1
|
McBeth C, Stott-Marshall RJ. Interference of reversible redox compounds in enzyme catalysed assays - Electrochemical limitations. Anal Biochem 2023; 662:114972. [PMID: 36410430 DOI: 10.1016/j.ab.2022.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Several commercial assay kits exist with limited explanation of the kit components and reagent constituents, which greatly increases potential incompatibility issues resulting in the loss of samples, time, and data. Herein we explore such issues via the redox ion [Fe(CN)6]3/4- in two commercial l-lactate and pyruvate assay kits. RESULTS We clearly demonstrate significant interference from redox compounds with the l-lactate and pyruvate assays; a significance in signal inhibition/mechanism restriction, and false/mechanism exhaustion, respectively. Potential mechanisms are explored to explain interference. CONCLUSION The need for transparency is crucial for consistency of assay kit performance from lab to lab. There is a need for suppliers to list the components of kits and/or list the potential for interference from specific agents to ensure that results obtained from these kits are reliable and reproducible.
Collapse
Affiliation(s)
- Craig McBeth
- Biodiscovery Institute, Faculty of Science, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK.
| | - Robert J Stott-Marshall
- Wolfson School of Global Virus Research, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
2
|
Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo. EBioMedicine 2017; 23:125-135. [PMID: 28851583 PMCID: PMC5605377 DOI: 10.1016/j.ebiom.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/−) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Red cells in vivo obtain vitamin C (ascorbate) by dehydroascorbic acid transport. Red blood cell ascorbate is necessary to maintain red blood cell structural integrity. Red blood cell ascorbate maintains external plasma ascorbate concentrations in vivo by transmembrane electron transfer.
In animals and humans, it is unknown whether the oxidized form of vitamin C, termed dehydroascorbic acid, has a physiologic purpose. Using a mouse model and a custom-synthesized vitamin C analog, we show that red blood cells obtain their vitamin C by transport of dehydroascorbic acid, instead of vitamin C itself. The transported material is reduced inside and has at least two physiologic functions. One is to maintain structural integrity of red blood cells, and the other is to maintain vitamin C in the liquid part of blood, plasma.
Collapse
|
3
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
4
|
Crane FL, Löw H, Sun I, Navas P, Gvozdjáková A. Plasma membrane coenzyme Q: evidence for a role in autism. Biologics 2014; 8:199-205. [PMID: 24920882 PMCID: PMC4043426 DOI: 10.2147/btt.s53375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The Voltage Dependent Anion Channel (VDAC) is involved in control of autism. Treatments, including coenzyme Q, have had some success on autism control. Data sources Correlation of porin redox activity and expression of autism is based on extensive literature, especially studies of antibodies, identification of cytosolic nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase activity in the VDAC, and evidence for extreme sensitivity of the dehydrogenase to a mercurial. Evidence for a coenzyme Q requirement came from extraction and analog inhibition of NADH ferricyanide reductase in the erythrocyte plasma membrane, done in 1994, and reinterpreted when it was identified in VDAC in 2004. The effects of ubiquinol (the QH2 – reduced form of coenzyme Q) in children with autism were studied. Results A new role for coenzyme Q in the porin channels has implications on autism. Ubiquinol, the more active form of coenzyme Q, produces favorable response in children with autism. Agents which affected electron transport in porin show parallel effects in autism. Conclusion We propose a hypothesis that autism is controlled by a coenzyme Q-dependent redox system in the porin channels; this conclusion is based on the effects of agents that positively or negatively affect electron transport and the symptoms of autism. The full understanding of the mechanism of their control needs to be established.
Collapse
Affiliation(s)
- Frederick L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Hans Löw
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Iris Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - Anna Gvozdjáková
- Pharmacobiochemical Laboratory of Third Medical Department, Medical Faculty, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Löw H, Crane FL, Morré DJ. Putting together a plasma membrane NADH oxidase: A tale of three laboratories. Int J Biochem Cell Biol 2012; 44:1834-8. [DOI: 10.1016/j.biocel.2012.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
|
6
|
Kesharwani RK, Singh DV, Misra K, Rizvi SI. Plant polyphenols as electron donors for erythrocyte plasma membrane redox system: validation through in silico approach. Org Med Chem Lett 2012; 2:12. [PMID: 22475026 PMCID: PMC3355021 DOI: 10.1186/2191-2858-2-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 04/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background The plasma membrane redox system (PMRS) has extensively been studied in erythrocytes. The PMRS plays an important role in maintaining plasma redox balance and provides a protective mechanism against oxidative stress. Earlier it was proposed that only NADH or NADPH provided reducing equivalents to PMRS; however, now it is acknowledged that some polyphenols also have the ability to donate reducing equivalents to PMRS. Methods Two different docking simulation softwares, Molegro Virtual Docker and Glide were used to study the interaction of certain plant polyphenols viz. quercetin, epigallocatechin gallate, catechin epicatechin and resveratrol with human erythroyte NADH-cytochrome b5 reductase, which is a component of PMRS and together with the identification of minimum pharmacophoric feature using Pharmagist. Results The derived common minimum pharmacophoric features show the presence of minimum bioactive component in all the selected polyphenols. Our results confirm wet lab findings which show that these polyphenols have the ability to interact and donate protons to the Human NADH-cytochrome b5 reductase. Conclusion With the help of these comparative results of docking simulation and pharmacophoric features, novel potent molecules can be designed with higher efficacy for activation of the PMRS system.
