 14632630 PMCID: PMC2517561 DOI: 10.1046/j.1365-2613.2003.00354.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duchenne's muscular dystrophy (DMD) is a lethal childhood disease caused by mutations of the dystrophin gene, the protein product of which, dystrophin, has a vital role in maintaining muscle structure and function. Homologues of DMD have been identified in several animals including dogs, cats, mice, fish and invertebrates. The most notable of these are the extensively studied mdx mouse, a genetic and biochemical model of the human disease, and the muscular dystrophic Golden Retriever dog, which is the nearest pathological counterpart of DMD. These models have been used to explore potential therapeutic approaches along a number of avenues including gene replacement and cell transplantation strategies. High-throughput screening of pharmacological and genetic therapies could potentially be carried out in recently available smaller models such as zebrafish and Caenorhabditis elegans. It is possible that a successful treatment will eventually be identified through the integration of studies in multiple species differentially suited to addressing particular questions.
Collapse
Affiliation(s)
- C A Collins
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
46
|
Minatel E, Neto HS, Marques MJ. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice. Muscle Nerve 2003; 28:561-9. [PMID: 14571457 DOI: 10.1002/mus.10416] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pattern of innervation of the vertebrate neuromuscular junction is established during early development, when junctions go from multiple to single innervation in the phenomenon of synapse elimination, suggesting that changes at the molecular level in the postsynaptic cell lead to the removal of nerve terminals. The mdx mouse is deficient in dystrophin and associated proteins that are part of the postsynaptic cytoskeleton. We used rhodamine-alpha-bungarotoxin and anti-neurofilament IgG-FITC to stain acetylcholine receptors and nerve terminals of the sternomastoid muscle during postnatal development in mdx and control C57BL/10 mice. Using fluorescence confocal microscopy, we observed that, 7 days after birth, 86.7% of the endplates of mdx mice were monoinnervated (n = 200) compared with 41.4% in control mice (n = 200). By the end of the second postnatal week, all endplates were innervated singly (100% mdx and 94.7% controls, n = 200 per group). These results show that dystrophic fibers achieve single innervation earlier, perhaps because dystrophin or a normal cytoskeletal complex is implicated in this phenomenon.
Collapse
Affiliation(s)
- Elaine Minatel
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | | |
Collapse
|
47
|
Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 2003; 161:957-67. [PMID: 12796481 PMCID: PMC2172975 DOI: 10.1083/jcb.200301101] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of the dystrophin-glycoprotein complex caused by genetic defects of dystrophin or sarcoglycans results in muscular dystrophy and/or cardiomyopathy in humans and animal models. However, the key early molecular events leading to myocyte degeneration remain elusive. Here, we observed that the growth factor-regulated channel (GRC), which belongs to the transient receptor potential channel family, is elevated in the sarcolemma of skeletal and/or cardiac muscle in dystrophic human patients and animal models deficient in dystrophin or delta-sarcoglycan. However, total cell GRC does not differ markedly between normal and dystrophic muscles. Analysis of the properties of myotubes prepared from delta-sarcoglycan-deficient BIO14.6 hamsters revealed that GRC is activated in response to myocyte stretch and is responsible for enhanced Ca2+ influx and resultant cell damage as measured by creatine phosphokinase efflux. We found that cell stretch increases GRC translocation to the sarcolemma, which requires entry of external Ca2+. Consistent with these findings, cardiac-specific expression of GRC in a transgenic mouse model produced cardiomyopathy due to Ca2+ overloading, with disease expression roughly parallel to sarcolemmal GRC levels. The results suggest that GRC is a key player in the pathogenesis of myocyte degeneration caused by dystrophin-glycoprotein complex disruption.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Carretta D, Santarelli M, Vanni D, Ciabatti S, Sbriccoli A, Pinto F, Minciacchi D. Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 2003; 456:48-59. [PMID: 12508313 DOI: 10.1002/cne.10506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the muscular dystrophic (mdx) mouse, which is characterized by deficient dystrophin expression and provides a model of Duchenne's muscular dystrophy, we previously demonstrated marked central nervous system alterations and in particular a quantitative reduction of corticospinal and rubrospinal neurons and pathologic changes of these cells. Prompted by these findings and in view of the relations between calcium ions and dystrophin, we analyzed with immunohistochemistry the neurons containing the calcium-binding proteins parvalbumin, calbindin D28k, and calretinin in cortical areas and brainstem nuclei of mdx mice. In the sensorimotor cortex, parvalbumin-positive and calbindin-positive neurons, which represent a subset of cortical interneurons, were significantly more numerous in mdx mice than in wild-type ones. In addition, the laminar distribution of parvalbumin-positive neurons in the motor and somatosensory cortical areas of mdx mice was altered with respect to wild-type animals. No alterations in the number and distribution were found in the parvalbumin- or calbindin-expressing cell populations of the visual and anterior cingulate cortices of mdx mice. The pattern of calretinin immunoreactivity was normal in all investigated cortical areas. The cell populations containing either calcium-binding protein were similar in brainstem nuclei of mdx and wild-type mice. The present findings demonstrated selective changes of subsets of interneurons in the motor and somatosensory cortical areas of mdx mice. Therefore, the data showed that, in the cortices of these mutant animals, the previously demonstrated pathologic changes of corticospinal cell populations are accompanied by marked alterations in the local circuitry.
Collapse
Affiliation(s)
- Donatella Carretta
- Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy, I-50134
| | | | | | | | | | | | | |
Collapse
|
49
|
Tseng BS, Zhao P, Pattison JS, Gordon SE, Granchelli JA, Madsen RW, Folk LC, Hoffman EP, Booth FW. Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J Appl Physiol (1985) 2002; 93:537-45. [PMID: 12133862 DOI: 10.1152/japplphysiol.00202.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite over 3,000 articles published on dystrophin in the last 15 years, the reasons underlying the progression of the human disease, differential muscle involvement, and disparate phenotypes in different species are not understood. The present experiment employed a screen of 12,488 mRNAs in 16-wk-old mouse mdx muscle at a time when the skeletal muscle is avoiding severe dystrophic pathophysiology, despite the absence of a functional dystrophin protein. A number of transcripts whose levels differed between the mdx and human Duchenne muscular dystrophy were noted. A fourfold decrease in myostatin mRNA in the mdx muscle was noted. Differential upregulation of actin-related protein 2/3 (subunit 4), beta-thymosin, calponin, mast cell chymase, and guanidinoacetate methyltransferase mRNA in the more benign mdx was also observed. Transcripts for oxidative and glycolytic enzymes in mdx muscle were not downregulated. These discrepancies could provide candidates for salvage pathways that maintain skeletal muscle integrity in the absence of a functional dystrophin protein in mdx skeletal muscle.
Collapse
Affiliation(s)
- B S Tseng
- Division of Child Neurology, Department of Neurology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291-329. [PMID: 11917091 DOI: 10.1152/physrev.00028.2001] [Citation(s) in RCA: 835] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The X-linked muscle-wasting disease Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin. There is currently no effective treatment for the disease; however, the complex molecular pathology of this disorder is now being unravelled. Dystrophin is located at the muscle sarcolemma in a membrane-spanning protein complex that connects the cytoskeleton to the basal lamina. Mutations in many components of the dystrophin protein complex cause other forms of autosomally inherited muscular dystrophy, indicating the importance of this complex in normal muscle function. Although the precise function of dystrophin is unknown, the lack of protein causes membrane destabilization and the activation of multiple pathophysiological processes, many of which converge on alterations in intracellular calcium handling. Dystrophin is also the prototype of a family of dystrophin-related proteins, many of which are found in muscle. This family includes utrophin and alpha-dystrobrevin, which are involved in the maintenance of the neuromuscular junction architecture and in muscle homeostasis. New insights into the pathophysiology of dystrophic muscle, the identification of compensating proteins, and the discovery of new binding partners are paving the way for novel therapeutic strategies to treat this fatal muscle disease. This review discusses the role of the dystrophin complex and protein family in muscle and describes the physiological processes that are affected in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Derek J Blake
- Medical Research Council, Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|