Collapse
|
7
|
Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011; 14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Collapse
Affiliation(s)
- Domenico Del Principe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
8
|
May JM. Assessing the reductive capacity of cells by measuring the recycling of ascorbic and lipoic acids. Methods Mol Biol 2010; 610:229-43. [PMID: 20013182 PMCID: PMC3724428 DOI: 10.1007/978-1-60327-029-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Most mammalian cells cannot synthesize vitamin C, or ascorbic acid, and thus must have efficient mechanisms for its intracellular recycling. Ascorbate can be recycled from both its oxidized forms using electrons from several intracellular reducing co-factors, including GSH and the reduced pyridine nucleotides. Methods have been developed to assess the ability of intact cells to recycle ascorbate, which include assay of extracellular ferricyanide reduction and measurement of the ability of the cells to reduce dehydroascorbic acid to ascorbate. Lipoic acid, a disulfide containing medium chain fatty acid, is also taken up by cells and reduced to dihydrolipoic acid, which can be measured upon efflux from the cells using Ellman's reagent. Together, these assays provide an estimate of the ability of different cell types to recycle ascorbate and to generate intracellular reducing equivalents required to maintain the redox status of the cells.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Abstract
Eukaryotic cells display a plasma membrane redox system (PMRS) that transfers electrons from intracellular substrates to extracellular electron acceptors. The physiologic importance of PMRS is still not fully understood. The authors have carried out studies to determine the activity of PMRS in human erythrocytes as a function of age and correlate the activity with total plasma antioxidant capacity in an effort to understand the role of PMRS in human aging. The study was carried out on 80 normal healthy subjects of both genders between the ages of 18 and 85 years. The activity of erythrocyte PMRS was estimated by following the reduction of ferricyanide. The total antioxidant capacity of the plasma was estimated in terms of Ferric Reducing Ability of Plasma (FRAP) values. A significant (p < 0.0001) positive correlation (r = 0.7797) is observed between PMRS activity of erythrocytes and human age. There is an age-dependent decrease in total plasma antioxidant capacity measured in terms of FRAP values. A highly significant correlation is observed between PMRS activity and plasma FRAP values. The authors hypothesize that the increased PMRS in erythrocytes during aging may be a protective mechanism of the system for efficient extracellular DHA reduction and ascorbate recycling under condition of increased oxidative stress.
Collapse
|
10
|
Su D, May JM, Koury MJ, Asard H. Human Erythrocyte Membranes Contain a Cytochrome b561 That May Be Involved in Extracellular Ascorbate Recycling. J Biol Chem 2006; 281:39852-9. [PMID: 17068337 DOI: 10.1074/jbc.m606543200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human erythrocytes contain an unidentified plasma membrane redox system that can reduce extracellular monodehydroascorbate by using intracellular ascorbate (Asc) as an electron donor. Here we show that human erythrocyte membranes contain a cytochrome b(561) (Cyt b(561)) and hypothesize that it may be responsible for this activity. Of three evolutionarily closely related Cyts b(561), immunoblots of human erythrocyte membranes showed only the duodenal cytochrome b(561) (DCytb) isoform. DCytb was also found in guinea pig erythrocyte membranes but not in erythrocyte membranes from the mouse or rat. Mouse erythrocytes lost a majority of the DCytb in the late erythroblast stage during erythropoiesis. Absorption spectroscopy showed that human erythrocyte membranes contain an Asc-reducible b-type Cyt having the same spectral characteristics as recombinant DCytb and biphasic reduction kinetics, similar to those of the chromaffin granule Cyt b(561). In contrast, mouse erythrocytes did not exhibit Asc-reducible b-type Cyt activity. Furthermore, in contrast to mouse erythrocytes, human erythrocytes much more effectively preserved extracellular Asc and transferred electrons from intracellular Asc to extracellular ferricyanide. These results suggest that the DCytb present in human erythrocytes may contribute to their ability to reduce extracellular monodehydroascorbate.
Collapse
Affiliation(s)
- Dan Su
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
11
|
Baker MA, Lane DJR, Ly JD, De Pinto V, Lawen A. VDAC1 Is a Transplasma Membrane NADH-Ferricyanide Reductase. J Biol Chem 2004; 279:4811-9. [PMID: 14573604 DOI: 10.1074/jbc.m311020200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porin isoform 1 or VDAC (voltage-dependent anion-selective channel) 1 is the predominant protein in the outer mitochondrial membrane. We demonstrated previously that a plasma membrane NADH-ferricyanide reductase activity becomes up-regulated upon mitochondrial perturbation, and therefore suggested that it functions as a cellular redox sensor. VDAC1 is known to be expressed in the plasma membrane; however, its function there remained a mystery. Here we show that VDAC1, when expressed in the plasma membrane, functions as a NADH-ferricyanide reductase. VDAC1 preparations purified from both plasma membrane and mitochondria fractions exhibit NADH-ferricyanide reductase activity, which can be immunoprecipitated with poly- and monoclonal antibodies directed against VDAC(1). Transfecting cells with pl-VDAC1-GFP, which carries an N-terminal signal peptide, directs VDAC1 to the plasma membrane, as shown by confocal microscopy and FACS analysis, and significantly increases the plasma membrane NADH-ferricyanide reductase activity of the transfected cells. This novel enzymatic activity of the well known VDAC1 molecule may provide an explanation for its role in the plasma membrane. Our data suggest that a major function of VDAC1 in the plasma membrane is that of a NADH(-ferricyanide) reductase that may be involved in the maintenance of cellular redox homeostasis.
Collapse
Affiliation(s)
- Mark A Baker
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Building 13D, 100 Wellington Road, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
12
|
Abstract
The notion of transmembrane electron transport is usually associated with mitochondria and chloroplasts. However, since the early 1970s, it has been known that this phenomenon also occurs at the level of the plasma membrane. Ever since, evidence has accumulated for the existence of a plethora of transplasma membrane electron transport enzymes. In this review, we discuss the various enzymes known, their molecular characteristics and their biological functions.
Collapse
Affiliation(s)
- Jennifer D Ly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
13
|
Abstract
Ascorbic acid may be involved in the defense against oxidant stress in endothelial cells. Such a role requires that the cells effectively recycle the vitamin from its oxidized forms. In this work, we studied the ability of cultured bovine aortic endothelial cells (BAECs) to take up and reduce dehydroascorbic acid (DHA) to ascorbate, as well as the dependence of ascorbate recycling on intracellular GSH. BAECs took up and reduced DHA to ascorbate much more readily than they took up ascorbate. Although BAECs in culture did not contain ascorbate, ascorbate accumulated to concentrations of 2-3 mM in BAECs following incubation with 400 microM DHA. Extracellular ferricyanide oxidized intracellular ascorbate, which was recycled by the cells. Reduction of DHA, either when added to the cells or when generated in response to ferricyanide, caused significant decreases in intracellular GSH concentrations. Depletion of intracellular GSH with 1-chloro-2,4-dinitrobenzene, diethylmaleate, and diamide almost abolished the ability of the cells to reduce DHA to ascorbate. DHA reduction by thioredoxin reductase was evident in dialyzed cell extracts, but occurred at rates far lower than direct GSH reduction of DHA. These results suggest that maximal rates of DHA reduction, and thus recycling of ascorbate from DHA, are dependent upon GSH in these cells.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, 715 Medical Research Building II, Nashville, TN 37232-6303, USA.
| | | | | |
Collapse
|
14
|
May JM, Qu Z, Morrow JD, Cobb CE. Ascorbate-dependent protection of human erythrocytes against oxidant stress generated by extracellular diazobenzene sulfonate. Biochem Pharmacol 2000; 60:47-53. [PMID: 10807944 DOI: 10.1016/s0006-2952(00)00312-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diazobenzene sulfonic acid (DABS) has been used to label thiols and amino groups on cell-surface proteins. However, we found that in addition to inhibiting an ascorbate-dependent trans-plasma membrane oxidoreductase in human erythrocytes, it also depleted alpha-tocopherol severely in the cell membrane. When erythrocytes were loaded with ascorbate, DABS-dependent loss of alpha-tocopherol was decreased, despite little change in intracellular ascorbate content. Sparing of alpha-tocopherol also was seen in erythrocyte ghosts resealed to contain ascorbate, although this was accompanied by loss of intravesicular ascorbate, probably due to the inability of ghosts to recycle ascorbate. A transmembrane transfer of electrons from ascorbate was confirmed by electron paramagnetic resonance spectroscopy, in which extracellular DABS was found to generate the ascorbate free radical within cells. When the membrane content of alpha-tocopherol was decreased to 20% of the initial value by DABS treatment, lipid peroxidation ensued, manifest by generation of F(2)-isoprostanes in the cell membranes. Intracellular ascorbate also strongly protected against F(2)-isoprostane formation. These results show that DABS causes an oxidant stress at the membrane surface that is transmitted within the cell, in part by an alpha-tocopherol-dependent mechanism, and that ascorbate recycling of alpha-tocopherol can protect against loss of alpha-tocopherol and the ensuing lipid peroxidation.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
The plasma membrane of animal cells contains an electron transport system based on coenzyme Q (CoQ) reductases. Cytochrome b5 reductase is NADH-specific and reduces CoQ through a one-electron reaction mechanism. DT-diaphorase also reduces CoQ, although through a two-electron reaction mechanism using both NADH and NADPH, which may be particularly important under oxidative stress conditions. Because reduced CoQ protects membranes against peroxidations, and also maintains the reduced forms of exogenous antioxidants such as alpha-tocopherol and ascorbate, this molecule can be considered a central component of the plasma membrane antioxidant system. Stress-induced apoptosis is mediated by the activation of plasma membrane-bound neutral sphingomyelinase, which releases ceramide to the cytosol. Ceramide-dependent caspase activation is part of the apoptosis pathway. The reduced components of the plasma membrane antioxidant system, mainly CoQ, prevent both lipid peroxidation and sphingomyelinase activation. This results in the prevention of ceramide accumulation and caspase 3 activation and, as consequence, apoptosis is inhibited. We propose the hypothesis that antioxidant protective function of the plasma membrane redox system can be enough to protect cells against the externally induced mild oxidative stress. If this system is overwhelmed, intracellular mechanisms of protection are required to avoid activation of the apoptosis pathway.
Collapse
Affiliation(s)
- J M Villalba
- Departamento de Biologia Celular, Fisiología e Inmunologia, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | |
Collapse
|
16
|
Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2000; 2:197-212. [PMID: 11229526 DOI: 10.1089/ars.2000.2.2-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The observation in the early 1970s that ferricyanide can replace transferrin as a growth factor highlighted the major role plasma membrane proteins can play within a mammalian cell. Ferricyanide, being impermeant to the cell, was assumed to act at the level of the plasma membrane. Since that time, several enzymes isolated from the plasma membrane have been described, which, using NADH as the intracellular electron donor, are capable of reducing ferricyanide. However, their exact modes of action, and their physiological substrates and functions have not been solved to date. Numerous hypotheses have been proposed for the role of such redox enzymes within the plasma membrane. Examples include the regulation of cell signaling, cell growth, apoptosis, proton pumping, and ion channels. All of these roles may be a result of the function of these enzymes as cellular redox sensors. The emergence of many diverse roles for ferricyanide utilizing redox enzymes present in the plasma membrane might also, in part, be due to the numerous redox enzymes present within the membrane; the poor molecular characterization of the enzymes may be the reason for some of the diverging results reported in the literature as various researchers may be working on different enzymes. Here we review the diverse proposals given for structure and function to the plasma membrane NADH-oxidoreductase system(s) with a specific focus on those enzyme activities which can couple ferricyanide and NADH. Although they are still ill-defined enzymes, evidence is rising that they are of utmost significance for cellular regulation.
Collapse
Affiliation(s)
- M A Baker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
17
|
May JM, Qu ZC. Ascorbate-dependent electron transfer across the human erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:19-31. [PMID: 10561468 DOI: 10.1016/s0005-2736(99)00107-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reduction of extracellular ferricyanide by intact cells reflects the activity of an as yet unidentified trans-plasma membrane oxidoreductase. In human erythrocytes, this activity was found to be limited by the ability of the cells to recycle intracellular ascorbic acid, its primary trans-membrane electron donor. Ascorbate-dependent ferricyanide reduction by erythrocytes was partially inhibited by reaction of one or more cell-surface sulfhydryls with p-chloromercuribenzene sulfonic acid, an effect that persisted in resealed ghosts prepared from such treated cells. However, treatment of intact cells with the sulfhydryl reagent had no effect on NADH-dependent ferricyanide or ferricytochrome c reductase activities of open ghosts prepared from treated cells. When cytosol-free ghosts were resealed to contain trypsin or pronase, ascorbate-dependent reduction of extravesicular ferricyanide was doubled, whereas NADH-dependent ferricyanide and ferricytochrome c reduction were decreased by proteolytic digestion. The trans-membrane ascorbate-dependent activity was also found to be inhibited by reaction of sulfhydryls on its cytoplasmic face. These results show that the trans-membrane ferricyanide oxidoreductase is limited by the ability of erythrocytes to recycle intracellular ascorbate, that it does not involve the endofacial NADH-dependent cytochrome b(5) reductase system, and that it is a trans-membrane protein that contains sensitive sulfhydryl groups on both membrane faces.
Collapse
Affiliation(s)
- J M May
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | |
Collapse
|
18
|
Abstract
Ascorbic acid, or vitamin C, is a primary antioxidant in plasma and within cells, but it can also interact with the plasma membrane by donating electrons to the alpha-tocopheroxyl radical and a trans-plasma membrane oxidoreductase activity. Ascorbate-derived reducing capacity is thus transmitted both into and across the plasma membrane. Recycling of alpha-tocopherol by ascorbate helps to protect membrane lipids from peroxidation. However, neither the mechanism nor function of the ascorbate-dependent oxidoreductase activity is known. This activity has typically been studied using extracellular ferricyanide as an electron acceptor. Whereas an NADH:ferricyanide reductase activity is evident in open membranes, ascorbate is the preferred electron donor within cells. The oxidoreductase may be a single membrane-spanning protein or may only partially span the membrane as part of a trans-membrane electron transport chain composed of a cytochrome or even hydrophobic antioxidants such as alpha-tocopherol or ubiquinol-10. Further studies are needed to elucidate the structural components, mechanism, and physiological significance of this activity. Proposed functions for the oxidoreductase include stimulation of cell growth, reduction of the ascorbate free radical outside cells, recycling of alpha-tocopherol, reduction of lipid hydroperoxides, and reduction of ferric iron prior to iron uptake by a transferrin-independent pathway.
Collapse
Affiliation(s)
- J M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6303, USA.
| |
Collapse
|
19
|
Ross D, Mendiratta S, Qu ZC, Cobb CE, May JM. Ascorbate 6-palmitate protects human erythrocytes from oxidative damage. Free Radic Biol Med 1999; 26:81-9. [PMID: 9890643 DOI: 10.1016/s0891-5849(98)00198-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid-soluble antioxidants, such as alpha-tocopherol, protect cell membranes from oxidant damage. In this work we sought to determine whether the amphipathic derivative of ascorbate, ascorbate 6-palmitate, is retained in the cell membrane of intact erythrocytes, and whether it helps to protect the cells against peroxidative damage. We found that ascorbate 6-palmitate binding to erythrocytes was dose-dependent, and that the derivative was retained during the multiple wash steps required for preparation of ghost membranes. Ascorbate 6-palmitate remained on the extracellular surface of the cells, because it was susceptible to oxidation or removal by several cell-impermeant agents. When bound to the surface of erythrocytes, ascorbate 6-palmitate reduced ferricyanide, an effect that was associated with generation of an ascorbyl free radical signal on EPR spectroscopy. Erythrocyte-bound ascorbate 6-palmitate protected membrane alpha-tocopherol from oxidation by both ferricyanide and a water-soluble free radical initiator, suggesting that the derivative either reacted directly with the exogenously added oxidant, or that it was able to recycle the alpha-tocopheroxyl radical to alpha-tocopherol in the cell membrane. Ascorbate 6-palmitate also partially protected cis-parinaric acid from oxidation when this fluorescent fatty acid was intercalated into the membrane of intact cells. These results show that an amphipathic ascorbate derivative is retained on the exterior cell surface of human erythrocytes, where it helps to protect the membrane from oxidant damage originating outside the cells.
Collapse
Affiliation(s)
- D Ross
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | | | | | |
Collapse
|
20
|
Davis JL, Mendiratta S, May JM. Similarities in the metabolism of alloxan and dehydroascorbate in human erythrocytes. Biochem Pharmacol 1998; 55:1301-7. [PMID: 9719486 DOI: 10.1016/s0006-2952(97)00637-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The beta-cell toxin alloxan is reduced within cells to dialuric acid, which may then decompose to release damaging reactive oxygen species. We tested whether such redox cycling of alloxan occurs in the human erythrocyte, a cell with stronger antioxidant defenses than beta-cells. Erythrocytes incubated with increasing concentrations of alloxan progressively accumulated dialuric acid, as measured directly by HPLC with electrochemical detection. At concentrations up to 2 mM, alloxan decreased cellular GSH slightly, but did not affect erythrocyte contents of ascorbate or alpha-tocopherol. Intracellular H2O2 generation, measured as inhibition of endogenous catalase activity in the presence of 3-amino-1,2,4-triazole (aminotriazole), was decreased by alloxan. Despite its failure to induce significant oxidant stress in erythrocytes, 2 mM of alloxan doubled the activity of the hexose monophosphate pathway (HMP). This likely reflected consumption of reducing equivalents during reduction of alloxan to dialuric acid. Alloxan pretreatment enhanced the ability of erythrocytes to reduce extracellular ferricyanide while protecting alpha-tocopherol in the cell membrane from oxidation by ferricyanide. Ninhydrin, a hydrophobic derivative of alloxan, showed similar effects, but caused progressive GSH depletion and cell lysis at concentrations above 50 microM. The ability of alloxan to enhance ferricyanide reduction and to spare alpha-tocopherol suggests that dialuric acid or other reducing species within the cells can protect or recycle alpha-tocopherol and donate electrons to a transmembrane transfer process. This behavior resembles that observed for the dehydroascorbate (DHA)/ascorbate pair, and leads to the unexpected conclusion that alloxan increases the reducing capacity of the erythrocyte.
Collapse
Affiliation(s)
- J L Davis
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | |
Collapse
|
21
|
Zurbriggen R, Dreyer JL. The plasma membrane NADH-diaphorase is active during selective phases of the cell cycle in mouse neuroblastoma cell line NB41A3. Its relation to cell growth and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1312:215-22. [PMID: 8703990 DOI: 10.1016/0167-4889(96)00037-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plasma membrane oxidoreductases have been described in all cells and use extracellular impermeant electron acceptors (DCIP, Ferricyanide) that are reduced by NADH. They appear to regulate the overall cell activity in response to oxidative stress from the cellular environment. An NADH-DCIP reductase has been described at the plasma membrane of NB41A3, a neuroblastoma cell line (Zurbriggen and Dryer (1993) Biochim. Biophys. Acta 1183, 513-520) whose activation with extracellular impermeant substrates promotes cell growth. Elutriation was performed to separate cells and the various fractions were analysed for enzyme activity on intact cells combined with flow cytometry. These studies showed that the enzyme is mostly induced and activated during the G1 and during the G2/M-phases. These observations were further corroborated with specific inhibitors of the cell cycle. A three-fold increase in enzyme activity was observed in the presence of alpha-amanitin, a specific cell cycle inhibitor of the G1-phase. Taxol, a specific inhibitor of the M-phase, also induces a significant increase in enzyme activity. FACS analysis of taxol -treated and alpha-amanitin-treated cells corroborated these data. The cells have been synchronized and the enzyme activity was measured at different time intervals. An activity increase was observed after ca. 2-3 h, that corresponds to a raise in the M-phase, according to FACS data. Furthermore, NTera-2 cells - a human neuroblastoma cell line that differentiates into fully mature neurones in the presence of retinoic acid - exhibit a 50% decrease in the enzyme activity during the G0-phase upon differentiation, compared to undifferentiated cells. Together the data presented in this paper show that this plasma membrane NADH-diaphorase affects cell growth and differentiation and is strongly modulated at various phases of the cell cycle.
Collapse
Affiliation(s)
- R Zurbriggen
- Department of Biochemistry, University of Fribourg, Switzerland
| | | |
Collapse
|
22
|
May JM, Qu ZC, Morrow JD. Interaction of ascorbate and alpha-tocopherol in resealed human erythrocyte ghosts. Transmembrane electron transfer and protection from lipid peroxidation. J Biol Chem 1996; 271:10577-82. [PMID: 8631858 DOI: 10.1074/jbc.271.18.10577] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A role for ascorbate-derived electrons in protection against oxidative damage to membrane lipids was investigated in resealed human erythrocyte ghosts. Incubation of resealed ghosts with the membrane-impermeant oxidant ferricyanide doubled the ghost membrane concentration of F2-isoprostanes, a sensitive marker of lipid peroxidation. Incorporation of ascorbate into ghosts during resealing largely prevented F2-isoprostane formation due to extravesicular ferricyanide. This protection was associated with a rapid transmembrane oxidation of intravesicular ascorbate by extravesicular ferricyanide. Transmembrane electron transfer, which was measured indirectly as ascorbate-dependent ferricyanide reduction, correlated with the content of alpha-tocopherol in the ghost membrane in several respects. First, ascorbate resealed within ghosts protected against ferricyanide-induced oxidation of endogenous alpha-tocopherol in the ghost membrane. Second, when exogenous alpha-tocopherol was incorporated into the ghost membrane during the resealing step, subsequent ferricyanide reduction was enhanced. Last, incubation of intact erythrocytes with soybean phospholipid liposomes, followed by resealed ghost preparation, caused a proportional decrease in both the membrane content of alpha-tocopherol and in ferricyanide reduction. Incorporation of exogenous alpha-tocopherol during resealing of ghosts prepared from liposome-treated cells completely restored the ferricyanide-reducing capacity of the ghosts. These results suggest that the transmembrane transfer of ascorbate-derived electrons in erythrocyte ghosts is dependent in part on alpha-tocopherol and that such transfer may help to protect the erythrocyte membrane against oxidant stress originating outside the cell.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6303, USA
| | | | | |
Collapse
|
23
|
Raja KB, Pountney D, Bomford A, Przemioslo R, Sherman D, Simpson RJ, Williams R, Peters TJ. A duodenal mucosal abnormality in the reduction of Fe(III) in patients with genetic haemochromatosis. Gut 1996; 38:765-9. [PMID: 8707126 PMCID: PMC1383162 DOI: 10.1136/gut.38.5.765] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous in vitro studies have shown that the uptake of Fe(III) by freshly isolated duodenal mucosal biopsy specimens is increased in patients with genetic haemochromatosis. Moreover, in the mouse it has recently been found that reduction of Fe(III) to Fe(II) is a prerequisite for iron uptake by the proximal intestine. AIMS/METHODS This study used the in vitro technique to investigate the rates of reduction and uptake of 59Fe(III) by duodenal mucosal biopsy specimens obtained at endoscopy from treated and untreated patients with genetic haemochromatosis. RESULTS The rate of reduction of iron in the medium was proportional to the incubation time and was not caused by the release of reducing factors from the tissue fragments. Ferrozine, a specific Fe(II) chelator and ferricyanide, a non-permeable oxidising agent, inhibited uptake of 59Fe showing that reduction of Fe(III) precedes uptake. The rates (all values given as pmol/mg/min) of reduction (152 (49) v 92 (23)) and uptake (8.3 (4.0) v 3.6 (1.3), mean (SD)), were significantly increased in biopsy specimens from the untreated group (n = 6) compared with those from 10 control subjects (p < 0.04). Furthermore, the reduction and uptake rates were still increased in five patients in whom iron stores were normal after venesection treatment. CONCLUSIONS These results show that there is a persistent abnormality in the reduction and uptake of iron by the intestine in genetic haemochromatosis.
Collapse
Affiliation(s)
- K B Raja
- Department of Clinical Biochemistry, King's College School of Medicine and Dentistry, London
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Lipophilic derivatives of ascorbic acid may protect lipid bilayers and micelles against lipid peroxidation. In this work the binding, accessibility, and reducing capacity of ascorbate 6-palmitate (A6P) were studied in human erythrocyte membranes. In contrast to less lipophilic carbon-6-modified ascorbate derivatives, A6P bound to erythrocyte membranes in a concentration-dependent manner. This binding was preserved following centrifugation washes, but was largely reversed by extraction with bovine serum albumin. Most of the ascorbyl groups of membrane-bound A6P were readily accessible to oxidation by water-soluble oxidants. Ferricyanide quantitatively oxidized membrane-bound A6P, but the latter spared endogenous tocopherols from destruction. In EPR studies, A6P was much more effective than ascorbate in reducing nitroxide spin labels positioned at either carbon-5 or carbon-16 of membrane-bound stearic acid in both intact cells and in membranes. A6P, thus, appears to intercalate into the erythrocyte membrane with the ascorbyl group located superficially, but with access to the hydrophobic membrane interior, and with the ability to recycle endogenous alpha-tocopherol during oxidant stress.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | |
Collapse
|
25
|
Alcain FJ, Löw H, Crane FL. Iron reverses impermeable chelator inhibition of DNA synthesis in CCl 39 cells. Proc Natl Acad Sci U S A 1994; 91:7903-6. [PMID: 8058732 PMCID: PMC44512 DOI: 10.1073/pnas.91.17.7903] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Treatment of Chinese hamster lung fibroblasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.
Collapse
Affiliation(s)
- F J Alcain
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52906-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Alcaín FJ, Villalba JM, Löw H, Crane FL, Navas P. Ceruloplasmin stimulates NADH oxidation of pig liver plasma membrane. Biochem Biophys Res Commun 1992; 186:951-5. [PMID: 1497678 DOI: 10.1016/0006-291x(92)90838-c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NADH oxidation by pig liver plasma membranes is stimulated by ceruloplasmin (CUP) reaching a maximal value at 50 U/ml of CUP. NADH oxidation activated by CUP is proportional to the amount of protein. Concanavalin A (Con A) which recognizes the glucidic residues of the CUP required for binding to the receptor inhibits the NADH oxidation in a dose-responsive manner. Both adriamycin and bathophenantroline disulfonate (BPS), previously reported as transplasma membrane electron transport inhibitors, also inhibit the CUP-stimulated NADH oxidation of pig liver plasma membranes. Our results show a clear interaction between CUP and the NADH oxidase of plasma membrane, which supports an oxidative role for CUP in its growth effect.
Collapse
Affiliation(s)
- F J Alcaín
- Departamento de Biología Celular, Universidad de Córdoba, Spain
| | | | | | | | | |
Collapse
|
28
|
Raja KB, Simpson RJ, Peters TJ. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1135:141-6. [PMID: 1616934 DOI: 10.1016/0167-4889(92)90129-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
59Fe uptake rates by mouse duodenal fragments incubated in vitro were markedly reduced by non-permeable reagents, ferricyanide (oxidising agent) and ferrozine (Fe2+ chelator), in the medium; ferrocyanide had no effect. Reduction of Fe3+, as reflected by an increase in ferrozine-(Fe2+)-chelatable iron, was observed in the presence of the tissue fragments. The generation of Fe2+ occurred linearly with time, was independent of the medium ferrozine concentration, and was not due to release of reducing factors from the duodenal fragments. Fe(3+)-reducing activity was mainly present on the mucosal surface and was localised primarily to the proximal region of the small intestine. Changes in Fe3+ reduction rates closely parallelled the changes in duodenal 59Fe uptake, when metabolic inhibitors or modulators of membrane potential were included in the medium. The enhancement in duodenal mucosal 59Fe uptake in chronic hypoxic and iron-deficient mice parallelled the changes in the tissue reduction of medium Fe3+. Moreover, the rates of reduction were quantitatively similar to rates of uptake. These observations indicate that a sequential reduction and uptake process operates for Fe3+ uptake in mouse duodenum.
Collapse
Affiliation(s)
- K B Raja
- Department of Clinical Biochemistry, King's College School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
29
|
Crane FL, Sun IL, Barr R, Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 1991; 23:773-803. [PMID: 1721049 DOI: 10.1007/bf00786001] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplasm membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes contain b cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
30
|
Barr R, Branstetter BA, Rajnicek A, Crane FL, Löw H. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:261-8. [PMID: 1904770 DOI: 10.1016/s0005-2728(05)80246-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.
Collapse
Affiliation(s)
- R Barr
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
31
|
Sun IL, Toole-Simms W, Crane FL, Morré DJ, Löw H, Chou JY. Reduction of diferric transferrin by SV40 transformed pineal cells stimulates Na+/H+ antiport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:17-23. [PMID: 2827775 DOI: 10.1016/0005-2736(88)90117-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transplasmalemma electron transport by HeLa and pineal cells to reduce external ferricyanide is associated with proton release from the cells. Diferric transferrin also acts as an electron acceptor for the transmembrane oxidoreductase. We now show that reduction of external diferric transferrin by RPNA-209-1 SV40 transformed pineal cells is accompanied by proton release from the cells. The stoichiometry of proton release to electron transfer is much greater than would be expected from aniostropic electron flow across the membrane through protonated carriers. The proton release is not stimulated by apotransferrin and the diferric transferrin-stimulated activity is inhibited by apotransferrin. Apotransferrin also inhibits reduction of diferric transferrin by these cells. The proton release is dependent on external sodium ions and is inhibited by amiloride, which indicates that the proton release is mediated by the Na+/H+ antiport and that this antiport is activated by electron transport through the transmembrane dehydrogenase. Growth stimulation by diferric transferrin or other external oxidants can be based in part on activation of the Na+/H+ antiport.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | |
Collapse
|
32
|
Sun IL, Navas P, Crane FL, Morré DJ, Löw H. NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47676-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Löw H, Grebing C, Lindgren A, Tally M, Sun IL, Crane FL. Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembr 1987; 19:535-49. [PMID: 3693344 DOI: 10.1007/bf00770036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonpermeable electron acceptors can be reduced by a transplasma membrane electron transport system in suspensions of intact cells. Here we report that diferric transferrin is reduced by HeLa S3 cells. The reduction is recorded spectrophotometrically as the formation of the ferrous complex of bathophenanthroline disulfonate. Ferric ammonium citrate can also be used as an electron acceptor and the presence of low concentrations of diferric transferrin greatly stimulates the reduction of trivalent iron under these conditions. Likewise very low concentrations of ferricyanide, which does not give rise to a ferrous bathophenanthroline disulfonate complex formation, have a strong stimulatory effect on the complex formation when ferric ammonium citrate is the source of ferric iron. Apotransferrin is a potent inhibitor of the reaction. The inhibition occurs at the concentration necessary for complete occupancy of the transferrin receptors. The inhibition can be demonstrated also when high concentrations of ferricyanide are used as electron acceptor. The possible mechanism behind the reported phenomena is discussed, and it is concluded that the transplasma membrane electron transport system can be involved in the process of cellular iron uptake.
Collapse
Affiliation(s)
- H Löw
- Department of Endocrinology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Sun IL, Toole-Simms W, Crane FL, Golub ES, Díaz de Pagán T, Morré DJ, Löw H. Retinoic acid inhibition of transplasmalemma diferric transferrin reductase. Biochem Biophys Res Commun 1987; 146:976-82. [PMID: 3619945 DOI: 10.1016/0006-291x(87)90743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.
Collapse
|
35
|
Heller KB, Jahn B, Deuticke B. Peroxidative membrane damage in human erythrocytes induced by a concerted action of iodoacetate, vanadate and ferricyanide. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 901:67-77. [PMID: 3496117 DOI: 10.1016/0005-2736(87)90257-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human erythrocytes incubated without substrate in the presence of iodoacetate (0.2 mM), vanadate (0.5 mM) and ferricyanide (5 mM) form aqueous membrane leaks of equivalent radii of 0.5-0.8 nm leading to complete colloid-osmotic lysis within 180 min. All three components are indispensable for the effect. Inosine but not glucose markedly enhances the rate of hemolysis. These effects are due to oxidative damage, as indicated by concomitant destruction of polyunsaturated fatty acids and suppression of both effects by radical scavengers. Hemoglobin is not oxidized under these conditions. GSH and membrane SH levels remain almost normal, and no crosslinking or irreversible aggregation of membrane proteins is observed. In the absence of O2 no membrane damage can be observed. It is proposed that radical formation originates from reduction of O2 by NADPH, analogous to processes described in microsomal membranes. NADH seems not to be involved, since leak formation occurs in spite of the blockage of NADH formation by iodoacetate. Vanadate and ferricyanide are probably required to amplify the peroxidative reaction sufficiently to overcome the cellular antioxidative capacity.
Collapse
|
36
|
Sun IL, Navas P, Crane FL, Chou JY, Löw H. Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells. J Bioenerg Biomembr 1986; 18:471-85. [PMID: 3025192 DOI: 10.1007/bf00743145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40 degrees C) and permissive temperature (33 degrees C). The transformed cells grown at 33 degrees C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40 degrees C. Both the Km and Vmax for ferricyanide reduction were changed in the transformed state. The change in Vmax can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.
Collapse
|
37
|
Löw H, Sun IL, Navas P, Grebing C, Crane FL, Morre DJ. Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system. Biochem Biophys Res Commun 1986; 139:1117-23. [PMID: 3767994 DOI: 10.1016/s0006-291x(86)80293-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intact cells are known to reduce external, impermeable electron acceptors. We now show that cells can reduce the iron in diferric transferrin at the cell surface and that this reduction reaction depends on the transferrin receptor as well as the transmembrane electron transport system. Reduction of external diferric transferrin is accompanied by oxidation of internal NADH which indicates that the transmembrane enzyme is an NADH diferric transferrin reductase. Highly purified liver plasma membranes have NADH diferric transferrin reductase activity which shows properties similar to the diferric transferrin reductases activity of intact cells. Cell growth stimulation by diferric transferrin and other impermeable oxidants which can react with the diferric transferrin reductase can be based on electron transport through he plasma membrane.
Collapse
|
38
|
Sun IL, Crane FL, Chou JY. Modification of transmembrane electron transport activity in plasma membranes of simian virus 40 transformed pineal cells. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 886:327-36. [PMID: 3011115 DOI: 10.1016/0167-4889(86)90167-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Changes have been found in the plasma membrane enzyme system which carries out transmembrane electron transport and associated proton transport in Simian virus 40 (SV40) temperature-sensitive A (tsA) mutant-transformed rat pineal cell line, RPN209-1. This cell line was temperature-sensitive for the maintenance of transformation. RPN209-1 cells expressed the transformed phenotype (rapid growth, high cell density, and cloning in soft agar) at the permissive temperature (33 degrees C) and the nontransformed phenotype (slower growth, lower saturation density, and lower cloning efficiency in soft agar) at the nonpermissive temperature (40 degrees C). The reduction of external ferricyanide, hexaammine ruthenium and diferric transferrin was used to measure the transmembrane redox activity. The transformed RPN209-1 cells expressed a lower transmembrane redox activity, which is more sensitive to the antitumor drug adriamycin, when compared to the cells with a nontransformed phenotype. The lower transmembrane redox activity is associated with a decrease in the affinity for ferricyanide and a change in Vmax of the enzyme. Since the transformed cells have 25% lower concentration of NADH, the decrease in Vmax may be partly based on substrate limitation. Ionic strength variation in the assay media shows that the change in activity with transformation is not based on change in cell-surface change. Treatment with neuraminidase, however, indicates that sialic acid is important for enzyme activity, consistent with previous proposals that the transmembrane enzyme is a glycoprotein. The proton extrusion associated with transplasma membrane electron transport is increased in transformed cells relative to the rate of ferricyanide reduction. A relation between proton pumping transplasma membrane electron transport and growth stimulation by external oxidants is discussed.
Collapse
|
39
|
Crane FL, Sun IL, Clark MG, Grebing C, Löw H. Transplasma-membrane redox systems in growth and development. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 811:233-64. [PMID: 3893544 DOI: 10.1016/0304-4173(85)90013-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|